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SPHERICAL HARMONICS, THE WEYL TRANSFORM 
AND THE FOURIER TRANSFORM ON THE 

HEISENBERG GROUP 

DARYL GELLER 

Introduction. In the early days of quantum mechanics, Weyl asked the 
following question. Let À be a non-zero real number, J^ a separable 
Hilbert space. Given certain (unbounded) operators W\, . . . , Wn, 
Wf, . . . , WÏ on ^satisfying 

Wj+ = W) and [W*, -Wj] = 2X1 

(on a dense subspace i^of 3tif) with all other commutators vanishing. Given 
also a function/(f, f) where f e Cn. Let W = (Wh . . . , Wn\ W+ = 
(W] , . . . ,Wn ). How does one associate to / an operator f(W, W+)! 
(Actually, Weyl phrased the question in terms of p = Re f, q = Im f, 
P = Re Jf, 2 = i m W~t which represent momentum and position. In this 
paper, however, we wish to exploit the unitary group on Cn and so prefer 
complex notation.) 

If fis a polynomial, say/(f, f) = fifi , we want to associate to / a 
polynomial in (PF, JF+). But which polynomial; W\W\~, W\~ W] or even 
(1/2)[W^^+ + WiW^WiY! The choice is apparently arbitrary. Neverthe­
less, the first two possibilities listed are stand-outs. To formalize this, 
suppose that P is the monomial P(J) = fpfY (p, y multi-indices; we are 
using multi-index conventions). We set 

r(P) = ( ^ + ) y ^ / p , rr(P) = H^(I^+)Y. 

We extend T, T' to all polynomials by linearity. As for more general 
functions/, Weyl's construction is this (modified for complex notation). 
Define ^f:^{Cn) -> S?(Cn) as follows: 

(FT)® = j Q n exp( -z • f + z • S)F(z)dV. 

(Dot denotes dot product.) This is a modification of the usual Fourier 
transform J^ the relation being that 

&'F{1) = i*F(-2if) . 

Weyl shows that /( —z • P^+ + z • W) is essentially self-adjoint, so that 
exp( —z • W^ + z • JF) is unitary. Thus one can define a map 
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616 DARYL GELLER 

which is analogous to #"': namely 

<§F = j c n e x p( - z • W+ + z • W)F(z)dV. 

We call #the Weyl transform. We then define #~: ̂ (Cw) -> 0 p f ) 
by 

if F = <3o^'~xf 

This then is the operator associated to / , which we shall refer to as the 

Weyl correspondent of/. Again, there are other possibilities for if, but this 

one is in many ways the simplest. 

But what of the previous question? What is the Weyl correspondent of a 

polynomial? Let P be a polynomial; then A = &'~\P) is a distribution, a 

linear combination of 8 and its derivatives. One can then make sense 

of @(A) = ifP in a variety of ways; for example, one could expand 

exp(-z • W* + z • W) as a formal power series and perform obvious 

manipulations. The relation of the above notions to harmonic polynomials 

P is explored in Part A of this paper. As a small sample of this, we 

assert: 

PROPOSITION 2.7. IfP is harmonic, if(P) = r(P) = T\P). 

In fact, the operators {if(P)\P harmonic and homogeneous} are 
operator analogues of spherical harmonics. There is a complete theory for 
them analogous to the classical theory of spherical harmonics. Part A 
constitutes a defense of this last statement. The main objective of Part B is 
the computation of an exact formula for the group F. T. (Fourier 
transform) of certain regular homogeneous distributions on Hn (the 
Heisenberg group), using the theory of Part A. The paper is essentially 
self-contained. 

In Section 7, we give a few applications to the computations of formulae 
for certain kernels that arise on H". However, the most important 
application to date of this work was to the study by the author and E. M. 
Stein of singular convolution operators on the Heisenberg group [7]. 

I would like to thank E. M. Stein for many helpful discussions. 

Part A. Spherical Harmonics and the Weyl Transform 

1. Summary of basic properties of the Weyl transform. We begin with a 
rapid summary of the properties of ^. Some short heuristic arguments for 
the assertions made are included. For complete proofs we refer to the first 
section of [8]. We use the prefix " I " for the results of [8]. Thus Lemma 
1.1.1 refers to Lemma 1.1 of [8]. We have, however, changed one piece of 
notation used in [8]: the meanings of J^and W^ will be the reverse from 
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the usage in [8]. The reason for the change is to keep in accordance with 
the philosophy enunciated in the introduction. We regret our earlier usage 
in [8]. 

Many concepts to be introduced in Part A depend on the parameter 
X e R* = R\{0}. As such, when we define these concepts, they will 
carry X as a subscript. Usually, however, X will be fixed and we shall omit 
this subscript entirely and without further comment. 

To define ^\ formally we first let ^ be a separable complex Hilbert 
space with fixed orthonormal basis {£a,x}ae(Z+)"- (Here Z + = {0, 1, 
2, . . . } . ) At times we shall identify all the^x with each other in such a way 
that Ea\ is identified with Eali for all X, \x. Let 

2d\ = {finite linear combinations of the Ea\) 

and let 

0(jex) = {linear operators S\S:@\ - ^ ^ x } . 

Sometimes if S is an operator on Jtfsuch that 2d = 2$\<z @(S), w e shall 
think of S as an element of (9(3^)\ we mean more properly that 
S\@ e 0pT). We let 

@(J0\) = {bounded operators o n ^ } ; 

there is an obvious injection 28(3?) c 0(34?) obtained by restricting an 
operator to 2d. For v, w G . f we set 

V • W = 2 VaWa if V = 2 V a £ a , W = 2 WaEa-

If S e 0(3?) we let S + be the operator in Q(3tf) such that 

Sv • w = v • S w, 

if there is such an operator in Q(3/F). Let ek denote (0, . . . , 1, . . . , 0) e 
(Z + )" with the 1 in the fcth position. On 2d, we define weighted shift 
operators Wk\, W k x for 1 ^ k = n as follows: 

1 
Wk\Ea = (2ak\\\ )2Ea_ek, zero if ak = 0 

1 
wtxEa = [2(ak + 1) |X| fEa+ek 

for X > 0. The right sides are to be reversed if X < 0. Wk\ and 
WkX are closable; we denote their closures by Wk\ and Wk\. We set 
3i = 2(WkX)\ then 

3^ = 2d(wtù = {v = 2 v ^ x G ^ | 2 avivai2 < oo}. 

We have 

[»}A' , " WkX] = 2Sjk\I on % , [WjX, WkX] = 0 
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618 DARYL GELLER 

(where / denotes the identity operator). If J^is identified with L2(R/?) and 
the {Ea} with the Hermite functions, Wk and Wk are the annihilation 

1 _I 
and creation operators. When X = - these are 2 2(xk ± d/dxk). 

We shall not use Hermite functions but instead will sometimes use the 
following representation of our operators on the Bargmann space. For 
X > 0, let 

Jf'x = {F holomorphic on Cn\ 

(2X/7T)"fcn \F(w) \2e-2X^2dV = \\F\\2 < œ } . 

J^'x is easily seen [1] to be a Hilbert space with orthonormal basis Ef
a\ 

where 

E'„x(w) = [(2X)2wr/(a\f ( a e ( Z + ) " ) . 

(Here a! = I I a/., za = U z/J if z e C".) For X < 0, set 

Identify J^ , £a,A with ^ £^A. If X > 0, W Â, W^ are then identified 
with the operations of multiplication by 2|X|wy- and d/dwj respectively, 
while if X < 0 the situation is reversed. In the future, when we use this 
representation, we will simply say "in the Bargmann representation" and 
omit the primes. 

Through use of the Bargmann representation, one can give a subspace 
J^X of ^ s u c h that 

n 

2 c j ^ c n &J 
7 = 1 

and such that i( — z • W+ + z • W) is essentially self-adjoint on J ^ Thus 

Vz = exp( -z • W+ + z- W) 

is a well-defined unitary operator on J£f j^may be chosen so that the power 
series for exp( —z • W+ )<p and exp(z • W)y converge absolutely to elements 
of J ^ for any <p <E S/. One can then prove (a complex form of) the Weyl 
relations, that 

Vz = eml exp(z • W) exp( -z • W+) 

= e~ml e x p ( - z • W+) exp(z W) ( * ) 

on stf. The second equality follows from the fact that 

[exp(z • W)F](w) = F(w + z), 

[exp(z • W+)F](w) = e2XzwF(w) f o r f e j / 
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in the Bargmann representation. These relations are trivial on the formal 

level. The first equality of ( * ) is proved through use of Stone's theorem. 

For all this, see Lemma 1.1.1. 

One also checks, using the Weyl relations, that 

(1.1) VZVW = exp(2/AImz- w)Vz+w. 

On C" we define the differential operators 

&j\ = d/dZj + Xzj9 &jX = d/dîj - Xzj. 

Then 

(1.2) [2j,$k] = -28jk\. 

Now J^'iL^C7) -> C(Cn) (see the introduction) satisfies 

\&'(dF/dzj)](0 = fy(^T)(f), 

\2r'(dF/dIj) ](0 = -£j(2r'F)(0 ifF<=& 

One wishes analogously to define ^\.L\Cn) —> â&(3/F) in such a way that 

(1.3) &(&jF) = (^F)WJ
+, 

9(&jF) = ~{W)Wj on 3fJ if F e ^ 

By (1.2), this is at least a conceivable objective. As in the introduction, 
one has only to set 

9F = J VzF{z)dV. 

Computing formally with the Weyl relations, one checks (1.3) at once. 
We remark that the operators 

£fj\ = d/dZj — Xzj and 3?j\ = d/dlj + Azy 

also behave nicely under # Namely, if F e ^ then &F:Jf-^ 9J, 
&(&fF) = Wf{^F\ and 

&(&*F) = - Wj(9F). 

Again this is checked with the Weyl relations. 
An operator which is frequently useful is 

n 

J?ox = - ( 1 / 2 ) S (2j3j + &j2j). 
7 = 1 

We also define Àx e &(JT) by 

Àx = (1/2) 2 {Wkwt + Wtwk) on2>x. 
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Â\ is closable; denote its closure by A\. Then 

3(A) = {v G jr\ 2 |«|2|vJ2 < oo}. 

Here \a\ = 2 «z. Note 

AEa = 2\X\vaEa 

where, here and elsewhere, va = \a\ + nil. If F e ^ 

#(.S?oF) = (9F)A on 3(A). 

If F is a function on C \ let A/^F, MkF(k = 1 , . . . , « ) be the functions 
defined by 

(MkF)(z) = zkF(z), (MkF)(z) = lkF(z). 

Then 

&'(MkF) = -a^T/a^, 

F'(MkF) = d^'F/dÇk if F E # 

An analogous result holds for ^if 3/3^, 3/3^ are replaced by certain 
unbounded derivations. Thus, for 1 ̂  k ^ w, we define the operators £> ,̂ 
Dk\.(9(34fT) —> (^pf7) as follows. The domain of the operators is 

2>(Dk) = 3>(Dk) = {S G tf^lS:^-^*} 

and for S <E <^(Z\) we set 

DkS = (2A)-1 [S, P^+], 5*S = - (2A)- 1 [^ , W*]. 

Note that 

DkWj = DkW+ = 8jk, 

just as 

(3/3&K/ - 0 / 3 ^ K y = fi/A:-

Note the further analogy of DkS with df/dÇk = [f, Çk} where { , } denotes 
Poisson bracket. We assert: 

PROPOSITION^ 1.1. If F e S? then &F e &(Dk) and &(MkF) = 
-Dk(9F), &(MkF) = Dk(&F) on & 

A heuristic proof would be based on the "chain rule": 

Dk(Vz) = e~m2 e x p ( - z - P^+)^[exp(z • W)] 

= zkVzDk(Wk) = zkVz. 

An actual proof that DkVz = ~zkVz is easily given in the Bargmann 
representation. See Proposition 1.1.2. 
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Let 

jf(J%) = {S e &(Jf) I HSIlf = 2 ||S£J| < c»} and 

I 
>2(^0 = {S e 0(JO | ||S||2 = ( 2 I I ^ J l ¥ < oo}. 

If S G J^ , S is easily seen to be of trace class (more properly, can be 
extended to ̂  as a trace class operator). ||S||2 is the Hilbert-Schmidt norm 
of S. Define 3TX:JE

X -> L°° (e ) by 

(^S)(z) = ii(V-zS). 

Here then is a version of the inversion and Plancherel theorems for &. 

THEOREM 1.2 (a) / / f £ ^ ( C 1 ) , f/iew 

^ e / f n J£>. 

(b) / / F G L\C2) and &F e j * f //ZÊTI 

F = *r_,I(2|A| ) ^ « F ) 

for almost every z e Cn. 
(c)IfF <= Jf Z/î w 

& may then be extended to a constant multiple of a unitary map from L (Cn) 
onto J*2. 

A proof of (b) may be carried out along the following lines. We shall 
assume F e Cc and indicate how to prove (b) for all z. We may assume 
z = 0; otherwise we replace F by TZF where 

(TzF)(w) = exp(2/A Im w • I)F(z + w) 

and use (1.1). One has then only to prove: (i) for some F, with F(0) ¥= 0, 
one has 

F(0) = ir~n(2\\\ )W^«F)(0). 

(ii) For all F, if F(0) = 0, then 

XT(«F) = 0. 

For (i), we refer to Lemma 1.1.3 (b), where the function F(z) = e - ' ' 'z| 

is used. This function satisfies 

&jF = &*F = 0 for ally. 
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Thus 

Wji&F) = (&F)Wj+ = 0. 

Accordingly, {^F)Ea = 0 unless a = 0, and (@F)E0 = cE0 for some c. In 
Lemma 1.1.3 (b), and also in Section 4 below, we show directly that 

c = *»(2\\\ )"" , 

and this gives (i). 
For (ii), note 

n 

F = 2 (MkFk + MkFk) 
k=\ 

for certain Fh . . . , Fm F\, . . . , Fn e Cc . So 

«F = " 2 ^*(«FA) + 2 />*(!#*). 
Now if 5 is suitable, tr(DkS) = 0; this follows heuristically from 

tr(SWt) = tT(WÎS). 

(ii) then follows. A proof of the ordinary Fourier inversion formula may 
be given along the same outline, noting that for suitable G, 

j c n 0/3?*)G = 0. 

The formula of (c) can be proved as a consequence of (b). See Theorem 
1.1.6 for the complete proof. 

Frequently it is desirable to reduce problems about ^\ to the case 
X = 1/2. This is accomplished through the simple relations which follow. 
For each À, /x e R* define the unitary °U\^.^\ —> J^ which identifies 3tf\ 
and ^ , so that 

We abbreviate % = %,-x- Then 

( ^ ) + = ^-XV;X% = F i . o n ^ , 

so that if F is in L1 or L2, 

(1.4) (%F)+ = <%-X(«?-XF)% = %G 

on @x, where G(z) = F(-I). Say A > 0. Then 

so that 

(1.5) ^ F = * „ x ( ^ 1 / f ) ^ , 1 

2 2 2 
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if 

I 
H(z) = F((2X)-2Z)(2A)-". 

