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Abstract. In our previous paper [2], we derived an explicit representation of the
integral

∫ ∞
1 t−θ�(t) logj tdt by differentiation under the integral sign. Here, j is a fixed

natural number, θ is a complex number with 1 < �θ ≤ 5/4 and �(x) denotes the error
term in the Dirichlet divisor problem. In this paper, we shall reconsider the same
formula by an alternative approach, which appeals to only the elementary integral
formulas concerning the Riemann zeta- and periodic Bernoulli functions. We also
study the corresponding formula in the case of the circle problem of Gauss.

2000 Mathematics Subject Classification. 11N37

1. Introduction and statement of results. In the previous paper [2], the authors
studied the properties concerning the integral∫ ∞

1
t−θ�k(t) logj tdt (1.1)

for a non-negative integer j and a complex number θ , where �k(x) denotes the error
term in the divisor problem of Dirichlet and Piltz defined by

�k(x) =
∑
n≤x

dk(n) − x
k−1∑
m=0

a(k)
m logm x.

Here dk(n) is the number of ways to write the natural number n as the product of
k factors, and a(k)

m are certain constants. As to the previous works concerning the
properties of (1.1), the special value and the explicit representation of this integral in the
case j = 0 have been obtained by Lavrik–Israilov–Edgorov [6] and Sitaramachandrarao
[7]. In particular, they studied several types of the representations for the special value of
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134 JUN FURUYA AND YOSHIO TANIGAWA

this integral at θ = 2, which correspond to the constant term of the Laurent expansion
of ζ (s)/s at s = 1. Here ζ (s) denotes the Riemann zeta-function.

Furthermore, Sitaramachandrarao [7] considered the analytical continuation of
this integral by regarding it as a complex function with respect to θ , especially the
following formula was derived:

∫ ∞

1
t−θ�k(t)dt = 1

θ − 1
ζ (θ − 1)k −

k−1∑
m=0

m!a(k)
m

(
1

θ − 2

)m+1

, (1.2)

which is valid (at least) for �θ > 2 − 1/k. In view of the right-hand side in (1.2), we
can see that the function

Ik(θ ) =
∫ ∞

1
t−θ�k(t)dt,

which is originally defined in the region �θ > 2 − 1/k, can be continued analytically to
the whole θ -plane as a meromorphic function. This is a holomorphic function except
for a simple pole at θ = 1. (Note that the point θ = 2 does not give a pole of Ik(θ ).)

In [2], we studied the properties of (1.1) for j ≥ 0, especially we treated in detail the
case k = 2, that is, the case of the Dirichlet divisor problem. In this case �2(x) = �(x)
is written as

�(x) =
∑
n≤x

d(n) − x(log x + 2γ − 1)

with the divisor function d(n) and the Euler constant γ . By the elementary calculations,
we see that integral ∫ ∞

1
t−θ�(t) logj tdt (1.3)

is convergent absolutely and uniformly for every compact subset in �θ > 5/4, and it
is divergent for �θ ≤ 1. We note that the range �θ > 5/4 is slightly better than that
mentioned in Sitaramachandrarao’s paper [7]. However, we stress that the constant
‘5/4’ is the best-possible one that we can obtain by the method used in paper [2], since
�(x) = �(x1/4), and it seems that integral (1.3) would not be convergent absolutely for
1 < �θ ≤ 5/4 (cf. Conjecture 1 in [2]). This conjecture means that t−θ�(t) logj t would
not be Lebesgue-integrable for 1 < �θ ≤ 5/4.

In the range �θ > 5/4, we easily see that integral (1.3) can be written down
explicitly as∫ ∞

1
t−θ�(t) logj tdt = (−1)j dj

dθ j

∫ ∞

1
t−θ�(t)dt (1.4)

=
j∑

m=0

(
j
m

)
m!(−1)j−m

(θ − 1)m+1
(ζ 2(θ − 1))(j−m) − 2γj!

(θ − 2)j+1

+ j!(θ − j − 3)
(θ − 2)j+2

. (1.5)

Since the integrands are Lebesgue-integrable for �θ > 5/4, the interchanging of
differentiation and integration in (1.4) can be justified by the Lebesgue integral theory
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(cf. e.g. Theorem 10.39 in [1]). We shall stress that we can say that this expression is a
‘trivial formula’ regarding integral (1.3) as the complex function I2(θ ). However, our
aim of this study, which is the most important point, is that we consider the explicit
representation of this function as the ‘integral form’, not a form of an analytical
continuation of this integral.