If X, Y and Z are spaces and g:X —> Y,f:Y-*Z, we sometimes write 
g / t o mean/o g. Thus, for example, if/:Cw -> C", [/ e [/(«) (the unitary 
group), then U f = fo U. There is thus a natural action of U{n) on many 
spaces of functions on C\ for example LP(Cn). 

Next we examine the way in which U(n) acts on ®(3tf). For this, we 
return to the Bargmann representation. First note that, in this representa­
tion, if F e jtf? 

(F^F)(w) = F(w + z) exp[-2A(w • z + |z|2/2) ] if A > 0 
( L 6 ) = F(w - z) exp[2A(-w • z + |z|2/2) ] if A < 0 

One checks this first for F <E j^/then extends to F e ^fusing the fact that 
the power series of F converges to F both pointwise and in Jff? 

The natural action of U{n) on C" induces a unitary representation of 
U(n)'onJ% as one sees in the Bargmann representation. Note U(n)':@^> 

Now if U <= f/(«), define t/ G U(n) by U = jUj where y:C" -> C7 is 
given byy'z = z. We define 

77X(t/- ):0pT) -> 0(J^) 

as follows: if S e 0(j^), 

(1.7) irx(U')S = U'S(U')* i f A > 0 ; 

n\(U')S = U S(U')* if À < 0 

where the domain of these operators is @. Similarly, if S is any operator on 
Jfsuch that 2& c 3t(S\ we define TTX(U')S by (1.7) where the domain is 
now the natural domain (i.e., V @(S) if A > 0, U' @{S) if A < 0). 

PROPOSITION 1.3. If F e= L\Cn) or L2(Cn\ 

&(U F) = TT(U' )&F for each U <E U(n). 

Proof. Note that it is an easy consequence of (1.6) that if U G U(n)9 

y m = <(u'r)vz. 
So if F <= L\Cn\ 

&(U' F) = J VZ(U F)(z)dV = J VWzF{z)dV 

= J TT(U )VzF(z)dV = TT(U')&F 
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(integrals over C"). If instead F e Lz(Cn), approximate F by a sequence of 
functions in l) n L2 and note that 

Hu')s\\2 = lisib 

for any Hilbert-Schmidt operator S on J0T 

2. The Weyl correspondence and polynomials. For T e Sf(C"), F e 
y(C") we let (T |^) denote the sesquilinear pairing: 

(T\R) =~T(F). 

Let 

cuX = W-»(2|X| )". 

If R e 0(Jf) we say that S?(T) = /? if 

(71F) = cnX 2 (/?£a| (3?F)£a) for all F e y(C") , 
a 

with absolute convergence. The definition is in agreement with the 
polarization of Plancherel. As an example, note &(8) = I. It must be 
checked that the definition makes sense, that is, that iî Rh R2 G 6(3tf) 
and 

2 (RxEa\ (&F)Ea) = 2 (R2Ea) I («F)£ a) for all F e ^ ( C ) , 
a a 

with absolute convergence, then Rx = R2 (on 3i). To see this, observe that 
by the discussion of (i) of Theorem 1.2, there exists FQQ G Sf(Cn) such 
that 

[&(Foo) ]Ey = 80yE0; 

FQ0(Z) is a constant multiple of e~^ 'z' . Consequently, there exists Fap e 
^ (C") such that 

mFafù ]Ey = ôayEp. 

Indeed, because of the shifting properties of the Wp Fap is just a constant 
multiple of (£?R)£(xF00. Accordingly, if Rx, R2 are as above, then for any 
a, ft 

(RxEa\Ep) = 2 (RxEy\ ($Fap)Ey) = (R2Ea\Ep); 
y 

so Rx = R2. 
Observe that if &T = R, then 
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Indeed, 

(3jT\F) = (T\J2°F) = -c„x 2 (REa\ (<$F)W+Ea) 
a 

= -c„x'2(RWjEa+e)(9F)Ea + ej) 
a 

= -cnX2(RWjEp\(9F)Ep), 
P 

so that &(ÈjT) = -RWj\ similarly for ZfT. Further, if R\S) -> ^ , 

y&fr = wf-R, y&fr = -WjR, 
as a similar argument shows. We then have: 

PROPOSITION 2.1. (a) Suppose P is a polynomial in f, f(f e C"), and 
deg P = k. Let A = JF' ~~ /?, a linear combination of 8 and its derivatives. 
Then there exists R e (9(^f) such that &h = R. R is a (non-commuting) 
polynomial in Wh . . . , Wm Wt, . • • , W$\ we write R = Q(W, W+). We 
may choose Q so that deg Q = k and such that ()(£, ft = P(f, ft />? //ze .sewse 
f/iûtf /£ /« 2, we replace W by f #/?d P^+ Z?y f, we obtain P. We write 
#7> = /*, or #7> - Q. 

(b) / / P(z) = |f|2, ^ 3TP = A / / P(0 = $»?h j * k, then 
iTP = WPj(W£)q\ this is valid even ifp = 0orq = 0. 

(c) Every non-commuting polynomial Q' in the Wy W+ equals 
WP' for some polynomial P'\ we write Pf = if XQ'. 

Proof, (a) We argue by induction on k, the case k = 0 being immediate. 
Assume it is known when k is replaced by k — 1 ; it suffices to prove (a) 
when P is a monomial of degree k. Then for some j , and some monomial 
P\ of degree k — 1, 

P($, ft = tfitf, ft or i>(£, ft = jy^f, ft. 
We assume the former; the proof in the latter case is similar. Suppose iVP\ 
= Q. Now 

A = jf-'-i/> = -(d/dzJ)^~lPl = -(l/2)(Sj + J f W~XP\, 

so that 

S?A = ( l / 2 ) ( ^ - e , + QxWj), 

and we are done. 
(b) The proof of (a) shows that if P(f) = |f|2, then >TP - A. If 

/>(?) = { ? & . / * M h e n 

since z;ô = z^ô = 0. Thus 
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or? = wP(W£)q. 

(c) Any such Q' evidently equals ^(A), where A = q(^ £?)8, q being a 
non-commuting polynomial in the «Sj, . . . , £Pm 2£\, . . . , «2 .̂ Since £2 is 
supported at 0, it equals ?F'~XP' for some P\ as desired. 

We also define 1W(Cn) -* J*f by 

It is a consequence of the definitions that WP is determined by the rule 

(P\G) = (2|X| )w 2 ( (HrP)Ea\ (1TG)Ea) for all G G ^ ( C ? ) . 

Let & = (polynomials in f and f} (f G C7). Each P G ^ may be 
written in the form 

(2.i) p(o = S a / r . 
Here the sum is taken over all multi-indices p G (Z + )", y G (Z + )"; 
tfpy = 0 for all but finitely many (p, y); and we use multi-index 
conventions. For/?, q G Z + , m G Z", let 

^ = {? e ^ a s i n (2.1) with apy = 0 

unless |p| = /?, |y| - q). 

Note 

^•^pq ^p—\,q~\' 

Let 

^ = {P G ^ | A P = 0}. 

Elements of J^pq are called (solid) (bigraded) spherical harmonics. For the 
time being, we note only this important fact about 3^pq, which is well 
known. 

PROPOSITION 2.2. The natural action of U(n) on jÇq is irreducible. If the 
actions on J^q and J^xqx are equivalent, then (/?, q) = (p\, q\). 

Proof Fix (/?, q)\ write z G C" as (z, z') where z' = (z2, . . . , zn). Let 

V = {linear maps S:Jfpq -> &>\SU' = US for all U G £/(>) }. 

It suffices to prove that V = {cl\c G C}. Suppose S G V. Since Jfpq is 
finite dimensional, there exists a unique Z 5 G j ^ with 

(Z5, P ) = [S(P) ](ex) for all P G ^ 

(^i = (l , 0); ( , ) = L2(S2n~l) inner product). Now Zs is invariant under 
U\(n)' where 
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f/,(n) = {Î/G U(n)\Uex = e,}. 

Thus Z s is a polynomial in Z] and |z'|2. (For, if g is the polynomial over 
C X R with Q(z, x) = Zs(z, x, 0 , . . . , 0) then Q(z, x) = Q(z, -x) for 
all s; hence Q is a polynomial in z and x . Now use the transitivity of 
!/,(/!).) So 

for certain constants a^. But one easily computes that the a^ are 
determined completely up to a constant multiple by the condition 
AZ5 = 0. So Z 5 = cZj for some c e C; so 

(£/>)(<?!) = cP(ex) for all P e ^ . 

But St/* = US for all t/, so SP = cP for all P and S = c/. This 
completes the proof. (Z7 is called the zonal harmonic of bidegree (/?, g) 
and pole e\.) 

Our next result is an analogue of Hecke's identity for <&. Recall that this 
identity asserts that if P e 34fpq, and if 

f(z) = e"W2/>(z), 

then 

(see e.g. [18]; recall JF'F(£) = J*F(-2/f)) . 
Recall also that the fractional linear map i|> with 

Ma) = (a - l)/(a + 1) 

takes the right half plane onto the unit disc, and 

*- ' (* ) = (1 + 5)/(l " s). 

We say F e &\Cn) ispolyradial if it is a function of |zi|2, . . . , \zn\
2. We also 

call an operator S e. (9(34?) polyradial if there exist numbers ca(a e 
(Z+)") such that SEa = caEa for all a. Theorem 1.1.3 asserts, among other 
things, that if F e &\Cn) is polyradial and S = ^\F then S is also 
polyradial. We discuss this point in much greater detail in Proposition 4.1 
below. 

THEOREM 2.3. Suppose a e C, Re a > 0, P e 3tifpq. Fix \, and let 

p' = p ifX > 0, p' = q ifX < 0, q* = q ifX > 0, 
(2.2) 

qf = p ifX < 0, K = p + q. 

Let 

F(z) = exp(-fl|X||z|2)P(*)-
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Then &F = ( - I f #1(P)S, where S is as follows. For all a, 

o i i a = C\a\Ea 

where if N = p\ 

CN = 77,Z[ (1 - s)/2\\\]n + KSN-P'. 

Here s = \p(a), and our convention is that 0° = 1. If N < p', cN may be 
defined arbitrarily, for if \a\ < p\ 

(W)Ea = (WP)Ea = 0. 

Proof. We first claim that we may reduce to the case X = 1/2. This 
follows from (1.4) and (1.5), together with the following facts. Suppose 
P e 0>\ define/? e @by J P(Z) = P(z). Then 

(2.2) #x(/P) = # _ x ( # l , m 
while if ? G ̂  A > 0, then 

i\\k/2/D/ //»///* n\/»/ 
.,1/2-

(2.3) #y> = (2À^ / 2^1 / 2 A(^ / 2P)^1 

These facts are easy consequences of (1.4) and (1.5) and the definition of 
if P. A simple computation now shows that we may assume X = 1/2, and 
we do. 

Suppose next that P = 1. We already observed the case a = 1 in the 
discussion of Theorem 1.2. If a ¥= 1, we use roughly the same method. Say 
@F = S. S is polyradial; say SEa = caEa. If 1 ^ j ^ n, note 

2?fF = (1/2)(1 - a)zjF, 

so if «P = S, 

-WjS = - 1 / 2 ( 1 - a)DjS = \/2(a - l)(WjS - SWj\ 

so WjS = sSWj. Applying this to Ea9 we find at once that ca + e = sca, 
where <?7 = (0,. . . , 1, . . . 0). Thus ca = Cs'a' for some constant C. We can 
put cW\ = ca. 

cN = CsN for some constant C. 

To compute C, use the inversion formula: 

OO / \ 

1 = F(0) = w~" tr(S) = ^ - " C 2 r ^ ' 1 )s" 
«=o v ' 

= C(l - sYnm-n 

so the result follows if P = 1. (We have noted that 

#{Ea\\«\=») = (N+n-XX)) 
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Suppose next that P(f) = tfftj ± k. (If n = 1, t h e n ^ = 0 unless 
p = 0 or q = 0, so such a P exists even if n = 1, if ̂  ^ {0}.) We change 
our notation. Let 

G(z) = exp(-tf|z|2/2), 

F = &P and 7? = ^ ( J (which we have just computed). By Proposition 2.1 
(b), 

iirp = WPj{W£)q 

and indeed, then, {HrP)Fa = 0 if |a| < /?. Now 

(zfY{&lfG = (-\)q2-\\ - ay(I + tf)^F 

= ( - l ) V ( l - s)~KF. 

Suppose that a ¥= 1, so that s ¥= 0. Then 

gp = (-1)^-^(1 - s)\-Wj)P{Wt)qR 

= {-\fs~P{\ - s)KiT(P)R. 

The desired result follows in this case from our computation of R; in 
particular, 

(&F)Ea = 0 if \a\ < p. 

If a = 1, we obtain the desired result by taking a limit, in Lx(Cn) and 
^(^f7), of the result in cases we have demonstrated. 

Finally, suppose P e J?pq is general, P ¥* 0. Select Px e ^ with 
^i(f) = ?/?? for some j , kj ¥= k; again put 

G(z) = exp(-a|z |2 /2). 

Because of the irreducibility of Jf*q, we may assume that, for some 
U e U(n), P = U'PX, so F = U'(GPX). Thus 

9F = ir(U')9{GPx) = ( - l ) M ^ ' ) [ ^ ( P i ) ^ ] 

= (-1)^ '#"(P 1)^(^7 ' )*, 

S as in the statement of the theorem. For TV e Z, let 

^AT = span{£j \a\ = N}. 

Checking in the Bargmann representation, we see that if V e U(n), 
then 

Accordingly, since S is radial, SV = VS. We find 

<$F = (-\)«U'iT(Pi)(U')*S. 
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In order to show &F = (— \)qiT(P)S, it suffices to show this on 2. Since S 
is radial, it suffices to show the following simple lemma: 

LEMMA 2.4. Suppose Ph P e ^ U G [/(«) and U'PX = P. 77ie« / / 
X > 0, 

U'iT{P {){€')* = #%P) O « ^ 

J/X < 0, 

lfiT(Px)(lf)* = iT(P) on m 

Indeed, if this is known, then in our present situation &F = 

{-\fiT(P)S follows, as does the fact that iT(P)Ea = 0 if \a\ < p, so that 
the proof will be complete. 

Proof of Lemma 2.4. Assume X > 0. We need only show 

(U'nP\)(UyEa\Ep) = (nP)Ea\Ep) for all a, jB. 

By the discussion in the second paragraph of this section, for any a, /? 

there exists Hap G y(C") such that 

^(Hap)Ey = àayE/3-

Fix a, /? and write / / = Hap. Then 

(iT{P)Ea\Ep) = 2 mP)Ey\ir(H)Ey) = (/>|//). 
y 

On the other hand, 

(U'1T{Px)(U')*Ea\Ep) = 2 (V'iT(Px)(VyEy\ir{H)Ey) 
y 

= tr(UiT(P ^(0)^(11)). 