As with the case 1 < �θ ≤ 5/4, we studied convergence properties of (1.3) and
the explicit representation of this integral in the previous paper [2], and obtained the
following theorem.

THEOREM 1 (Theorem 1 in [2]). The integral (1.3) is convergent uniformly on every
compact set in the region 1 < �θ ≤ 5/4, and this can also be expressed by the right-hand
side in (1.5) in the same region.

The second assertion of Theorem 1 can be proved from the first one by
differentiation under the integral sign. A theorem of such interchange of integration
and differentiation of the form

d
dx

∫ ∞

1
f (t, x)dt =

∫ ∞

1

∂

∂x
f (t, x)dt (1.6)

can be found in, for example, Theorem 3.4 (p. 340) in [5], which is stated under the
assumption that f (t, x) is continuous with respect to both variables, t and x. In our
case, the integrand t−θ�(t) logj t is not continuous with respect to t, hence we cannot
apply the theorem (Theorem 3.4 on p. 340 in [5]) directly in our present case. However,
we stress that we can modify the proof of (1.6) described in [5] so as to be able to apply
it. In fact, formula (1.6) is applicable to our case by using the first assertion of Theorem
1 and the properties of the integrand that have polynomial orders with respect to t.

As we have discussed above, the proof of Theorem 1 in [2] depends on the properties
of integrands and deep theorems in analysis. In order to clarify the connection between
the assertions of Theorem 1 and the properties of integral (1.1), we shall seek the new
and elementary proof different from the previous one. In particular, we shall ask
whether it is possible to deduce (1.5) without using (1.6) or not. Concerning this
problem, we get the following.

THEOREM 2. The second assertion of Theorem 1 can be proved without applying
the differentiation under the integral sign of the type (1.6). Actually, Theorem 1 can be
proved by using the ‘elementary’ integral formulas concerning the Riemann zeta- and the
periodic Bernoulli functions.

This theorem means that expression (1.5) is unrelated to the uniform convergence
of integral (1.1) in the region 1 < �θ < 5/4.

In order to prove Theorem 2, we shall derive an asymptotic formula for integral∫ x
1 t−θ�(t) logj tdt with error terms uniformly in x. We note that the method used

in the proof of this theorem is elementary, but a little complicated, repeating the
decompositions and the combinations of the terms related with

∫ x
1 t−θ�(t) logj tdt. But

the most important point is that we do not use any theoretically difficult things to
derive representation (1.5) for 1 < �θ ≤ 5/4.

The analogous result to Theorem 1 in the case of the circle problem was discussed
in [3]. For a natural number n, let r(n) be the number of ways to write n as the sum of
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two squares, and P(x) be the error term in the circle problem defined by

P(x) =
∑
n≤x

r(n) − πx.

On this error function, we studied the properties of the integral∫ ∞

1
t−θP(t) logj tdt, (1.7)

and derived that this integral, convergent absolutely and uniformly on every compact
subset in �θ > 5/4, is convergent uniformly on every compact subset in 1 < �θ ≤ 5/4,
and is divergent for �θ ≤ 1.* In particular, the explicit representation of (1.7) for
�θ > 1 is given by

∫ ∞

1
t−θP(t) logj tdt = 4

j∑
m=0

(
j
m

)
(−1)j−mm!
(θ − 1)m+1

(ζ (θ − 1)L(θ − 1, χ ))(j−m)

− πj!
(θ − 2)j+1

(1.8)

(cf. Theorem 1 and some formulas in Section 1 in [3]). The method used in [3] is the
analogue of that used in the case of the divisor problem [2]; however, this case is more
difficult than that of the divisor problem. It is because we have newly considered some
identities related to the Dirichlet character χ (mod 4) adding the formulas used in [2],
e.g.

∑
n≤x χ (n)n1−θ or

∑
n≤x χ (n)

∫ x/n
1 t−θψ(t)dt in the case of the circle problem, where

ψ(x) is the periodic Bernoulli function.
Similar to the case of the divisor problem, we also proved the convergence of

integral (1.7) for 1 < �θ ≤ 5/4 without using the theorem of differentiation under the
integral sign (1.6). We present this result as the following theorem.

THEOREM 3. Without applying differentiation under the integral sign of the type
(1.6), we can prove that the integral (1.7) is convergent uniformly in the wider sense in the
region 1 < �θ ≤ 5/4 and that it is represented by the right-hand side in (1.8).

We note that we have not yet determined the properties of (1.1) for general k ≥ 3
completely, indeed in [2] we only proved that integral (1.1) is convergent absolutely for
�θ > 4/3 for k = 3† and for �θ > Ak + 1 for k ≥ 4, where

Ak = inf {αk | �k(x) = O(xαk ) for x ≥ 1} .

However, we have not yet discussed the properties of integral (1.1) for the other region
of θ , and it seems to be difficult to study these in such regions for general k ≥ 3. The
difficulties of these studies originate from that there is only a few information about
the ‘mean value formulas’ for �k(x). From this point, we should say that these studies
would be quite difficult to obtain new results concerning these problems. But we believe

*Similar to the case of the Dirichlet divisor problem, the constant ‘5/4’ is the best-possible one that we can
obtain by the method used in our argument.
†We again note that the constant ‘4/3’ is the best-possible one, which we can obtain by the method used in
our argument, since A3 ≥ 1/3.
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that the method in [2] and developed in this paper would be useful in the study of these
topics and we would discuss these topics elsewhere.

We remark that the referee of this paper pointed out two important remarks
concerning the related problems discussed in paper [2] and the original version of this
paper. We shall discuss these topics in Section 5.

The authors would like to express their sincere gratitude to the referee for his/her
valuable comments.

2. Preliminaries. Throughout the paper, θ denotes a complex number, and we
may assume that 1 < �θ ≤ 5/4 in the latter discussion. Function ψ(x) denotes the
periodic Bernoulli function defined by ψ(x) = x − [x] − 1/2, where [x] is the greatest
integer not exceeding x.

In this section, we shall prepare some integral and summation formulas concerning
the ψ- and log-functions.

LEMMA 1. We have ∫ ∞

1
t−2ψ(t)dt = 1

2
− γ.

Furthermore, let s be a complex number for �s > 1 with s �= 2, and j be a fixed non-
negative integer. We have∫ ∞

1
t−sψ(t) logj tdt = j!

(s − 2)j+1
− j!

2(s − 1)j+1

− j!
j∑

n=0

(−1)n

n!

(
1

s − 1

)j−n+1

(ζ (s − 1))(n).

Proof. These are Lemma 3 and Lemma 4 in [2], respectively. �
Note that assertions of this lemma, especially the second assertion, can be derived

by employing differentiation under the integral sign. But we did not use (1.6) by means
of Theorem 3.4 (p. 340) in [5] to prove this formula. It is because that the integral on
the right-hand side is convergent absolutely, it is Lebesgue-integrable. We also note
that the asymptotic formula of the partial integral

∫ x
1 t−sψ(t) logj tdt can be derived by

applying Lemma 1 to the relation∫ x

1
t−sψ(t) logj tdt =

∫ ∞

1
t−sψ(t) logj tdt + O(x−�s logj x)

for �s > 1.‡

LEMMA 2. For a complex number s with s �= 1 and a fixed non-negative integer j, we
have ∫ x

1
t−s logj tdt = j!

(s − 1)j+1
− x1−s

j∑
m=0

(
j
m

)
m!

(s − 1)m+1
logj−m x.

Proof. This is the formula (5.10) in [2]. �

‡In fact, this formula is valid for �s > 0 by using integration by parts and the estimate
∫ x

1 ψ(t)dt = O(1).
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LEMMA 3. For s �= 2 and a non-negative integer j, we have

∑
n≤x

n1−s logj n = j!
(s − 2)j+1

− x2−s
j∑

m=0

(
j
m

)
m!

(s − 2)m+1
logj−m x − ψ(x)x1−s logj x

+ (1 − s)
∫ x

1
t−sψ(t) logj tdt + j

∫ x

1
t−sψ(t) logj−1 tdt + cj,

where cj is the constant defined by c0 = 1/2 and cj = 0 for j ≥ 1.

Proof. This formula is proved by using the Euler–Maclaurin summation formula
and by applying Lemma 2. �

In the study of integral (1.3) for j ≥ 1, we need to apply the formulas for the partial
integral

∫ x
1 t−θ�(t)dt. We present the result concerning such formulas in the following

lemma.