Indeed, U'i^(P\) + (U')*ir(H) is finite rank, hence trace class, since 
1T(H) has rank 1, J7'c, (£/')*:*# -» ^ for all TV, and >r (P0 + simply 
shifts. For the same reason, W(P'1)

 + (U')i^(H) is trace class. Since U' is 
bounded, the trace equals 

iv(iT(Px)
 + {U)ir{H)U) = tr(7r(P,) + >T( (U')*H) ) 

= (Pdiu'rH) = (PI//). 

(We used Proposition 1.3.) This completes the proof if À > 0; similarly if 
A < 0. 

One could prove the usual Hecke identity for C" in much the same 
manner, and the proof can even be adapted to Rm, m any positive 
integer. 
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Theorem 2.3 is our first, and most important, indication that the 
operators iV{P) (P harmonic) play the role in 6(3tf) that harmonic 
polynomials play in analysis of functions on C". Our main goal now is to 
draw this analogy closer. The operator fix = 2 DkDk plays the role of the 
Laplacian, in the sense indicated in this proposition: 

PROPOSITION 2.5. Suppose P £ & Then P is harmonic if and only if 
Q(#XP)) = 0. 

Proof It suffices to show that if Q <E ^ , 

(2.4) DkiT(Q) = iT(dkQ), DkiT(Q) = iT(dkQ). 

(Here dk = 3 / 3 ^ , 3^ = 3/3^.) These can be easily seen in more than one 
way, the simplest being to note 

= (2X)-\WkiT{Q) - n<2Wk] = DkHT(Q); 

similarly for the second identity. 
We note, by the way, that a formal computation shows 

& = ^ DkDk = 2 DkDk 

also. 

The next result is more interesting. Let Sn = Sln~x c C", so that rSn is 
the sphere of radius r centered at 0. It is known, and proved below, that 
t\iQ34?pq spaces, restricted to rSn, are orthogonal and have L2(rSn) as their 
direct sum. We already have every indication that the spaces 

1^ = span (Ea\ \a\ = N) 

form the analogues of "spheres" in J^. Indeed, firstly we already know that 
U'\-rN^> f^'xi U G U(n). Secondly, if P(f) = |f|2, iTP = A is "constant" 
on each f^N; that is, A is a constant multiple of the identity when restricted 
to each i^N. We call such operators "radial," and S in Theorem 2.3 was 
radial. Since 

AEa = 2va\X\Ea, 

we think of i^N in analogy to rSn where 

r2 ~ (27V + n) \X\. 

Let 

6{"TN) = {linear operators from iTN toJf); 

this we intend to think of in analogy to L2(rSn). The inner product we wish 
to use on (9(i^N) is 
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(R,S)N = (2\\\T~] 2 (REa\SEa). 
\a\=N 

Our next result will show, in particular, that for any N, the restrictions of 
the W(Jf%,q) to iTN are mutually orthogonal. 

If P, Q e ^ , we define their Fisher inner product (P, Q) to be 
]P(3)(?](0). Here, if P is as in (2.1), 

P(3) = 2 apyd
pd\ 

If P G ^ and g G ^ m i , observe that 

(P, 0 = 0 unless (/?, #) = (p b #0. 

If (p, ?) ^ (Pi, ?i) and if 0(f) = 2 V F , then 

<P, 0 = 2 fl^pîy!-

Thus, (P, 0 is indeed an inner product. If F, G e L2(Sn), we let (P, G) be 

their inner product, / FGdS. H N, k e Z + , we write 

M*) = # ( # - 1). . .(JV - Jfc + 1). 

THEOREM 2.6. (a) Suppose P e ^ , g G ^ m i W //wf/?! ^ p or qx ^ q. 
Then 

(Q,P) = 2ir"(* + « - l ) r ' < ô , / > > , 

0^(6) , iT{P) )N = a(N,p, q, X)(Q, P) 

where 

(2.5) a(N,p, q, X) = (27Tny](N + q' + n - 1)(K + " _ 1 ) ( 2 | À | y ^ " " 1 . 

(Notation as in (2.2).) 
(b) In particular, the JÇq spaces are mutually orthogonal, in either the 

L2(Sn) or (9(Y^) inner product. 

Proof. We need only prove (a), since (b) is an immediate consequence. 
For the first identity, note that 

(6 , P) = 2T([/c + JC,]/2 + n - \yx jc„ -Q(f)P(Oe-^2dV 

as an integration in polar coordinates shows. However, if G(f) = 

jcn QÔ)P(Oe-m2dV = (Q\G) 

= <nln{&'-xQW-xG) 

https://doi.org/10.4153/CJM-1984-039-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-039-0


HEISENBERG GROUP 633 

= ^(-l)^Q(d)(P(z)e-^)](0) 

= irn{-\f^\Q,P) 

by Hecke's identity, and the fact that/?i ^ p or qx ^ q. Since (Q, P) = 0 
unless (/?, g) = (p\, q\), the first identity follows. More generally, for any 
a > 0, and any À, 

<C, ^> = [Ô(9)(P(z)e-"W W2) ](0) 

= (-l)^'-'elFa) 
where 

^ ( z ) = e~alxl |z|2P(z). 

Thus 

<g, i>> = ( - 1)%-"(2|A| )» 2 ( (WQ)Ea\ ($Fa)Ea), 

with absolute convergence. Indeed, (^Q)+ = H^Q' for some polynomial 
Q\ and (WQf)(WG) is the Weyl transform of a Schwartz space function, so 
that it is in JA. By Theorem 2.3, then, 

CO 

(Q, P) = (2|X| TK(1 - s)"+K 2 SN~P" 
N=p' 

x 2 (or<2)£alor7>)£«). 
\a\ = N 

Thus, if 6M = (1T(Q), iT(P) ) M , we find 

CO 

2 &*/+„*" = (2|A|r + "-1<ô, ^>(1 " s)-C + KK 
M = 0 

The series on the left side converges absolutely for \s\ < 1, hence is the 
power series of the function on the right side. Hence 

bM+P> = (2\\\r^(M + K + n-l)<Q,p). 

This, together with the first identity, at once gives the second identity. 

Remark. The first identity was proved by Coifman and Weiss [2] on Rm, 
in general, by use of representation theory. The simple proof above adapts 
at once to the general case. For another proof, see the remark at the end of 
Section 3. 

We have yet to show that 

eifii) = © *"PQ rN 
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(orthogonal direct sum over all/?, q), just as 

L (Stl) = © 3fpq J Sn. 

We wish also to determine iT{P) explicitly, for & <E J^pq. It is convenient 
to do the latter first. 

As in the introduction, if P is as in (2.1), we let 

TX(P) = 2 a^W+yW, T'iP) = 2 apyW<>{W+)\ 

and we assert: 

PROPOSITION 2.7. If P is harmonic, #"(P) = r(P) = T\P). 

We begin with a lemma. 

LEMMA 2.8. Let P be any polynomial, deg P = k. Then there exist 

polynomials P\ and P^ of degree not exceeding k — 1, such that 

1T(P) = T(P + PO, r(P) = -T(P + P2); 

similarly for T' in place of r. 

Proof Suppose Q' is any non-commuting polynomial in the W, W^. We 
let o(Q') denote the polynomial obtained formally from Q' by replacing W 
by f, W+ by f. Suppose that 

a(g') = 2 z>pyrr 
and suppose k' is the degree of o(Q'). We then let 

aprinc(e') = 2 / w p r . 
IPI + M = *' 

For the first statement of the lemma, say 
* = * princ •" ^ lower 

where Pprinc is homogeneous of degree k and 

degPiower = k - l. 

By Proposition 2.1 (a), there exists Q such that W(P) = Q and such that 
o(Q) = P; thus 

^princVis) = = •* princ-

In Q, we use the commutation rules to commute all the H /+ 's to the left 
and all the Ws to the right, to obtain a non-commuting polynomial Q\. It 
is evident that, although a{Q\) might not be P, we still have 

>T(P) = Ôi and apri^CÔO = Pp r m c . 

This, however, is just another way of saying 
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iT(P) = T(P + ?,) for some P, 

with deg?! è k - \. 
For the second statement, we argue by induction on k\ it is trivial if 

k = Q. Assume it is known when k = j - 1, and suppose k = j . By the 
first statement, 

W(P) = T(P) + T ( P 0 for some Ph deg P, ^ j - 1. 

By the induction hypothesis, T(PJ) = ^ ( —P2) for some P2, deg P2 = 
j — 1. This proves the second statement. 

Similarly for T'. 

Proof of Proposition 2.7. We may assume P G J^ for some /?, g. We 
show only T T ( P ) - T(P) ; the proof that T T ( P ) = T'(P) is similar. 

By Lemma 2.8, r(P) = TT(P ' ) where P' = P + P2, deg P2 < /c = /? + 4. 
It suffices to show that P ' e ^ , so that P2 = 0. 

We first show that P ' is harmonic. Observe to begin that if PQ G @ is 
arbitrary, then 

T(3/P0) = />/T(P0) , W O ) = £/T(PO). 

This is shown immediately by a check using the derivation law and the 
facts that 

Dt(Wm) = D!{W+) = 8lm9 DAW+) = Bt(Wm) = 0. 

Accordingly, 

0 = r(AP) = QT(P) = QiT(P% 

so that P' is harmonic by Proposition 2.5. 
To show P' e <P we need only show 

(? • 3)P' = pP\ (I • Z)P' = qP'-

Now, if PQ G ^ is arbitrary, we have for any j that 

1T((Sj - \dj)P0) = n-^j^~lPoi = (TPoWj, 

while 

iT(âj - A37)P0)) = $(^'~]P0) = w/(in>0y 

Further, 

r(SjPo) = (TPoWj and T(f/0) = ^ / O ^ o ) 

by the definition of T. NOW, since P' is harmonic, 

(? • 3)P' = [ (? - X3) • 3]/"-

Thus, using (2.4), we find 
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W( (£ • d)P') = W( (£ - XS) • dP') 

= 2 ir(diP') • w, = 2 \Djir{F) ] • w, 

= 2 [ZW) ] • wl = 2 TO/P) • w, 

= 2 T( (f • 3)P) = MP) = pir(P'); 

consequently (f • 9)P' = pP''. Similarly, using the other identities, (f • 9)P' 
= qP'\ this completes the proof. 

We next show 

&(rN) = © *rpC) *w-

Let us first recall the proof of the following proposition 

\s (orthogonal direct sum over all p, q) 

PROPOSITION 2.9. (a) @pQ = © \z\2kJ%-k q-k (sum from k = 0 to min(j?, 

q))-
{b)L\Sn) = ®J%q 

(c) For some C e R 

d i m ^ < Ct(p + l)fo + l)]"-2(^ + ? + 1) /or a///>, <?. 

Proof. For (a), one need only show 

&pq =J%q®\z\2&p-Lq-l. 

This follows immediately from the fact that $CPQ is the orthogonal 
complement of \z\ &p-\A-\ in 0)

pq under the Fisher inner product ( , ). 
Indeed, if P e 0>pq, 

P J_ \z\2&p_x^x ** AP JL »p-u-x « AP = 0. 

(b) follows from (a), since polynomials are dense in L2(Sn). For (c), note 
that by (a) 

dimJ^q = àimgPpq — d i m ^ _ i ^ _ i 

_ / ^ + « - l \ ^ + « - l \ 
" \ /7 - 1 A « - 1 / 

V * - i A " - i / 

= (w - l ) ! " 1 / ? ! " 1 ^ ! " 1 ^ + « - 2)!fa + n - 2)! 

X [Q> + « - l)for + n - 1) - M ] , 

so (c) follows. 

Here is the analogue. 

PROPOSITION 2.10. (a) For any N 
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pq rN 
= ®T(J% 'p-Kq- -k) rN 

(sum from k = 0 to min(/?, q) ). 

(b) o{rN) = © trœ 'p — k,q — k rN 

(orthogonal direct sum over all p, q). 

(c) dim iT(Jfpq) n = dim Jfpq^N ^p'. 

Otherwise, 7T(J%q) = {0} on *%. 

Remark. In (a), we could replace r by W\ we omit the proof. 

Proof, (a) follows at once from Proposition 2.9 (a) and the following 
fact: Suppose/?, q, k, N e Z + . Then there exists c e R such that for all P0 

p\<qv 

r( \z\ZkP0) rN = CT(P0) n-

To see this, observe that we may assume k = l, Po(0 = £pfy- Suppose X 
> 0, H = N. Note 

WpEa = capEa-p for some cftp G R; 

here Ea-p is defined to be zero if a - p ^ (Z + f. Thus 

r( |Z | 2 P 0 )£« = ( J F + ) W + • ttO^£a 

- cap(W
+Y(W+ . H/)£«-P 

= cap2|\|(W^)Y(|a - p|)£a-p 

= c . p ( 2 | X | ) ( ^ - ^ ) ( ^ + ) ^ _ p 

= (2|X| )(N - P)r(P0)Ea. 

This proves the claim when X > 0, with c = 2(N — p) \X\. Similarly for 
X < 0. I 

(b) follows from (a) and Proposition 2.7, once one shows that r(P) y is 
dense in 0(i^N). If X > 0, it suffices to note that if 

then {%|£ G (Z + f, |a| = N} is an orthogonal basis for (9(i^). 
Indeed, 

SpaEy = cf$J>ayEf$ 

if |y| = TV, where c^a T̂  0. Similarly, if X < 0. 
(c) follows from Theorem 2.6 (a) if one notes 

a(N,p, q, X) > 0 <̂> TV ̂  p'. 
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3. An estimate for spherical harmonics. This section and the next are not 
used in Part B; the reader may proceed there now if he wishes. 

In the study of spherical harmonics on R", one has the estimate 

(3.i) I I P I L ^ C(K + \r/2~l\\p\\2. 
Here P is a spherical harmonic of degree K, the L°° and L2 norms are taken 
on the unit sphere, and C depends only on n. Such an estimate is essential 
for characterizing the expansions of C°° function on the sphere in 
spherical harmonics. The estimate is simply a matter of estimating the L? 
norm of the zonal harmonic of degree K (see the proof of Proposition 2.2). 
This is done by use of the transitive action of the orthogonal group on the 
sphere. (See e.g. [18], page 144.) In the further study of the action of ^ o n 
functions which are C°° away from the origin, it is similarly important to 
have a sharp estimate for the norm of ^ ( P ) | ^ G &(i^N). To obtain this 
estimate, in analogy to the Euclidean case, we study more closely the 
action of U{n) on &(^N). 

As we observed during the proof of Theorem 2.3, if F G U(n), then 

v-.rN-*rN9 

as one sees by checking in the Bargmann representation. One also sees 
from this representation that i^N is isomorphic to the spherical harmonic 
space J^NO with an isomorphic action of U(n). Thus i^N is irreducible 
under this action. 