LEMMA 4. For a sufficiently large x, we have

∫ x

1
t−θ�(t)dt = 1 − 2γ

2 − θ
x2−θ + 1

4(1 − θ )
x1−θ +

{
2γ

2 − θ
+ 5θ − 6

4(1 − θ )(2 − θ )

}

− 1
2 − θ

x2−θ

∫ x

1
t−2ψ(t)dt + θ

2(2 − θ )

∫ x

1
t−θψ(t)dt

−
∑
n≤x

n1−θ

∫ x/n

1
t−θψ(t)dt.

Furthermore, an asymptotic formula for this integral can be written down as

∫ x

1
t−θ�(t)dt = 1

θ − 1
ζ 2(θ − 1) + 2γ

2 − θ
+ θ − 3

(2 − θ )2
+ O(x1−�θ log x)

for 1 < �θ ≤ 5/4.

Proof. The first formula is derived from formulas (3.2) and (3.3) in [2] and the
second one is formula (3.10) in [2]. �

3. Proof of Theorem 2. Hereafter, we may assume that j is a fixed natural number.
Let x be a sufficiently large number. We start from the formula

∫ x

1
t−θ�(t) logj tdt = logj x

∫ x

1
t−θ�(t)dt − j

∫ x

1

logj−1 t
t

∫ t

1
u−θ�(u)dudt, (3.1)

which is given by integration by parts. Substituting the first and second formulas in
Lemma 4 into the innermost integral of the second integral and the first one on the
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right-hand side in (3.1) and interchanging integration and summation, we have∫ x

1
t−θ�(t) logj tdt

=
{

θ2

4(1 − θ )(2 − θ )2
+ 1

θ − 1
ζ 2(θ − 1)

}
logj x − j

4(1 − θ )

∫ x

1
t−θ logj−1 tdt

+ (2γ − 1)j
2 − θ

∫ x

1
t1−θ logj−1 tdt + j

2 − θ

∫ x

1
t−2ψ(t)

∫ x

t
u1−θ logj−1 ududt

− θj
2(2 − θ )

∫ x

1
t−θψ(t)

∫ x

t
u−1 logj−1 ududt

+ j
∑
n≤x

n1−θ

∫ x

n
t−1 logj−1 t

∫ t/n

1
u−θψ(u)dudt + O(x1−�θ logj+1 x).

It is easy to see that

j
∑
n≤x

n1−θ

∫ x

n
t−1 logj−1 t

∫ t/n

1
u−θψ(u)dudt

= logj x
∑
n≤x

n1−θ

∫ x/n

1
t−θψ(t)dt −

∑
n≤x

n1−θ

∫ x/n

1
t−θψ(t) logj(nt)dt.

We note that the first part on the right-hand side in the above has been treated in the
previous paper [2]. Actually, we have seen that

∑
n≤x

n1−θ

∫ x/n

1
t−θψ(t)dt

= (1 − θ )
{

1
θ − 2

− 1
2(θ − 1)

− 1
θ − 1

ζ (θ − 1)
}2

+ 1
2 − θ

x2−θ

∫ x

1
t−2ψ(t)dt

− θ

2(2 − θ )

∫ x

1
t−θψ(t)dt + O(x1−�θ log x)

(see formula (3.4) and the last formula on p. 11 in [2]). Thus, we have by Lemma 1 that∫ x

1
t−θ�(t) logj tdt

= 1 − 2γ

2(2 − θ )
x2−θ logj x + (2γ − 1)j

2(2 − θ )

∫ x

1
t1−θ logj−1 tdt

− j
4(1 − θ )

∫ x

1
t−θ logj−1 tdt − j

2 − θ

∫ x

1
t−2ψ(t)

∫ t

1
u1−θ logj−1 ududt

+ θ

2(2 − θ )

∫ x

1
t−θψ(t) logj tdt −

∑
n≤x

n1−θ

∫ x/n

1
t−θψ(t) logj(nt)dt

+ O(x1−�θ logj+1 x). (3.2)

We consider the sixth part on the right-hand side in the above. By applying the
binomial expansion to logj(nt) and interchanging the summations and integration, we
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have

∑
n≤x

n1−θ

∫ x/n

1
t−θψ(t) logj(nt)dt

=
j∑

ν=0

(
j
ν

) ∫ x

1
t−θψ(t) logj−ν t

∑
n≤x/t

n1−θ logν ndt. (3.3)

Then, we apply Lemma 3 to the right-hand side in (3.3) to obtain that this is written
down as

=
j∑

ν=0

{
cν + ν!