If U G U(n) we define 

in the same manner as before Proposition 1.3. Namely if S G $ ( ^ V ) , 

7TX(U')S = US(U')* if X > 0; 

ir\(U')S = U'S(U')* if À < 0. 

Let H = U(n). m is evidently a representation of H on &(i^N). Let /x 
denote Haar measure on H. We then have the following result. 

LEMMA 3.1. (a) 77 is a unitary representation of H on 0(i^). 
(b) IfS*= 0{i^N), TT(U)S = S for all u G H ^ for some c G C, 

S = cl\n. 

(c) IfR, S G 0(-rN\ w G rN9 H I = l, then 

OR, S)N = [N +_? ~ 1 ) ( 2 | À | r - 1 jH(Ruw\Suw)dïi{u). 

Proof. For (a), suppose R, S G 0(1^). Note that R* is a bounded 
operator from J^to i^N. Suppose u G H, and put R\ = IT(U)R, S\ = 
77(w)S'. 
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Then if A > 0, 

(/?1,5,)A, = (2|X|)"-1 trCRfS,) 

= (2|A|)""' tr(UR*SU*) = (2|\ | ) " " ' tr(R*S) 

= (R, S)N. 

(Here the trace is always taken of operators which map i^N to itself.) 
Similarly if X < 0. 

For (b) suppose that S e 0(^v) and uSu* = S for all u e i/. For each 
AT e Z + , let (^ denote the projection of Jfbnto y^. g ^ commutes with //, 
so for each AT, 

UQKSU* = QKS for all M e # . 

By Schur's lemma and the irreducibility of the action of H on each yK, 
QKS = 0 unless K = N, and S = QNS is a constant multiple of the 
identity. 

For (c) suppose X > 0 and let G = R*S. Consider 

B = L *<y*)GMv)-

By (b), B = dN for some c e C, where 7^ = 7 ^ . Thus, by (a), 

(2|X|)»-' (N +!~ l) fH(Rvw\SvwW(w) 

= (2\X\)"-\N+H- 1)(W\BW) 

= mr-i(N-j;^-l)c = (iN,B)N 

= JH(IN, Tr(v*)G)NdiL(v) 

= fH(IN, G)Ndix(v) = (IN, G)N = (R, S)N 

as desired. Similarly, if À < 0. 

Here now is the estimate alluded to at the beginning of the section. 

THEOREM 3.2. There is a constant Cn depending only on n such that for all 
R (= ? T p ^ ) , one has 

(3.2) \\R\\2
N ^ Cna\N, X)'\K + 1)[ (p + l)fo + l ) r ~ 2 ( # , *)*• 

7/ere ||/£||/v /s //*e worm o/i? ^ 0(7^/), K = p + q and 

a'(N,\)=(N+H-l)(2\\\)»^ 
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is the "area" of 7#, namely (7, I)N. 

Proof We denote 

jÇq = i^(^pq) and JtpqN = Xpq | ^ . 

Fix N, p, q, w <^ f^N and w' G j f with ||w|| = ||w'|| = 1. We may as well 
assume N i= // , for otherwise JÇqN = {0} by Proposition 2.10 (c). It 
will suffice to estimate | (w'\n(u)Rw) \z for all u G H, R G ^ ^ by the right 
side of (3.2), with an explicit Cn. For each v G // , there exists a unique Zv 

G j ^ v such that 

(Zv, ^),v = ( w ' k ( v ) ^ ) for all £ G jfpqN. 

In fact, if {i^} is an orthonormal basis oi JÇqN, 

Zv = 2 (7r(v)Rkw\w')Rk. 
k 

We need to estimate (Zv, ZV)N. Suppose u G // , R G J ^ - By Lemma 
2.4, 

77(t/*)i? G J ^ . 

Thus, by Lemma 3.1 (a), 

W«)ZV, # ) ^ = (Zv, ir(u*)R)N = (w'k(vn*)/*w). 

Hence TT(W)ZV = ZVM*. Now 

(Zv, Zv)^ = (W,|T7(V)ZVW) = (H/|TT(W)ZMW) 

(for all w G 7/) 

= 2 I (w'\v(u)Rkw) |2 

A 

(for all u G / /) 

= 2 ^ 1 (^k(*w) |2^(") 

= û'(JV, A)"1 dimJÇqN; 

we used Lemma 3.1 (c). So by Proposition 2.10 (c), 

| (U/|T(V)*W) I2 ^ (Zv, Zv)„ (*, * ) * 

= *'(#, A)"1 dim Jfp^R, R)N. 
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The result now follows from Proposition 2.9 (c) if we set v = I. 

For N,p, q e Z + , let 

1 
b(N\ p, q, X) = [a(N, /?, q, \)/a'(N, X) ]2 

(see (2.5) ). Then we have: 

COROLLARY 3.3. Suppose P e jÇq, \\P\\2 = 1 ( || ||2 = L2(Sn) norm). 
(a) For some Cn G R, 

1 
||#%P)IU =§ C„(* + m<j> + 1)(? + l)]<"-2)/26(JV,/>, q, X). 

(b) .For ^ome a, |a| = A/, 

||)T(/>)£a|| â b(N,p,q,X). 

Thus 

b(N,p, q, X) =i \\iT(P)\\N ^ CN(K + l)"~lb(N,p, q, X). 

Proof, (a) is immediate from Theorem 2.6 (a) and Theorem 3.2. If (b) 
were false, we would have 

(iT(P), 1T(P) )N < b(N, p, q, X)\I, I)N = a(N, p, q, A), 

contradicting Theorem 2.6 (a). 

Explicitly, 

b(N, p, q, X) = (2|A| f2 (2v»y\N + q' + n - l ) C + " - l > / 

(\+V)] 
if N = p\ and is zero otherwise. Thus 

b(N,p, q9 X) ~ (27V|A| )K/2CJ„~U\ 

where co„ = 27Tn/(n — l)! is the area of Sn. Recall that i^N is analogous to 
rSn, where r2 — 2N\X\. Thus Corollary 3.3 is analogous to (3.1), and the 
simple fact that if ||P||2 = l, there must be a z on rSn such that 

\P(z)\ â i*un 
-Ml 

Remark. An alternate proof of Theorem 2.6 could be given on the basis 
of Lemma 3.1 (a) and the following fact. Suppose that m is an irreducible 
representation of a group G on a finite-dimensional vector space J f and 
that ( , ) , ( , ) are two different inner products on Jfwith respect to which 
77 is a unitary representation. Then for some c, 

(x, y) = c(x, y) for all x, y G 3f. 
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For the proof, observe that (x, y) = (Ax, y) for a positive operator A. A 
commutes with TT(G), hence A = ci by Schur's lemma. This argument was 
shown to us by H. Upmeier, who has proved a deep generalization of the 
first identity of Theorem 2.6 (a) for bounded symmetric domains. 

4. Exact formulae for the Weyl transform. We shall now derive exact 
formulae for the Weyl transform of special types of functions. These 
formulae are analogous to the Bessel function formulae one meets in R" 
(see [18], Theorem 3.10). We claim originality only for Theorem 4.2 and 
everything following it (except the well-known (4.6) ). The material 
preceding Theorem 4.2 has been expounded in many forms before, in 
particular [14], [15] and [19]; our approach and formulation may be 
original. 

This section is not used in Part B. 
For z <E C", we write 

\Z\ = ( N , . . . , | 2 „ | ) , 

\z\2 = ( ( z , | 2 , . . . , | z „ | 2 ) . 

We set o\ = sgn X. If G is a function on C", m e Z", we say that G has 
F. S. (Fourier Series) type m if 

G(z) = F(\z\ )eimd for some F. 

(Here zk = \zk\é°k.) If S e 0pT) we say that S has F. S. type m if for all 
a, 

SEa = raEa-am for some ra <E C. 

(Here, Ep = 0 if /3 <£ (Z + )".) Thus, polyradial functions and operators are 
those with F. S. type 0. 

PROPOSITION 4.1. (a) Suppose G e L1, G has F. S. type m. Then &G has 
F. S. type m. 

(b) Suppose & ^ L \ The &has F. S. type m if and only if &G has F. S. 
type m. 

The analogue for !W' is well known. For the proposition, we assume 
X = 1/2 and compute VzEa. In the computation, if a, fi are two multi-
indices, we say a ^ ft if ak^ (ik for all k. For m e Z", we let 

m f = (l/2)(lml -f m), m = m' — m. 

Then 

e^nV7Ea = exp ( -z • W{) exp(z • W)E„ 

l 

= S \a\/(a j8)!]^i- ! ^ expiez • H^ )/: , ..„ 
tf<rv 
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1 1 
= 2 2 [y!/(« - j8)!]2[a!/(a - jS) ! ]^!" 1 

X (y - a + j8)!"1z / ,(-z)1 ' - a + %Y 

I 
= 2 [«!(« - w)!p 2 [/?!(« - /?)!(/? -

m)\}-^(-zf->»Ea^m 

1 
= 2 [(a - m + )!/(a + m )!]2 

X 2 (-1)IA + W '!(« + m~])\ 

X [(a - m + - £)!*:!(*; + lwl)!]~1lzl2A' + ,wrf e~inv0Ea-m 

with all sums converging absolutely. (This is justified in Lemma 1.1.3 (a) ). 
Here 

We have set k = ft — m+ and noted that 

(k + m + )\(k + m~)\ = k\(k + Irai)! 

Finally 

(4.1) VzEa= 2 (-\im-^m^\z\2)e-^eEa.m. 

Here I™ is a Laguerre function, defined as follows. First, if x e R + , a, m 
G Z + , put 

M * ) = l o ( a - J *, • 

These are the Laguerre polynomials. Also put 

C (x ) = [«!/(« + m)!pxm / 2L«(x)e~A / 2 . 

If instead x e (R+)", a, m <= (Z + )", put 

( - x ) A 

C(*) = n o*,>, 
and let 
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From (4.1), 

lC(x) | = 1 for all a, rn, x. 

Now let X be arbitrary. Suppose G e L1 has F. S. type m; say 

G(z) = F(\z\2)eim'e. 

Let raa = ra + if a = 1 or wz~ if a = — 1. From (4.1) and a Fourier series 
argument, 

where 

(4.2) ra = ( - l) |m "I jc„ %imn(2\\\\z\2)F(\z\2)dV. 

Thus G has F. S. type m. 

(Remark. In particular, suppose 

G(z) = e - W I < 

As we remarked during the discussion of Theorem 1.2, (<&G)Ea = 0 unless 
a = 0, while (CSG)EG = cE0 for some c. By (4.2), 

= jcne~2^2dV = (2|\|)-V. 
This, as we said before, essentially verifies the argument (i) for Theorem 
1.2.) A density argument now proves (4.2) for G e Z/\ Simple 
orthogonality arguments now complete the proof of Proposition 4.1. See 
Lemma 1.3.1. 

f 
Other formulae follow rapidly. Suppose S e S{ has F. S. type m, SEa 
'a^a am- * UCn 

tr(V-2S) = 2(Ea\V-.SEa) 
= 2a ( VzEa\Ea — am)\ha — am\SEa) 

so that 

(4.3) (^S)(z) = ir-"(2\\\ T 2 r t t ( - l ) ' w " 6 ' / ^ w p(2 | \ | l z l 2 y^ . 

As a special case, suppose n = 1, À = 1/2. m i^ 0. If fi e (Z 4)" , define S 
<E 0 p f ) by 

O 77 _ * IT . 

Let G# = J^S^. Then 

G^Z) = 7 7 - , ( - l f C ( U | 2 ) ^ " " " i ' -
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We claim that @Gp = S p. Indeed, as we said at the beginning of Section 2, 
Sp = &Fp for some Fp e y. By the inversion theorem, then, 

FP = jm?p = G p. 

Many properties of the Laguerre functions can be read off. By the 
polarization of the Plancherel theorem, we find that 

— 2 / ;W 
77 Jcl°{ ( \z\z)lp( \z\l)dV = 77-' tr(S*fy) = ir-%p. 

Evaluating the integral in polar coordinates, we see that the C(x) , for 
a G Z + , are orthonormal functions in L"(R^). Indeed, they are a basis. 
For, suppose F <E L (R + ), 

/ ; C(x)F(x)dx = 0 for all a. 

Let G(z) = F( \z\2)e~im0. Let &G = S, and suppose 

Then 

Thus S = 0, G = 0 and F = 0. Thus the formulae (4.2), (4.3) have obvious 
interpretations in terms of Laguerre series. 

We remark that, if G has F. S. type m, the well known analogous 
formulae forJ^'G, involving Bessel functions, may be proved in the same 
way; that is, through use of the power series expansion of exp( — z • f" H-

Suppose now that G is radial on Cz, that is G = G( |z|2), while P e j/f 
We next derive the exact formulae for &(GP) which are analogous to the 
Bessel function formulae for J^'(GP) (see [18], Theorem 3.10). 

THEOREM 4.2. Suppose GP <= L2(C") or Ll(C") where G is radial and P 
G jtrM 

(a) &(GP) = (-\)qinP)S where S is radiai SEa = qaiEa, where if 
N ^ /?' , 

c„ = (« - \)\[(N - p')\/(N + q' + n - 1)!] 

x JC1 Ltt^\i\\\ |Z|2) G( |z|V'Ai |Zi>l2-w. 

(b) / / G P e L1 and i^(P)$ e ./f, f/zew 

G( |z|2) = *-w(2|A| )*+w 2 cvLw
vl|/K(2|X||z|2)^-lAil< 

A' = / ? ' 

Pra?/. In the situation of (b), let R = W(P)S. Then 
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tr( V :R) = (-\ )" 2 (£„| V.:iT(P)SEa) 

(4.4) = ( - 1 ) " 2 cN 2 (V:Ea\nP)Ea) 
N^p' \a\=N 

say, with absolute convergence. Suppose X = 1/2. By Theorem 2.3 and the 
inversion theorem, 

e-a^2/2P(z) = (-\)c/ 2 (1 ~ s)" + KsN-PHxj,(z). 
,v ̂ p 

Accordingly, 

^sNllN+l,j>(z) = (-1)"(1 - s)-"-"e-"U2/2P(z), 
N 

whenever |s| < 1, if a = ^~\s). The series converges absolutely, so if 
P(z) ^ O w e can divide by P(z) and differentiate with respect to s, to find 
that 

nN+pAz) = KNJ,{\Z\2)P(Z) 

for certain functions KN P\ this then holds even if P(z) = 0. With A = |r|~, 
we find that 

(4.5) 2 sNKN,p(x) = (-1)^(1 - s)-"-Ke-ax/\ 
N 

If n = l , m ^ 0 a n d / ) = P,„ where Pm(f) = f"z, then by Proposition 2.1 
(b), 

H^pjz) = (K£/V, ^v -J (£* -JW, , , )£ ,v ) 
l 

= /" „,( \z\2)e"n6[N\/(N - m)!p 

= e^1/2I^^J\z\2)z"\ 

Accordingly, 

KN.PJ\z\1) = e"2'1-L'Z(\z\2). 

We have derived the generating formula for Laguerre functions: 

(4.6) 2 sNLnu(x) = (1 - s)-i->»e-sx'0-*)m 
X 

But then by (4.5) and the uniqueness of generating functions we have 

KNAX) = (-i)^';"1+V)^"-v/2. 
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Accordingly, for general X, one finds that 

(4.7) 2 (VzEa\ir(P)Ea) = (-1)*(2|X| )KLn
NZl

pt\2\X\ |z|2) 
\a\ = N 

X P(z)e" |A | | z |2. 

(4.4) and (4.7) yield (b). 
For (a), a simple approximation argument shows we may assume GP e 

L1. Suppose Q G ^?,4, for some/?j, #i, say iV E Z + , and observe that 

(iT(Q)^(GP))N 

= (2|X|)W-1 L 2 (^r(Ô)£a|Kr£a)G(|z|2)P(^¥K 

= (-1)«(2|X| r ^ - 1 ^ ; L';~J/K(2|A| |z|2)G( |z|2) 

by (4.7). Accordingly, if (g, P) = 0 (L2(S,?) inner product), 

0T(Ô), <?(GP) )„ = 0. 

By Proposition 2.10 (b), there exist cN such that 

$(GP)Ea = {-\fcNiT{P)Ea whenever \a\ = W. 

By Theorem 2.6 (a) and the preceding, 

cN(2ir")~\N + q' + n - \){K + "~~V)(P, P ) 

= X« ^ v - 1 / " ^ ! W2)G( W2) l^(z) l2*"|X| ^dv-
This gives (a) at once. 

(a) and (b) again have simple interpretations in terms of Laguerre 
series; in particular they are consistent with the fact that {ln

M
 K\M e 

Z + } is an orthonormal basis for L (R+) . 
Several new special functions formulae follow from the relation between 

Theorem 4.2 and the notion of F. S. type m. To see this, for m e Z + 

let 

&m = {p e 0>\p h a s F- s- type m)-

Note that if P(f) = 2 û ^ r 

/ ' G: ^ m <=> #py = 0 unless p — y = m. 

If/?, tf e= Z"\ let 

https://doi.org/10.4153/CJM-1984-039-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-039-0


648 DARYL GELLER 

^Lpqm ^pq ' ' ^m-

Since A:^m -» &>m and ^ = © ^ m , we find ^ = © 3tfpqm. Note that 
<%pam = {0} unless 

/? - |m + | = 4 - |m~| ^ 0. 

(The equality follows from the above restriction that p — y = m for 
non-zero terms. The inequality is evident.) 

In what follows, we shall assume X = 1/2. For each /?, q, m with 
^pqm ^ {0} select an orthonormal basis 3&pqm for J^pqm (orthonormal 
in the L2(Sn) inner product). Let 

qtf — \ \ oft 

M 

and let 

m 

Set 

tf(iV, /?, ? ) = (2<7Tny\N + q + n - i ) ^ " - 1 ) 

as before. Let 

c(N, p, q) = a(N,p, q)~l if TV ^ /?, 0 otherwise. 

By Proposition 2.10 (b) and Theorem 2.6 (a), if TV e Z + and R is in the 
Hilbert space (9(i^N), R has the orthogonal expansion 

R= 2 c(N,p,q)(ir(P)9R)Nir(P). 

(In the sum, of course, P e j ^ . ) If \a\ = N, j3 e (Z + f, the map 
S —» (Ep\SEa) is a continuous linear functional from (9{i^N) to C. Thus 

(Ea„m\REa) = 2 c(N,p9q)(ir(P),R)N(Ea-m\ir(P)Ea). 
p^$ 

Note that 

(Ea^m\iT(P)Ea) = 0 unless P G ^ m ; 

thus 

(4.8) ( £ a _ m | P £ a ) = 2 c(N,p9q)(ir(P)9R)N(Ea-m\ir(P)Ea). 

Note that all but finitely many terms vanish. Indeed, there are only finitely 
many pairs (/?, q) with 
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p — q = \m \ — \m | and p ^ N. 

If these conditions are not satisfied, 

(1T(P)9 R)N = 0. 

Putting R = Fz in (4.8) and using (4.1) and (4.7), we find that if 
\a\ = N: 

(-it1 I / ^ m (\z\2)e-im0 

(4.9) = ( - l ) « 2 c ^ ^ ^ L ^ J / ^ l z l 2 ) ^ ) ^ ' ^ 2 

X ( £ a _ m | ^ i » ) £ a ) 

or equivalently 

(4.10) 

i:lm(\z\2)e-'m-6Ea-

2 ( - ! / # , />, q)L"N'+K( \z\2)P(z)e-U2/2W(P)Ea 'N-p 

if r = r(q, m) = q —\m |. Fix a P e ^ ^ m . Take the inner product with 
Hr(P)Ea and sum over a: 

2 c_mKizi2)(^_m|^(/>)^) 
|a|=AT 

(4.11) 
/ 1 \r i 

^N-p 

Here we noted that 

(-\YL^\\z\2)e-^P(\z\). 

P(\z\) = P(z)e~im\ 

(4.11) is true for any P e J^qm\ it is an addition formula, known 
previously only when P = Pm. In this case, (4.11) becomes 

2J La (IzF) = La ( \z\z) 
\a\ = N 

which is proved easily through (4.6). 
Note that (Ea-m\W(P)Ea) is a very simple quantity. If 

P(z) = 2 apyz
pz~\ 

then by Proposition 2.7, 

1 
(Ea-J1T(P)Ea) = 2 apy[a^(a - m)™$. 

Thus (4.1) is a completely explicit formula. 
We can interpret (4.9) and (4.ll) as follows. For m <= Z", a e ( Z + ) W , 
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a = m , set 

eam(z) = (-1)1"' l(2^)-" / 2 L'natm {\z\2)Pm(z)e-^\ 

For P e i^, , , , /V e Z + , N ^ />, let 

/ ^ ( z ) = ( - l ) ^ - 4 + K ( |z|2)JP(z)e-'^2/2. 

Then it is easy to see that the sets S\ = {eam} and Si = {JN,P}
 a r e 

orthogonal bases for L2(C"). In fact, 

\\eam\\2 = 2-'\a + /w")!/(a - m + )! = 6a„„ 

say, while 

H/^ l l 2 = 2 - ' ( # + 9 + « - l)!/(iV - p)\ = a\N,p, q\ 

say. (4.9) and (4.11) express one basis in terms of the other. An expansion 
of an L2 function using one basis can now easily be replaced by an 
expansion using the other. 

Specifically, let c'(N, p, q) = a'(N,p, q)~] if TV i^ /?, 0 otherwise. (4.9) 
reads: 

(4.12) eam = *"n 2 C(N,p, q)b^ir(P)Ea\Ea-m)fN.P if |«| = A' 

(4.11) reads 

(4.13) fN^p = ^ n 2 b-^(Ea.m\iT(P)Ea)eam if P e ®m. 
\a\=N 

From either: 

(4.14) (eamJNP) = 8\al^
/2bxJt(Ea-m\ir(P)Ea) if P e <gm. 

(4.12) has a further significance. If one restricts to a sphere centered at 
0, (4.12) gives explicitly the spherical harmonic expansion of eam restricted 
to that sphere. 

Part B. Exact Formulae for the Fourier Transform on the Heisenberg 
Group 

Introduction. 

The Heisenberg group FT7 is the Lie group with underlying manifold R X 
C" and multiplication 

(/, z) • (t\ z') = (t + f + Im z • z', z + z'), 

where z • z = ZJ ZJZ'J. 
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It is equipped with dilations Dr(r > 0), where 

Dr(u z) = (rh rz). 

One may then speak of homogeneous distributions. Our main purpose is 
to derive an exact formula for the group Fourier transform (F. T.) of a 
class of regular homogeneous distributions (r. h. d/s). Here "regular" 
means C°° away from 0. An r. h. d. K can be written in the form 

K(Uz) = 2 *,-(*, |z|2)P/(z)< 
i 

where {P,-} is an orthonormal basis for the bigraded spherical harmonics. 
Each term in the series is also an r. h. d., and if one wished to find the F. T. 
of K, it would suffice to determine the F. T. of each term. Thus we restrict 
attention to K of the form K'(t, \z\~)P(z). For this purpose, we will make 
use of the theory of Part A. We shall assume K' has a specific form. A 
general formula could be given for any K'\ we hope to give this in a later 
paper. The situation considered here, however, gives formulae which are 
often useful in practice. 

The first section is introductory. For proofs, we refer to the first section 
of [8], and [4]. The author's paper [9] contains relevant material. However, 
we shall not refer to it for proofs, and we have improved the notation we 
used there. 

In Section 6 we give the main formula. In Section 7 we give some 
applications, and in particular compute the Fourier transform of the 
Poisson kernel and its variants. Confluent hypergeometric functions arise 
here, as in related problems in [10]. 

5. Summary of the basic properties of the F. T. on H". On H", the 
differential operators T = 3/3/ and Zy = 3/3zy -f iz}T are left-invariant, 
and (T, Zy, Zj) (j = 1, . . . , n) is a basis for left-invariant vector fields on 
H". The only non-trivial commutation relations are 

[ZrZ^ = - 2 iT . 

Le t^ (H") = ^ ( R X C") denote Schwartz space. 
Notation as in Section 1, we let 3# denote the set of operator families 

R = (R{\) ) where X ranges over R*, where R(X) e 0(j%) for all X, and 
where (Epy\R(\)Ea\) is a measurable function of X for all a, ft. (We regret 
that we omitted, though implicitly used, this last condition in [8] and in 
[9].) Extend the notion of addition, multiplication and transpose in the 
obvious manner to R. Let Mj = (Wj\), M = (XI). Let 

9è = {S G ®\ each S(X) G âg{fâ) and 

HSU = sup||S(A) || < oo}. 
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The F. T. A is defined as a mapping from L (H") to J* in such a way that 
i f / G ^(H / z) then 

7T = -ifM , z / = / ^ / , Zjf = -fWj 

(more precisely, e.g.,: Zjf(K) = f(\)Wf\ on <2>\ for all A) and in such a 
way that 

g*f = g / ( / g G ^ ) -

Note that the first three equalities are consistent with the commutation 
relations. 

If we define &)\L\W) -> Lx(Cn) by 

(J /̂)(z) = fZ^fiUzWu 
we have only to set 

f(X) = &&)/. 

Indeed, &\ ( Z / ) = J - J*^ / etc. Thus 

/(A) = /,„ t/!)/(«v« 
where 

U\uz) = elktVX
z. 

That g * f = gf is checked with (1.1). _ 
I f / G L1, g(/, z) = / ( - / , — z), A(w) = f(u~x) then it is easy to see 

that 

g(A) = / ( - X ) , A = > . 

For y G C, let 

Ly = - ( 1 / 2 ) 2 (Z7Z7 + Z , ^ ) 4- /'yr. 

We note that if / G ^ L , / = / 4 where A = (/*A)-
Certain subspaces of ^ are useful. We set J = { (S(X) ) G @\Spa{\) = 

(£^ xl^(^)^a.x) G Cf (R*) ( a s a function of A) for each a, /?; and for some 
W G Z + , S^X) = 0 for all A if |a| + \p\ > TV}. Then if S G J , S = / for 
some y G y(H"). We set 

^ f = {(S(X)) G ^ | for a.e. A, 

l|S(X)||f = 2 ||S(X)£J| > ooand 
a 

j _oo ||S(A) ||f(2|X| )"d\ < œ } . 

Let 
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&2 = {S = (S(X) ) G 9t\ for a.e. X, 

||S(X) ||2 < 00 and 

IISII2 = / " o o l l ^ ( X ) | | ^ ( 2 | X | r ^ X < c x ) } . 

Here ||S(X) ||2 is the Hilbert-Schmidt norm of 5(X). Then 

v : # f - > C(HW) n L°°(H") 

by 

S(u) = J _oDtr(U-uS(\))(2\\\)"d\ 

is well defined. Here is a version of the inversion and Plancherel theorems 
for , which may be proved on the basis of Theorem 1.2: 

THEOREM 5.1. (a) / / / <= $f(Un) then f e @\ n % 
(b) / / / e L^H") W S = / e <#f r/z^ 

/(w) = c^Slw) /or a.e. w; 

/ ^ ^ - ( 2 7 T " 4 " 1 ) " 1 . 

(c) //*/ e S^then \\f\\i = ^IL/lh- Cûf/7 *^w ^ extended to a constant 
multiple of a unitary map from L2(H") 0/2/0 ^2-

One thus sees that J . 8%\ and 9t-± P^aY the role on the Fourier transform 
side that C^° L1, and L2 play on the Fourier transform side in the usual 
Fourier analysis on Rm. 

One has a natural pairing for elements of R. Namely if R, S G ^£, and 
if 

/*oo 

(5.1) J ^ œ 2 I (i?(A)£a|5(A)£tt) I |\r</\ < 00 
a 

we set 

/

oo 

_OT 2 I (/i(A)£a|S(X)£a)(2|A| )"d\. 

Thus (by polarizing Plancherel) if/, g ^ L2 we have 

(/g) = cM) 
where the inner product on the left side is the L? inner product. 

Given R e ai, it is particularly important to be able to tell simply 
whether R e <%x (for example, for Theorem 5.1 (a) ). Given R, S <E ^ , we 
would also like simple criteria for (5.1) to hold. 

Now if / i s a measurable function on Rn such that 

f(x) = 0(\x\~mi) as x - > 0 , 
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where m\ < n, while 

f\x) = 0( \x\~ni2) as x -> oo, 

where m2 > n, t h e n / <= L1. The analogue in the present situation is 
this: 

PROPOSITION 5.2. Suppose F:(Z^)n X R* —» R + satisfies 

F(a, X) < C(va\X\ ) ~ n i ] for some m\ < n + 1 ««J 

,F(a, À) < C(va\X\ ) ~ n i ] for some m2 > n + 1. 

TYze/7 

/

oo 

_„, 2 F(a, X) |X|"rf\ < oo. 

(^s always, va = \a\ + H / 2 , and F is measurable in X.) 

Proof Indeed, for N e Z + , put N+ = N + nil. Then 

CO / \ r /«j /yy 

/ < C 2 O ( " : ^ T »)[*;••/„ 'x—• 

+ A^™2 / 1 A""™2 < C 2 N"-xN + n < oo. 

If we make use of this proposition, we see the importance of the 
classes 

Ord(m) = {R e &\sup(2va\\\)-
Rcm/2\\R(\)Ea\\ 

= | |# | |° r d ( m ) < oo} form e C. 