(θ − 2)ν+1

}(
j
ν

) ∫ x

1
t−θψ(t) logj−ν tdt

− x2−θ

j∑
ν=0

(
j
ν

) ν∑
m=0

(
ν

m

)
m!

(θ − 2)m+1

∫ x

1
t−2ψ(t) logj−ν t logν−m

(x
t

)
dt

+ (1 − θ )
j∑

ν=0

(
j
ν

)∫ x

1
t−θψ(t) logj−ν t

∫ x/t

1
u−θψ(u) logν ududt

+
j∑

ν=1

(
j
ν

)
ν

∫ x

1
t−θψ(t) logj−ν t

∫ x/t

1
u−θψ(u) logν−1 ududt + O(x1−�θ logj+1 x).

As for double integrals in the above, we have for non-negative integers a and b and a
complex number θ with �θ > 1,

∫ x

1
t−θψ(t) loga t

∫ x/t

1
u−θψ(u) logb ududt

=
(∫ ∞

1
t−θψ(t) loga tdt

) (∫ ∞

1
t−θψ(t) logb tdt

)
+ O(x1−�θ loga+b x).

Furthermore, we can see by applying the binomial expansion once again that

∫ x

1
t−2ψ(t)logj−ν t logν−m

(x
t

)
dt

=
ν−m∑
l=0

(−1)ν−m−l
(

ν − m
l

)
logl x

∫ x

1
t−2ψ(t) logj−m−l tdt.

Now we substitute all formulas derived above into (3.2). We note that formula

j
j−1∑
n=0

(
j − 1

n

)
n!f (n) =

j∑
n=1

(
j
n

)
n!f (n − 1) (3.4)
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holds for j ≥ 1 and any function f . Thereby by using Lemmas 1 and 2 with noting the
remark below Lemma 1, we obtain

∫ x

1
t−θ�(t) logj tdt

= 2γ − 1
2

x2−θ

j∑
ν=0

(
j
ν

)
ν!

(θ − 2)ν+1
logj−ν x + x2−θ

j∑
ν=0

j!
(j − ν)!

ν∑
m=0

1
(θ − 2)m+1

×
ν−m∑
l=0

(−1)ν−m−l

l!(ν − m − l)!
logl x

∫ ∞

1
t−2ψ(t) logj−m−l tdt

− j
2 − θ

∫ ∞

1
t−2ψ(t)

∫ t

1
u1−θ logj−1 ududt − θ

θ − 2

∫ ∞

1
t−θψ(t) logj tdt

+ (θ − 1)
j∑

ν=0

(
j
ν

)(∫ ∞

1
t−θψ(t) logj−ν tdt

)(∫ ∞

1
t−θψ(t) logν tdt

)

−
j∑

ν=1

(
j
ν

)
ν

(∫ ∞

1
t−θψ(t) logj−ν tdt

)(∫ ∞

1
t−θψ(t) logν−1 tdt

)

−
j∑

ν=1

(
j
ν

)
ν!

(θ − 2)ν+1

∫ ∞

1
t−θψ(t) logj−ν tdt + j!

4(θ − 1)j+1
− (2γ − 1)j!

2(θ − 2)j+1

+ O(x1−�θ logj+1 x) (3.5)

for 1 < �θ ≤ 5/4.
We transform the second part on the right-hand side in (3.5). Interchanging the

summations, we see that this part is equal to

j!x2−θ

j∑
m=0

1
(θ − 2)m+1

j−m∑
l=0

logl x
l!

j∑
ν=l+m

(−1)ν−m−l

(j − ν)!(ν − m − l)!

∫ ∞

1
t−2ψ(t) logj−m−l tdt.

Furthermore, by applying the well-known formula

N∑
n=0

(−1)n
(

N
n

)
=

{
1 if N = 0
0 otherwise

to the innermost sum in the above and using Lemma 1, we can see that this is the
negative of the first part on the right-hand side in (3.5). As for the third part on the
right-hand side in (3.5), we have by Lemmas 1 and 2, and formula (3.4) that this is

= (1 − 2γ )j!
2(θ − 2)j+1

−
j∑

m=1

(
j
m

)
m!

(θ − 2)m+1

∫ ∞

1
t−θψ(t) logj−m tdt.
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The formula in Lemma 1 leads

− 2ν!
(θ − 2)ν+1

+ (θ − 1)
∫ ∞

1
t−θψ(t) logν tdt − ν

∫ ∞

1
t−θψ(t) logν−1 tdt

= − ν!
(θ − 2)ν+1

− (−1)ν(ζ (θ − 1))(ν)

for ν ≥ 1.
Consequently, by tending parameter x to infinity we obtain

∫ ∞

1
t−θ�(t) logj tdt

= −
j∑

ν=0

(
j
ν

) {
ν!

(θ − 2)ν+1
+ (−1)ν(ζ (θ − 1))(ν)

}∫ ∞

1
t−θψ(t) logj−ν tdt

− 1
2

∫ ∞

1
t−θψ(t) logj tdt + j!

4(θ − 1)j+1
+ (1 − 2γ )j!

(θ − 2)j+1
(3.6)

for 1 < �θ ≤ 5/4.
Now we will see that the main term in the above accords with that in formula (1.5).

We denote the first part on the right-hand side in the above by −S, and we treat the
transformation of it. By Lemma 1, we get

S = (j + 1)!
(θ − 2)j+2

− 1
2

j!
j∑

ν=0

1
(θ − 2)ν+1(θ − 1)j−ν+1

+
j∑

ν=0

(
j
ν

)
(−1)ν(j − ν)!
(θ − 2)j−ν+1

(ζ (θ − 1))(ν) − 1
2

j∑
ν=0

(
j
ν

)
(−1)ν(j − ν)!
(θ − 1)j−ν+1

(ζ (θ − 1))(ν)

− j!
j∑

ν=0

1
(θ − 2)ν+1

j−ν∑
n=0

(−1)n

n!
1

(θ − 1)j−ν−n+1
(ζ (θ − 1))(n)

−
j∑

ν=0

(
j
ν

)
(−1)ν(j − ν)!(ζ (θ − 1))(ν)

j−ν∑
n=0

(−1)n

n!
1

(θ − 1)j−ν−n+1
(ζ (θ − 1))(n)

= (j + 1)!
(θ − 2)j+2

+
5∑

l=1

Sl,

say. We can easily get

S1 = −1
2

j!
{

1
(θ − 2)j+1

− 1
(θ − 1)j+1

}
,

since

a∑
n=0

(
1

θ − 2

)n+1 (
1

θ − 1

)a−n+1

= 1
(θ − 2)a+1

− 1
(θ − 1)a+1

(3.7)
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for a non-negative integer a. Similarly, in S4, by interchanging the summations and
using (3.7) we have

S4 = − j!
j∑

n=0

(−1)n

n!
(ζ (θ − 1))(n)

j−n∑
ν=0

1
(θ − 2)ν+1

1
(θ − 1)j−n−ν+1

= − j!
j∑

n=0

(−1)n

n!(θ − 2)j−n+1
(ζ (θ − 1))(n) + j!

j∑
n=0

(−1)n

(θ − 1)j−n+1n!
(ζ (θ − 1))(n),

thus S4 = −S2 − 2S3.
For S3, we get by Lemma 1 directly that

S3 = 1
2

∫ ∞

1
t−θψ(t) logj tdt − j!

2(θ − 2)j+1
+ j!

4(θ − 1)j+1
.

Rearranging the parameter of the summation with respect to n as m = j − ν − n
and interchanging the double sums in S5, we have

S5 = − j!
j∑

ν=0

(−1)ν

ν!
(ζ (θ − 1))(ν)

j−ν∑
m=0

(−1)j−m−ν

(j − m − ν)!
1

(θ − 1)m+1
(ζ (θ − 1))(j−m−ν)

= − j!
j∑

m=0

(−1)j−m

(θ − 1)m+1

j−m∑
ν=0

1
ν!(j − m − ν)!

(ζ (θ − 1))(ν)(ζ (θ − 1))(j−m−ν).

Finally, by applying the Leibniz rule to the innermost sum in the last equation in the
above we have

S5 = −
j∑

m=0

(
j
m

)
m!(−1)j−m

(θ − 1)m+1
(ζ 2(θ − 1))(j−m).