Let 

Rap - n Ord(ra), 

topologized as a Frechet space. (Ord stands for "order"; Rap stands for 
"rapid decay". In [9], Ord(ra) was called #( — m/2), while Rap was called 
fé7.) These spaces are analogous to the spaces on R" defined by 

{/I \f{x) | < C\x\m) and 

{f lf(x) I < Cm\x\m for all m ^ 0} 

respectively. From Proposition 5.2 follows immediately: 

PROPOSITION 5.3. (a) Rap c <%x continuously. 
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(b) Ord(m) is contained in the dual o/Rap (under the natural pairing) if 
m > —In — 2. 

The analogue of this on R" is evident. 
Theorem 5.1 (a) is now an easy consequence of the fact that [y(H") ] c 

Rap. Indeed, if/ e ^ 

fAN = [LN
0f\ e 3S for all W, 

so this inclusion follows at once. 
As a trivial consequence of the above arguments and the dominated 

convergence theorem, we have: 

PROPOSITION 5.4. Suppose that {R^\N e N} is a bounded subset of 
Ord(m) where m > —2n — 2, that R e & and that for all a, X we have 

lim RN(X)Ea = R(X)Ea. 

Suppose further that S e Rap. Then 

(RN\S) -> (R\S). 

Suppose R G ^ a n d (5.1) holds for all S e [^(H'z) ] . (For example, this 
will hold if R e Ord(ra) if m > —In — 2, by Proposition 5.3.) Suppose 
F G y?f(H,2j. We say F = /* (in the y7 ' sense) if for all G e ^ 

(F|G) = c'n(R\G). 

We note the following useful proposition. 

PROPOSITION 5.5. Suppose R e <%X . Let 

F(u) = c',Au) = c'„ J _ œ tr(l/-„tf(X) )(2|A| )"d\. 

Then F = R in the £f sense. 

Proof. F is a bounded continuous fraction, hence in y . Suppose G e 
^(H w ) . Then 

(G|F) = dn jZ^ 2 (EJ [JH„ U-uG^du\R(\)Ea)(2\X\ fdX 
= c'n(G\R) 

as desired. 

One may now investigate the FTs of regular homogeneous distributions. 
Recall that these are defined as follows. For r > 0, define D/.H" —» H'? 

by 

Dr(t9 z) = (r2/, rz). 

I f / i s a function on H", r > 0, define the new functions Drf, Drf by 
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Drf = foDn DJ= r 2 " - 2 / o D , , . 

By duality, one defines Dn Dr\S?f -> </»'. If K (= S?\ l e C, K is called 
homogeneous of degree / if 

DrK = rlK for all r > 0. 

AT is called regular if it agrees with a C°° function away from the origin. 
It is shown in [9] that if K is an r. h. d. of degree /, Re / < 0, then 

K e Ord(m) where m = — In — 2 — /. 

(Thus Re m exceeds — 2n — 2. As we said before Proposition 5.5, this is 
important.) However, no formulae for K were computed in [9]; we are 
about to give some in the next section. We will not be assuming any of the 
theory of [9]. 

The situation is of course modelled on the well known Euclidean theory. 
For example, if K is an r. h. d. on C", of degree /, where Re / > — In, one 
may write K as an infinite sum of terms of the form c\z\~lkP{z), where P 
e jÇq for some/?, q, c e C; and / = K — 2k (K = p + q). To find J^'/C 
one need only find all J^r( \z\~2kP(z)). This is done in [18], by use of 
Hecke's identity. The result, placed in our notation, reads that 

3r'(T(k)\z\-2kP(z)) = ( - l ) V T ( y ) | f r 2 ^ ( f ) 

where y = n + K — k. 
On H", suppose — 2n — 2 < Re / < 0, and that K is an r. h. d. of degree 

/. It is not difficult to show that one can write K as an infinite sum of terms 
of the form G(t, \z\2)P(z), where G is homogeneous of the appropriate 
degree. (We shall not use this, but state it for motivational purposes.) Thus 
it is reasonable to seek a formula for the F. T. of such a GP. We do this in 
the next section, in specific cases. It could then be done in general, but we 
do not do this here. We shall use Theorem 2.3, the analogue of Hecke's 
identity for CS. 

The case where Kis an r. h. d. on Cn of degree —2n is also of particular 
interest in the Euclidean theory. Away from 0, K can be written as an 
infinite sum of terms of the form c\z\'2kP(z), where P e j ^ q and K i^ 1. 
(The last restriction is evidently necessary for the mean value zero 
condition.) Under these circumstances we have 

&'(VN.(T{k)\z\-2kP{z))) = (-\)P^T(j)\^P(0 

where j = n + K — k. Similarly, on H'7, we shall also seek formulae in the 
case where K is an r. h. d. of degree — 2n — 2, of the form P.V. [G(t, 
\z\2)P(z) ] (see Section 8 of [4] for the definitions). In the H" case, however, 
one could have P = 1. The following proposition may elucidate matters 
somewhat. 

PROPOSITION 5.6. Suppose F(t, z) = G(t, \z\2)P(z) is smooth on H " \ {0} 
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(and not necessarily homogeneous), where P e jÇ p + q i^ 1. Then if 

0 < a < 6, 

J F(u)dV(u) = 0. 
tf<|w|</> 

(Here, if u = (V, z), |M| = ( \z\ -h r ) 1 7 .) In particular, if F is homogeneous 
of degree —In — 2, //zere exists an r. h. d. AT of degree —In — 2 which 
equals F away from 0. 

Proof. Integrate in the order dzdldt. 

We further assert, but shall not use, the following fact, which clarifies 
the situation when P = 1. Suppose G(t, \z\2) is smooth on H " \ { 0 } , is 
homogeneous of degree — In — 2, and that it has mean value 0. Then 
there exist an r. h. d. K\ of degree — In and c e C such that 

P.V.(G) = TKX + cô and Kx = Gx(t, \z\2) 

for some smooth homogeneous G\. This fact may be verified without 
difficulty if one thinks of H" as R2n + l and considers the Euclidean Fourier 
transform of P.V.(G). Details are left to the interested reader. 

6. The main formula. In this section we derive an F. T. formula of 
considerable applicability (Theorem 6.2). It immediately gives the F. T. of 
many homogeneous distributions. Lemma 6.1, which contains the heart of 
the matter, is in part a special case of Theorem 6.2. 

In what follows, if k e C we w r i t e / ( z ) = zk to denote the principal 
branch of this function, defined in the complex plane with the negative 
real axis removed. Thus if z b z2 are in the open right half plane, 

zxz2 = (zxzi) . 

Also note that zk/\z\Rek and \z\Rck/zk are bounded functions of z. 
If u = (/, z) G H", we set 

h(u) = \z\2 - it. 

\p will be as before Theorem 2.3. 

L E M M A 6.1. Suppose 8 > 0, s e C, \s\ < 1 - S , e > 0, P e 3rifpq, 

K] = ± 1 . Let H^'.R —> R Z>e the characteristic function of [0, oo) if 
i] = 1, and of (-co, 0] Z/TJ = — 1. Suppose j e C, /7 + ( K / 2 ) + 1 > Re y, 
<2/7 J / ^ = J€ ^ & satisfies 

J((\)Ea = c£( |«|, A) |X|- ;#x(/>)£ 0 

where if N = / / , 

c€(W, X) = ( - i ) V + 1 2 , - " - T ( # ! + K + 1 - y ) - 1 

X *"-> ' ( 1 - s y - ' exp(-W-]s)\\\e)HJX). 
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(Again, 0° = 1.) Let k = n + K + 1 - j . Then J€ e ^f, 

||«/c|li' = C independent of s for \s\ < 1 — 5. 

Further c'nJ€ = K€ where 

Ke(u) = Ge(w(u))P(z) and 

G€(w) = (s(w + c) + (w + c) )™~A //r/ = 1, 

G€(w) = (5(iv + €) + (w + c ) )"* / / i , = - 1 . 

(Observe that if \s\ < 1 — 8 then s(w + e) + (w + c) «ever lies on the 
negative real axis ifw = w(w), u G H".) Thus K€ = Je in the &" sense, by 
Proposition 5.5. 

Proof We may assume TJ = 1. We note the estimate 

(6.1) \\W(P)Ea\\< C(va\\\ f2 

C independent of a, X, directly from Proposition 2.7. (Corollary 3.3 gives a 
much sharper estimate.) Now 

OO / \ 

||y£(X)||f ^ c e - A e / c |A | - R ^ + K / 2 2 \s\N-r'N*n(N + ^ 7 ] , 
N=p' \ n i ; 

C independent of s, for |̂ | < 1 — 8. The sum is bounded by 

OO 

C, 2 \s\MM"~]+K/2 ^ C2, 
M = 0 

C2 independent of 5*, for | j | < 1 — 8. So 

where 

r = n - Re y + K/2 > - 1 . 

Thus ||/e||f < C4 as desired. Finally, if u = (/, z), in the notation of 
Theorem 1.2 we have 

v /*°° 
c'„J€(u) = c'„J _oo e'A^(/£(A) ) |A|"JA 

/

OO 

0 exp[-X( (*"'(*) )(kl2 + c) 

+ it)]\k~ld\ 

= (1 - j r ^ - ^ K l z l 2 + 0 + it]-kP(z) 

= (s(w + e) + (w + £))~A7>(z), 
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as desired. We used Theorem 2.3, and its notation. To deform the contour, 
we noted that 

W-\s)(\z\2 + c) + it] 

is in the open right half plane. 

THEOREM 6.2. Suppose k e C, P e jÇq. Suppose fi is a complex measure 
on R + , and for some ô, 0 < 8 < 1, there is a smooth function g on 

/« = [i - ô,(i - s r 1 ] 

such that d{i(s) = g(s)ds on 1$. Let \i\ denote /x restricted to [0, 1], and on [0, 
1] assume there is a measure \i(-\) with 

M-\){s) = -skd\i(\/s)for s G [0, 1]. 

We assume that /xj, /X(-i) are finite measures. 
Suppose € > 0. For eac/z w = (/, z) G H", se/ 

(6.2) *-«(«) = G£()v(u))P(z) 

/

oo 

0 ' - ' . . — - - * • (6.3) Gc(w) = f 0 (s(w + 0 + (vv + £) )-*rfK5) 

/ 0 ( s ( w + 0 + (iv + € ) ) - % , ( . ) 

(6.4) + J o (j(iv + 0 + (w + 0 ) kd^-u(s). 

(Note that ifO = s ë 1, |i(w + £) + (w + e) | = £, so the integrals are well 
defined. ) 

Next, suppose e iï 0,y G C and n + (K/2) + 1 > Re y > 0. Define Jt e 
@by 

(6.5) J((X)Ea = ( - 1 ) V + 1 2 ^ " - V £ ( |«|, X)irx(P)Ea 

where, if N = p\ 

ce(N, A) = \\\-JT(n + K + 1 - y ) " 1 / ^ / ^ ' ( l - s)J'x 

(a = sgn X). Then 

(a) K0 = lim ^ exwtt in C°°(Hn - {0} ). 

(b) Suppose 

(6.7) Re £ < « + 1 + (K/2) 
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or 

(6.8) k = n + 1 + (/c/2), K ^ 1. 

7/(6.7) Ao/<fc, //z^ A: = K0 is an r. h. d. on H' //(6.8) Ao/ds, # = PK(K()) /s 
Û« r. h. d. on H". 

(c) K = lim/Q in&"Qln). 
e->0 

(d) Je G Ord(K — 2j) and 

limJe = J0 in [^(H")]*. 

(e) Ife > 0,y = n + K: 4- 1 - k, then K€ = Je in the y sense. Ife = 0 
and (6.7) or (6.8) holds, K = 70 *'w ^ ^ s£ftse. 

Remark. The theorem is, on a formal level, an immediate consequence 
of Lemma 6.1. The proof involves a series of limiting processes. Before we 
give it, we derive the most important special cases. 

If y e C, Re y > 0, Re(Jt - y) > 0, <//x(s) = sy~lds, then 

dH(-\)(s) = sk~y~xds. 

If c > 0 and v = w + e then 

/

oo 

o (JV + v)sy~{ds 

-rz-(k-y) I \ t„/7ï\c + n-*r/wir^dY-i v 'v 

= v"y?"(A""Y) 

)s + l ] ^ [ ( v / v W r l ( v / v ) ^ /

oo 

o [ < " * 

/

oo 

0 (J + l)~ksy~lds 

= r(y)T(/c - Y ) T ( A : ) ~ V + e)~y(w + € ) _ ( A _ y ) 

so certainly (a) is true in this case. In addition (b) and (c) are apparent if 
(6.7) holds. In addition, 

c0(jV, X) = \\\-JT(n + K + 1 - j)]r(N - p' + y') 

X T(j)T(N-p' + y' + 7 ) " 1 

where y' = y'(A) = y if A > 0, y' = & — y if À < 0. We also note the more 
special case P = 1, A: = «,7 = 1, in which 

c0(tf,A) = | \ r 1 r ( / i ) - 1 ( ^ + y T 1 . 

Thus if <py = w~yw~(n~y), (c) of the theorem implies 

(6.9) <pyEa = cy[ (IN + 2y') |A| ] " % if \a\ = JV 
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where 

cy = 7rw+122_T(Y)~1r(« - y)" 1 . 

If / e Sf(Hn) then, setting i\ = 2y - n, 

( V ) ' ME« = (2N + 2?') Wf^)Ea if l«l = #. 
It follows easily that 

(6.10) L^y) = cy8 

which is Theorem 6.2 of [4] if 0 < Re y < n. (The volume element of [4] is 
2~n times ours; see 5.1 of [4].) To extend (6.10) and hence (6.9) to general 
y e C, simply observe that if/ <E y(H") , both (L2y-nf\<py) and cyf(Q) are 
analytic functions of y, so they coincide. 

Proof of Theorem 6.2. For (a), if w lies in the open right half plane we 
may use (6.3) with € = 0 to define GQ(W) since then sw + w will also lie in 
the open right half plane if 0 ^ s = 1. Let us first show that GQ can be 
smoothly extended to 

D = { w G C | R e w ^ 0 } - {0}. 

G0 is evidently C°° where it is defined. It suffices to prove that if w0 e D 
has the form w0 = (0, t), t ¥= 0 and if M, N e Z + , then 

lim(3/3w)M(8/a w)NG0 

exists as w —» w0 through int Z). For, by the homogeneity of G0, it will then 
be clear that these limits will exist uniformly at (0, /') for f near t, and the 
smoothness of GQ will follow readily. Using (6.3), we reduce at once to the 
case M = N = 0 by allowing k to vary. We may assume Re k > 0, since 
otherwise the conclusion is immediate. Let / = [Re k] ( [ ] = greatest 
integer function). Let c = 0 if / ^ Re k\ otherwise, let c = 1/2. Write 

scg(s) = p(s) + v(s) in I8 

where p is a polynomial of degree not more than / — 1 and 

v(s) = (1 — S)1VQ(S) where v0 is C°° in 7g. 

Let 

djur (5) = s~cp(s)ds\ 

dlL"(s) = s~c(\-s)lv0(s)ds if s G /ô, 

d[i"(s) = 0 otherwise; 

(ijLt/r/ = dfi — d\i! — d\i". 