Therefore, we obtain

S = −
j∑

m=0

(
j
m

)
m!(−1)j−m

(θ − 1)m+1
(ζ 2(θ − 1))(j−m) − 1

2

∫ ∞

1
t−θψ(t) logj tdt

+ j!
4(θ − 1)j+1

+ (j + 1)!
(θ − 2)j+2

.

By substituting this formula into (3.6), we obtain representation (1.5) for 1 < �θ ≤ 5/4.
This completes the alternative proof of Theorem 1 for j ≥ 1, thus the proof of Theorem
2 is complete.

4. Proof of Theorem 3. Based on the methods used in Section 3, we shall consider
the alternative approach for formula (1.8) for j ≥ 1. However, the proof in this section
is much closed to that used in the previous section. Thus, we will give only a sketch of
this proof.
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We start from the identity∫ x

1
t−θP(t)dt = 4

2 − θ
x2−θ

∑
n≤x

χ (n)n−1 + 2θ

(1 − θ )(2 − θ )

∑
n≤x

χ (n)n1−θ

− 2
1 − θ

x1−θ
∑
n≤x

χ (n) − π

2 − θ
x2−θ + π

2 − θ

− 4
∑
n≤x

χ (n)n1−θ

∫ x/n

1
t−θψ(t)dt

and the asymptotic formula∫ x

1
t−θP(t)dt = 4

θ − 1
ζ (θ − 1)L(θ − 1, χ ) − π

θ − 2
+ O(x1−�θ log x)

(cf. the formulas (2.3) and (2.5) in [3], respectively). Furthermore, we shall use the
asymptotic formula∑

n≤y

χ (n)n−s logν n = (−1)ν(L(s, χ ))(ν) + O(y−�s logν y)

frequently, where ν is a non-negative integer and s is a complex number with �s > 0.§

Then we have, by applying integration by parts, these two formulas, the second
formula in Lemma 1 and Lemma 2 that∫ x

1
t−θP(t) logj tdt = − πj!

(θ − 2)j+1
+ 4

j∑
ν=0

(
j
ν

)
(−1)j−νν!
(θ − 2)ν+1

(L(θ − 1, χ ))(j−ν)

− 2
j∑

ν=0

(
j
ν

)
(−1)j−νν!
(θ − 1)ν+1

(L(θ − 1, χ ))(j−ν)

− 4
∑
n≤x

χ (n)n1−θ

∫ x/n

1
t−θψ(t) logj(nt)dt + O(x1−�θ logj+1 x).

(4.1)

In the second term from the last on the right-hand side, we apply the binomial expansion
and the second formula in Lemma 1 that this part is equal to

− 4
j∑

m=0

(
j
m

)
(−1)j−mm!
(θ − 2)m+1

(L(θ − 1, χ ))(j−m)

+ 4
j∑

m=0

(
j
m

)
(−1)j−mm!(L(θ − 1, χ ))(j−m)

m∑
n=0

(−1)n

n!(θ − 1)m−n+1
(ζ (θ − 1))(n)

+ 2
j∑

m=0

(
j
m

)
(−1)j−mm!
(θ − 1)m+1

(L(θ − 1, χ ))(j−m) + O(x1−�θ logj+1 x).

§We note that this formula can be derived without using (1.6). Actually, we apply the Lebesgue integral
theorem (Theorem 10.39 in [1]) to (L(s, χ ))(ν) for �s > 1. Then we prove this formula for �s > 1 and thus
for �s > 0 by analytic continuation of (L(s, χ ))(ν).
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Thereby substituting this formula into (4.1), we obtain∫ x

1
t−θP(t) logj tdt

= 4
j∑

m=0

(
j
m

)
(−1)j−mm!(L(θ − 1, χ ))(j−m)

m∑
n=0

(−1)n

n!(θ − 1)m−n+1
(ζ (θ − 1))(n)

− πj!
(θ − 2)j+1

+ O(x1−�θ logj+1 x). (4.2)

Furthermore, we treat the transformation of the first term on the right-hand
side in (4.2). By interchanging the summations and rearranging the parameter of the
summation with respect to m, we see that this part is rewritten as

4
j∑

n=0

j−n∑
m=0

(
j
m

)(
j − m

n

)
(−1)j−mm!
(θ − 1)m+1

(ζ (θ − 1))(n)(L(θ − 1, χ ))(j−n−m),

since

(m + n)!
(

j
m + n

)
= m!n!

(
j
m

)(
j − m

n

)
.