We verify the conclusion with each of d[i\ d\i!', d\i!" in place of dp. For dp\ 
use the special case we computed in the Remark. For d(i"\ if 
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Fi(w) = j0[s + (w/w)] kdp,"'(s), 

then F\(w) converges absolutely and uniformly for w e D since 

\s + f| ^ «if 0 S s =i 1 - 8, |f| = 1. 

Thus i/ju"' is easily dealt with. For dp.", we need only examine 

/ s + (w/w)] ks c(\ - s)'v0(s)ds. 
-8 

Now 

\[s + vv/)v]~A'| < C\s + w/iv-rR d S C|s - l|~ReA' 

so that the integral converges absolutely and uniformly for w e Z), and the 
desired limit exists. 

Thus Go has a smooth extension, which we also call GQ, and Go(u'(w) ) is 
smooth for u e H ' ? \ {0} . As e -> 0, 

G€(w) = G()(w + c) -> G0(w) in C°°(D). 

(a) therefore follows. For (b), if (6.7) holds, note that 

K{){rh,rz) = r~2A + K^0(/, z), 

first if z ^ 0, then if (r, z) ^ 0 by the continuity of #(). If instead (6.8) 
holds, use the same fact together with Proposition 5.6. For (c), we reduce 
again to using dfi\ d\x!\ d\i'" in place of dji. The above analysis showed that 
in each case |GQ(W + e) | is bounded by 

C\w + £|~ReA' g C\w\-RQk. 

Thus, if (6.7) holds, the dominated convergence theorem may be applied, 
and (c) holds. If (6.8) holds, a n d / e ^ by Proposition 5.6 

(Ke\f) = j w m KjtT)[f(u) -f(0)]dV(u) 

J\u\ | > | K((u)f(u)dV(u). 

Again 

\G0(w + £)| < C|H"ReA' 

independent of € so that the dominated convergence theorem still applies. 
This concludes the proof of (c). 

For the first conclusion of (d), we can split up d\ia into two parts and 
study two cases: (i) dixa(s) vanishes if 1 — 8 < s < 1. 

(îi) diia(s) = f(s)ds whe re / e L°°(0, 1). 
In case (i), we have 

k,(iv.X)| < c,(i - sfwn 
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where C\ is independent of À, N or e. In case (ii) 

h(N,\)\ a C2|A|-ReMI/lloo f0 sN^'(\ - sf^ds 

= C2\\r
ReJ\\f\\ooT(N - p' + l)T(Rej)T(N - p' 

+ Re y + l ) " 1 

so 

(6.11) \c((N,X)\ g C 3 | | / | | 0 0 (^ + ) - R e ' . 

Here 7V+ = N + (n/2) and C2, C3 are independent of À, N, e or / . So in 
both cases 

h(N,\)\ g e(iv+|\| )-Re>, 

whence, by (6.1), 

\\J((X)Ea\\ Si C(iV+ | \ |)K/2-ReÀ 

where C is independent of À, N, €, as desired. For the second conclusion, it 
suffices to use this last fact, the fact that 

J€(\)Ea -> J(X)Ea 

for each a, A, and Proposition 5.4. 
For (e), we may assume by the results of (a), (b), (c) and (d) that € > 0. 

We fix c and drop it. For each / e Z + with Ml < 8, define v / e L°°(R) 
by 

<Pi(x) = 1 - x/O) 

where xt is the characteristic function of (1 — 1//, (1 — l / / ) " 1 ) . Let 

dfii = <p/̂ fju 

and let Kl, J1 be obtained from d\xl in the same way that K, J, were 
obtained from dfi. As / —» 00, ^ —» AT pointwise and 

Jl(X)Ea —> J(X)Ea for each a, A; 

we claim ^ -> # in ^ ' , / ' -> / in [i^]*. For, from (6.3), 

H^Hoo ^ C-^d l / i iH + HM2II) 

^€-^(11/1,11 + H/12II), 

so dominated convergence shows K1 -* KinSf'. To show/ —> J, we reduce 
to case (ii) of the proof of (b) and use the estimate (6.11) and Proposition 
5.4. 

Thus, to prove (e) we may assume that € > 0, g = 0 (changing 8 if 
necessary). At this point our only restrictions on j and k will be 
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Re7 < n + 1 + (/c/2). 

Notation as in Lemma 6.1, we have 

Je(X) = fQ jls(X)dlx](s) + fQ j;]\X)d^i ( _ D (s) 

and we know 

ll '̂llf s c 
independent of s e [0, 1 — S]; so 

/ G ̂ f and c„J = #. 

By Proposition 5.5, the proof is concluded. 

For a different method of proving (a), see the proof of Lemma 7.5. 
The interesting case k = n + 1, P = 1 is not covered by Theorem 6.2, 

and we treat it separately now. 

THEOREM 6.3. Hypotheses as in Theorem 6.2, up to and including 
equation (6.4), but now assuming k = n + 1, P = 1. 77*e«: 

(a) A'Q has mean value 0 if and only if g (I) = 0. 
Suppose KQ has mean value 0. Let K = P.V.(^o). Then 
(b) With € = 0, j = 0, //*£ integral in (6.6) /s absolutely convergent. We 

may therefore define J0 by (6.5). TTzefl J0 G Ord(0). 
(c) There exists c e C swc/z ///#/ (AT + c8)A = JQ. 

Proof For (a), first suppose g(l) = 0. Define a measure fi on R + by 

rfjS(^) = - [ m ( l - s ) ] - 1 ^ ) . 

Because g is smooth, /? satisfies all the same conditions that [i does. We 
may therefore put 

/

CO 

0 (5(>v + c) + (w + e)rndP(s). 

Let ^ (w) = He(w(u) ). The analogue of (6.4) for H€ shows that 77Ç = K€. 
Since ^ -> K'0mSf", TK'€ -> 7 X ô i n ^ ' ; but 77Ç = Ke^ K0 in C°°(H" -
{0} ) by Theorem 6.2 (a). Thus K0 = TKQ away from 0. TKQ'IS an r. h. d. of 
degree — In — 2, so that K0 must have mean value zero. (Note for later 
purposes, then, that TKQ = K + c8 for some c e R.) 

Suppose next g(l) = a ¥= 0. If d/x(s) were equal to as ^{n + 1) /2~ ]^ds, the 
computation in the remark would show that 

K0(u) = ab\u\-{2nJr2) 

where 

b = [T((n + l)/2)]2/T(>7 + 1). 

This does not have mean value zero. If d\i is general, consider 
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K0(u) - ab\ur{2n+2} 

/
oo 

n [s(w(u) + c) + (iv(w) + c ) ] " / z _ 1 

X [J/i(j) - as^" + ])/2~]Us]. 

By the first part of the proof, KQ — ab\u\~^2n^2) does have mean value 
zero; consequently, KQ does not. This proves (a). If K0 has mean value 0, 
we return to the notation of the first paragraph. It is easy to show, from 
Theorem 6.2, that KQ = J where 

J'(\) = (-i\)-%(\l 

Jo as in (b). Thus (TKQ) = J0, and (c) follows. Further we conclude 

/ ' <E Ord(-2) , 

so it follows easily that 

J0 e Ord(0); 

thus (b) also follows. 

Because of the arguments in the preceding proof, and also the 
considerations mentioned at the end of Section 5, the following question is 
of some interest. Suppose K! is an r. h. d. of degree — 2n\ K\t, z) = 
G(/, \z\2) for some G; TK = K0 away from 0, where K0 e C°°(H /?)\{0}; 
and K = P.V.(AQ). Then certainly TK = K + cS for some c <= C. One 
would like a simple means of determining c; in particular, this would make 
Theorem 6.3 (c) more explicit. 

For this purpose, we introduce "polar coordinates" on the Heisenberg 
group. Suppose/(/, z) e Ll(Hn). Define p, £ by p = |z|2, £ = z/\z\ and 
suppose / ( / , z) = g(t, p, £). Then 

jnJdV = (1/2) £ /R / " *(,, p, 0p»-'4*fo*. 
We now let 

R = {p2 + t2)]/2 = (|z|4 + /2)1 / 2 , 

<p = arctan(7/p) 

so that 

|z|2 + it = p + i7 = ReT 

Suppose (7, p, £) = F(i?, cp, £); then 
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X (cos <ç)"~[R"dRd<pd£. 

We call (R, cp, £) polar coordinates on H/?. We note that, in polar 
coordinates, 

T = (sin <p)d/dR + [ (cos <p)/£]3/3<p, 

as one sees at once from the change of variables (t, p, £) —> (R, <p, £). 
In the problem under consideration, we can write À7 = R~~nh(<p) for 

some bounded function h. We wish to determine c such that 

# (F ) = TK\F) - cF(0) for all F e ^(H' ?) . 

We may assume 

supp F c {R < 1}. 

Writing F = F(/?, <p, £), we have 

2K(F) = JSn j_]n Jo sin <p[d/dR(h(<p)R-n)} 

X [F(R, <p, I) -F (0 ) ] /T< i /* cos" l<pd<pd£ 

LJUZ^www^ 
X [F(tf, <p, 0 - F(0) ] cos" ~x<pd<pR"-]dRdè. 

In these inner integrals we integrate by parts, to find 

2K(F) = -2K\TF) - I / , F(0)/z(<p) sin cp cos""1 WWf 

Accordingly, # ( F ) = TK\F) - cF(0) where 

c = irn(n — \)\~] I , /z(<p) sin <p cos""1 cp<i<p, 
j — 77/2 

and TK! = K + c8. 

7. Applications. In the remark of Theorem 6.2, we gave the most 
important cases. Let us begin by giving some very simple extensions of 
these. Specifically, suppose the r. h. d. K = wawhP(z) where a, b e C 
and 

-In ~ 2 < Re(deg K) < 0. 

We compute K. 

PROPOSITION 7.1. Suppose k e C, P e J^,, K = p + q. Suppose y and 
k — y are not nonnegative integers, and that 

-In -2<K-2Rek< 0. 

<9r ///r;/1 
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K ^ 1, K - 2k = -In - 2. 

Define 

Gky(w) = Y(y)T(k - y)\^-kw~\ and 

KkyF(u) = Gky(w(u))P(z). 

Let j = n + K + \ — k. Then KkyP = Jjyp, an element of Ord(K — 2y), 
defined as follows. 

J,yP(X)Ea = ( - l )V ' + 1 2 1 - " - K
0 y ( | a | ,X)#x ( /> )£ a , 

where if M = N - p' ^ 0, y' = y if X > 0 and y' = k - y if X < 0, 
then 

cjy(N, X) = |A|"T(M + y ')r(y)r(M + f + ; ) " 1 . 

Proof This has already been verified in the remark and in the proof of 
Theorem 6.2 if Re y > 0, Re(A — y) > 0. It follows in general by analytic 
continuation. Indeed, for fixed A, P, let 

5 = {y|y, A - y £ Z }. 

It suffices to show that if / e ^ (f\KkyP) and {f]J jyp) are analytic 
functions of 7 E 5. Indeed, Re A' > 0, so that there does exist an open set 
of y in S with Re y > 0, Re(A - y) > 0. That (f\KkyP) is analytic is 
immediate. Now 

K - 2 Re / - -2A? - 2 + 2 R e A - K > -In - 2. 

Thus, by Proposition 5.3 (b), 

\(f\JiyP)\ < C\\JiyP\\ 

where the norm is taken in Ord(/c — 2j). It suffices then to show that 
\\Jiyp\\ remains bounded if y varies through compact subsets of S. But this 
is easy. Note first that if a, h G C, a' = Re a > 0, b' = Re b > 0, 
then 

\\\a)Y(b)/Y{a + b) \ = | / ( ) f \\ - tf~xdt\ 

^ iV)r(//)/iV + v\ 
Soif M = N - p' > - R e y', 

(7.1) \e/y(N, X) I ^ cRc7-RcY(N, X) ^ C(N + \\\ )~Rcf 

Here /V+ = N + nil. This estimate then holds for all TV. If we recall (6.1), 
the proof is concluded. 

The formula has a simple generalization to the case where y or A — y is 
a negative integer. 
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PROPOSITION 7.2. Suppose k e C, P <E J%q, p + q = K. Suppose 

-In - 2 < K - 2 Re ^ < 0 

or that 

K ^ 1, K - 2 Re k = - 2 « - 2. 

Le/y = « + /c + 1 — A:. Suppose (i) y = — / e Z 6>r (ii) /c — y = — / e 
Z~. (#6>//z cannot occur simultaneously, since Re /: > 0.) Define 

GA-T(W) = (—iyr(A: + /) /!_ 1w^Aw~Y . 

Le/ 

*Ay/>(") = G*7(W(H))P(Z). 

L/ze/? L .̂y/>, = ^y'yP, flW dement of Ord(K — 2/), defined as follows. 

JjyP(X)Ea = ( - l ) V ' + l 2 | - " - K
9 y ( | a | ,A)#x (P )£ a . 

//ere, if M = N - p' ^ 0, M ^ I, then 

cn(N,\) = \\\-J(-\)'-MY(j)[Y(M +j - /)(/ - M)!]->, 

provided X > 0 /« ctzse (i) and provided X < 0 m case (ii). Lor a// other values 
ofN, A, cyYC/V, A) = 0. 

Proof Say we are in case (i); case (ii) is handled similarly, or through 
use of the symmetry of the F. T. under (/. z, A) —» ( — /, — z, —A). We need 
only show that 

lim eKk y + e P —> À v̂/> m ^ ' and 

lim Jjy + eP = JjyP in Ord(/c — 2/). 

(Here Kky+^P and Ly y+e/> are as in Proposition 7.1.) The first is easy by 
dominated convergence, since if y = — /, 

lim cIXy + e) = ( - l / / ! - 1 . 
£~^ = 0 

For the second, note that if M > /, or A < 0, 

ecM + €(N, A) -> 0 

trivially. If M ^ /, 

limelXAf + y + c) = (-\)l~M(l - M)\~\ 
£->0 

SO 
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eCj.y+€(N, A) -> chy(N, A) 

for all A. We still have the bound (7.1) for M > I and A > 0, or for A < 0, 
with y + e replacing y. By Proposition 5.4, we are done. 

We shall not give explicitly any analogous formulae in the case P = 1, 
— 2 Re k = —2n — 2, since by the proof of Theorem 6.3 the only 
examples can be read off by considering TK\ K' homogeneous of degree 
— In. One case of this, however, is quite important; the Cauchy-Szegô 
kernel. We discuss this, and its application to H theory, now. 

Let 

U'7 + 1 = { [z0, z] G C X C"\h = I m z 0 - \z\2 > 0}. 