Hence, by interchanging the summations again and applying the Leibniz rule to the
innermost sum, we obtain

∫ x

1
t−θP(t) logj tdt = 4

j∑
m=0

(
j
m

)
(−1)j−mm!
(θ − 1)m+1

(ζ (θ − 1)L(θ − 1, χ ))(j−m)

− πj!
(θ − 2)j+1

+ O(x1−�θ logj+1 x).

This completes the proof of Theorem 3.

5. Addendum. In this section, we shall discuss two points that the anonymous
referee kindly informed us.

Let us put

�̃(x) =
∑
n≤x

′
d(n) − x(log x + 2γ − 1) − 1

4
,

where symbol
∑′

n≤x means that the last term is to be halved if x is an integer. This
definition of the error term is also used in the theory of the divisor problem, and we
see that this function has the same and similar properties of �(x). For instance, we
see that these two functions have the same upper and the lower bounds and that the
formulas∫ x

1
�(t)dt = 1

4
x + O(x3/4) and �̃(x) =

∫ x

1
�(t)dt − 1

4
x = O(x3/4).

hold for x ≥ 1.
Now we shall consider the explicit representations of the integral related to �̃(x),

namely, we shall study the convergence of the integral
∫ ∞

1 t−θ �̃(t)dt. By the definition
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of �̃(x), we can see that∫ x

1
t−θ �̃(t)dt =

∫ x

1
t−θ�(t)dt +

{−4−1 log x if θ = 1,

4−1(1 − θ )−1(1 − x1−θ ) otherwise.
(5.1)

Thus, combining this formula with relation (2.1) in [2] we obtain∫ x

1
t−θ �̃(t)dt =

{
C̃(θ ) + O(x1−�θ ) if �θ > 3/4
O(x3/4−�θ ) + O(log x) if �θ ≤ 3/4

, (5.2)

where C̃(θ ) is the constant depending only on θ , especially, this can be written down
explicitly as

C̃(θ ) = θ

∫ ∞

1
t−θ�1(t)dt

for �θ > 3/4 with θ �= 1. Here �1(x) is the error function defined by �1(x) = ∫ x
1 �̃(t)dt,

thus �1(x) = ∫ x
1 �(t)dt − 1

4 x. (We note that the mean value result of �(x) mentioned
above gives the estimate �1(x) = O(x3/4) obviously.)

Formula (5.1) states that the improper integral
∫ ∞

1 t−θ �̃(t)dt is convergent
absolutely and uniformly for �θ > 5/4 as in the case of

∫ ∞
1 t−θ�(t)dt. Furthermore,

this integral can be convergent uniformly on every compact subset for 3/4 < �θ ≤ 5/4,
although the integral related to �(x) is convergent uniformly for the region 1 < �θ ≤
5/4. However, integral

∫ ∞
1 t−θ �̃(t)dt is not known to be convergent or divergent for

�θ ≤ 3/4 at present. In order to prove it, we should improve the lower formula in
the line (5.2), thus we should improve the estimate of the integral

∫ x
1 t−θψ(t)ψ(x/t)dt

obtained in Lemma 2 in [2]. This problem seems to be very interesting, so we shall
return to this topic at another occasion.

Now we shall discuss other properties of integral (1.1) in the region 1 < �θ ≤ 5/4.
In our previous paper [2], we conjectured that this integral is not absolutely convergent,
i.e. ∫ ∞

1
t−�θ |�(t)| logj tdt = ∞ (5.3)

for any complex number θ with 1 < �θ ≤ 5/4 and every non-negative integer j. It is
pointed out by the referee that this conjecture holds true.

We shall give proof of (5.3) provided by the referee. The proof depends on the
results of Heath-Brown and Tsang [4]. To prove (5.3), it is enough to consider integral∫ 2X

X
t−a|�(t)| logj tdt

for 1 < a ≤ 5/4. Let X < x ≤ 2X . By Theorem 2 in [4], we have |�(x)| 
 X1/4 for
many disjoint intervals I ⊂ [X, 2X ] of length 
 √

X(log X)−5. The number of such
intervals is 
 √

X(log X)5. Consequently, for a ≤ 5/4, we have∫ 2X

X
t−a|�(t)| logj tdt 
 X−a+1/4 logj X ×

√
X(log X)−5 ×

√
X(log X)5


 X5/4−a logj X,

from which the conjecture (5.3) follows.
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