This is the Siegel upper half space of type II. Frequently we use instead the 
coordinates (/z, u) where u = (f, z), / = Re z0. In these coordinates, one 
thinks of U" + 1 as R + X H'7. The reason: if M G H", the "left translation" 
Tu\\J

nJrX —» U'7 + 1 by Tu{h, v) = (/z, uv) is then easily seen to be a 
holomorphic homeomorphism of U" + 1. Thus one thinks of Hn as 3U' /+1. 
We write H = 3/8/z. We record the transformation law from [z0, z] to 
(h, u) coordinates: 

T — iH = 28/8z0, Zj = d/dzj + 2iZjd/dzQ. 

Thus a function f on Un+] is holomorphic if and only if 

(7.2) (T 4- iH)f = Zjf - 0, for ally. 

In particular, if / i s analytic, then Tf is analytic. U" + 1 is biholomorphic to 
the unit ball under a "Cayley transform." (See [6] for this and further 
information, and [16] for H1 theory for the unit ball.) If F i s a function on 
U'z+ \ we define, for h > 0, the function Fh on H" by Fh(u) = F(h, u). We 
let 

H\\]n^x) = {F holomorphic on U" + 1 sup \\Fh\\2 < oo}. 
h>0 

Here || ||2 denotes L2(Hn) norm. Define P G @ by P(X)Ea = 0 unless 
a = 0, A < 0, in which case P(X)E0 = E0. Let 

V = { / G L 2 (H") | /P = / } , 

topologized as a subspace of L2. The following result is then known; see 
[13]. We give the natural proof in our context. 

PROPOSITION 7.3. (a) If F G #2(U'7+1), there exists F0 G V such that 
Fh -> F0(L

2) ash-^0. The map B:H2(l)n + l) -> V defined by BF = F0 is an 
isomorphism. 

(b) The projection C^'.L^ —> K 75 g/v /̂7 by 

Chf=c'n(fP)\ 
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/ / / e L\ let 

c';j= (B-]chf)h. 
Then 

C'lf = c^EjPf where Eh(X) = e^I. 

(c) Let 

S(z0,z) = «!2"' l
77- ( ' , + 1)(-/z0)"(" + 1), 

K'{u) = -i(n - 1)!2"~'77~<" + 1) [w(u)]~", 

K(u) = n\2"-l7r-{"+])w-^,+ i) for u e H " \ { 0 } . 

Let So = TK' in the y sense. Then S0 = P. V. K + (1/2)5. Further, if 
/ e L2(H"), 

Ch
hf = f*Sh, Cbf = f*S0. 

Proof. Suppose F e H . The condition ZjFh = 0 holds in the sense of 
distributions, hence in the sense of tempered distributions since C0 is 
dense in Sf. Accordingly 

(R \VJ\FJ) = 0 for all R e J2. 

(See the beginning of Section 5 for J.) This easily gives FhP = Fjv If we 
knew that F, TF e H\ and hence / / F <E H\ we could conclude by Fubini 
that H[Fh(X) ] existed and equalled XFh(X), whence 

(7.3) e~wFh(X) = e'mFk(X) for all A, A: > 0. 

To obtain (7.3) for general F e //2, regularize: select TV > n + 1, 
«P e C™(H"), J <p = 1. For c, TJ > 0, put 

^(z 0 , Z) = |"(TJZ0 + / ) " " , 

(a dilate of <p), 

^ = ^ 

Since ^ G 7/2 n L°°, GP (^ H1 n H2. Since <p e L1 and <p has compact 
support, BV€ e 7/1 n 7/2, (7.2) being checked at once. Also 

TB11€ = T<p€* G*1 ^ H] n //2, 

so we have (7.3) for BP* in place of F. Now 

B^e = ĉ G7*, 

<pe(X) = <P( £ 2 ^) ~^ I s t rongly as e —> 0, 
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so that (7.3) holds for Gv in place of F. As rj —» 0, Gj| —> f), in L , so we 
find, by Plancherel, (7.3) for F for a.e. X. So for some R = (R(X) ) with 

Fh(X) = e-MR(X). 

By Plancherel and monotone convergence, 7? e ^ 2
 s o P = ^o f° r some 

F0 G L2. By Plancherel, Fh -> F0(L
2) as /z -^ 0. 

Conversely, given R <E &2 with RP = R, put /?/7 = £/,/?. Then /£/7 G 
i^f. Define FQ = R , Fh = Rh, F(h, u) = Fh{u). To complete the proof 
of (a), it will suffice to showT7 is analytic on U"+ 1 . Let us begin with the 
observation that if/, g e L2, then ( / * g)A = fg in t h e y sense. Indeed, 
one easily sees that if qp G £f, 

(7.4) (<p|/* g ) = ( / * <p|g) = ^ / £ | g ) = cMf* g) = c'Mg) 

where J(u) = f(u~]). Next, we apply Lemma 6.1 with P = 1, € = /?, 
j: = 0, 5 = 0, 17 = — 1 to find Eh = S/7, (S is as in (c); note that 
w(u) + h = —iz0 if [z0, z] = (/z, w).) From these two facts, 

Fh = F0 * Sfv 

(7.2) for F is now immediately checked. This proves (a), (b) follows also, 
the first part being a consequence of Plancherel. 

For (c), the arguments of the last paragraph show that 

c £ / = / * S * f o r / e L\ 

By the Proposition 7.2 case (ii) with k = y = n, / = 0, P = 1, we have 

c'„[(-iMr]Pj = K'. 

Thus 

c'„P = FK> = <>0 

by the discussion at the end of Section 6. Indeed, one has only to note 
that 

/

IT/2 

_n/2 eimif sin cp cos '^1 <pd<p = -[2ni\-\. 

This last formula is easily proved if one writes sin and cos as linear 
combinations of exponentials and notes 

/

IT/2 

_„,<, ^dy = ir8kih for £ e Z. 

From this it follows easily that Chf = f * S0. Indeed, (7.4) with / e ^ 
g = So shows that 

a* s0y- =JP, 

and this extends at once to / e L2. This completes the proof. 
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As another application of Theorem 6.2, we turn to the Poisson-Szegô 
kernel and its variants on U ' r r l . In [6] we explained that the 
Laplace-Beltrami operator on functions on U"+ 1 is 

A00 = 4h(hH2 - nH + hT2 - L0). 

We defined the variants 

Aay8 = A - 4h[ (a + P)H + i(a - p)T}. 

These operators occur as part of the Laplace Beltrami operator on forms. 
For u G H", we set 

(7.5) K%(u) = cap(2hT + «+^\w(u) + A)-<" + «+i> 

X (w(u) + h)-{n + ^V) 

where 

^ = tf"^1^'1"1^ + a + 1) r(« + j8 + 1) 

X T(w + a + 0 + l ) " 1 . 

Suppose Re(a + 0) > - ( « + 1) and « + a + 1, « + 0 + 1 £ Z " . In [6] 
we asserted that 

< 8 e L\H") and f KÎp = 1. 

If/ G Z/(H")(1 â /? ë oo) and g(/z, w) = / * ^ ( w ) , we asserted that 

A^g = 0. 

Thus A ^ acts as a "Poisson kernel" for Aayg. (Since A^g = Dti^a^ 
K*lp —* 8 as h —» 0.) We claimed that these assertions could be verified 
directly, but could be better motivated by use of the group Fourier 
transform. We do this now; for applications, see [6] and [11]. 

It is easy to see directly that 

^ e L«(Hn) for 1 ^ q ^ oo, 

and that this is also true for all of its derivatives. It suffices, then, to check 
that 

J Kh
ap = \ and &apKafi = 0 if Kap{h, u) = Kf^(u). 

Formally taking the F. T., we begin by seeking a solution of 

(hH2 - ( « + « + p)H - h\2 - (a - p)\)J(h, A) 

- J(h, X)AX = 0 

where 

Jh(X) = J(h, A) e CXM), 
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and where 

Jh(X) ~^ I strongly as h —> 0. 

Jh is to be the F. T. of K^q. Assume Jf}(X) is radial, so that 

Jh(X)Ey = g(/?, IYL \)Ey 

for some function g{n, i\\ X) with 

g(h. yV. A) -> 1 as /z -> 0. 

Let 

gAA(//) = gOu ,V, A): 

then we want 

-[ (2N + « + a - /*) |A| + /iA-]gVA = 0 if A > 0; 

a and # should be reversed if X < 0. Let 

g Y i = g.Y.l 2- g.Y = g \ , - 1/2-

If we can find g# + , gyv-, we can therefore obtain gVA ^y putting 

£v\(/i) = ?y.(2A/ï) for A > 0, 

gv,\(/*) = ifv (2|A|/7) for A < 0. 

(This is as it should be, since Kn
ap = Dvh Kap-) Let us find g\ + ; we can 

find gyy_ later by interchanging a and /?. Put g v = g\ f • Let 

g/v = e " -o / V ; 

the differential eauation then becomes 

hG'ij - (n + a + $ + h)G't} - (N - j3)G.v = 0. 

(We also need that GM(H) —» 1 as /z —> 0). This is a confluent 
hypergeometric equation ( [3], page 248). The general such equation has 
the form 

W = [hD1 + {c - h)D - a]f= 0; 

here D = d/dh,f = f(h). It is easy to see that 

Laj = o => L a _ f + 1 . 2 _ r / , = o if/,(/,) = / ,<- ' / 

We propose, then, to seek GA/ in the form 

Gy(h) - ^ + a + / ^ + 1 i / ' v ( / ? ) 

where 
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LUAN = 0^ a = NJrn + a+ 1, c = A? + a + 0 + 2. 

If Re a > 0, one has the solution ( [3], page 255, equation 2): 

^ = [r(û)/r(c - I)]*(A, c; A) 

r(c - vr1 J° e~TV - i(i + Tf~a~ldT. 

(This is evident if one notes that 

W £ ? ~ T V - 1 ( 1 + i f - " - 1 ) = -(rf/tfr)(e~TV(l + T)("~")-) 

With Gy = #' ly^A', as above, one does have GN{h) —> 1 as /z —> 0, 
since 

/

oo 

G.v(/2) = T(c ~ 1)~' J ( ) e " V _ , ( / i + o)''~"~Va. 

If, then, Re(« + a + 1) > 0, Re(« + /? + 1) > 0, we obtain a 
solution 

g(A, M A) = T(n + a + /? + \y\2\\\h)" + " + fi+l 

/
CO 

o e-<2r+l)IMVV + ,, + a ( 1 + T)-{N-^dT 

for À > 0. If À < 0, one must interchange a and /?. If we make the 
substitution s = r / ( l + r), we find for À > 0, 

(7.6) g(/z, W, A) = r(« 4- a + /? + 1)~ 1(2|A|/z),z + a + ^ + ' 

X / y/V + » + a / j _ 5 \ - ( / / + a + j8 + 2) 

e x p C - ^ - 1 ^ ) )|X|/i)i/v 

(where ^ ~ ' ( A ) = (1 + s)/(\ - s) as in (6.6) ). If A < 0, a and p are to be 
reversed. Now, for 0 < 8 < 1, A > 0, define gg(/z, TV, A) by formula (7.6) 
with / 0 replaced by / 0 . Define gô(/z, TV, A) similarly for A < 0. Define 

also Jh(X)Ea = g(h, TV, A)iv 

Then Theorem 6.2 applies withy = — (« + « + /} + 1), k = 2n + a + ft 
+ 2 to show that if 

c'ap = iT-{u+])2"~xT(2n + a + £ +2) T(w + a + £ + l ) " 1 , 

and if 

u:r X | / 0 (s(w(u) + A) 
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+ (w(u) + h))~{2n+a + p + 2)s"+ads 

"\-S 

J o (s(w(u) + h) 

then (K^8) = Jfh8. Now, as 8 —> 0, K^8 —> K^ in L1, where 

K | > ) = ^ 2 / » ) » + a + " + 1 

/
CO 

() (s(w(u) + /z) + (H'(M) + /0 )~ ( 2 / , + a + /* + 2V , + ft<fc. 

One sees that A ^ is as in (7.5), just as in the remark of Theorem 6.2. To 
see that (K^) = Jjv it suffices then to show that Jjl8 -> Jh in [S?]*. By 
Proposition 5.4 we need only show that {V/̂ IO < 8 < 1} is a bounded 
subset of Ord( —2). Note, however, that for fixed h > 0, there exists C > 0 
with 

|g8(/2, tf, A) | < CIAI"1 fQ sNW-\s) |X|A]" + « ^ + 2 

X exp( -^ _ 1 (^ ) |A|/?Kv 

for A > 0. However, for any b > 0, the function xhe~x is bounded for 
x ^ 0. Thus, for some C > 0, 

/ : -|g6(A, TV, A) | < C'|X|- ' J 0 ^ = H (W + 1) |A| ] ', 

if A > 0. Similarly for A < 0, and the boundness of {Jh 8} is established. 
Accordingly, 

Since K^p ^ L\ 

J/jiX) —> ( / Kl
ap Jl strongly as A —> 0; 

thus J Kl
ap = 1. Since also all derivatives of K^ are in L1, 

( A ^ ^ ) = [hH2 -(n + a + fi)H - hX2 

- (a ~ P)\]J(h, A) - J(h, X)AX 

= 0, with J(//, A) = Jh(X). 

This verifies all our claims. 
We leave as an exercise to the reader to use Theorem 2.3 to find the 

known formula ( [5], and the author's thesis) for the Fourier transform in t 
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of the "heat kernel" for L0, that is, the kernel for (B/Br + L())K = 0. One 
wants 

K(\)Ea = e-^
a^"^TEa. 

Theorem 2.3. with s = e~2^T, then makes it easy to fmd.^.K. (.^. = F. T. 
m t.) 

We wish to study briefly the question of which functions can be 
represented essentially in the form /(^° (sw -f w)~kdfi(s) (as in (6.3) when 
€ —> 0) for w in the closed right half plane. We would like to indicate a 
class of functions for which this is possible, which includes the 
functions 

T(y)Y(k - y)T(k)~]w~yw~{k~y) 

(Re y > 0, Re(/c — y) > 0) of the remark of Theorem 6.2. We put f 
= vv/vv, so that we may as well consider 

f 
J o 

0 (.v + $)'%(*)• 

This integral will evidently exist under weak assumptions on d\i if 

[ e C \ R where 

R = {f| Re f ^ 0, Im f = 0}. 

The problem comes when f approaches R \ {0} as happened in the proof 
of Theorem 6.2 in the corresponding case when w was pure imaginary. We 
shall assume 

dfi(s) = g(s)ds for g e C°°(R + ). 

More precisely, let S = {g e C°°(R + ) | there exists € > 0 such that for all 
/ <= 7/ f 

|g*''V) I = 0(sL' ' l) as s -> 0 r , 

while 

|g(/)(^) | = 6>(sRcA / _ t " ' ) a s ^ oo}. 

Let 7 = {/analytic on C \ R / l ( j m ç -> o) c a n be extended smoothly to 
(Im f ^ 0}; / |{in l c < o) can be extended smoothly to {Im f ^ 0) }; and 
there exists e > 0 such that for all / GE Z + . !/YO ! = <9( I t r R c A W) as 
? -> 0. while | /(f) | = 0( | f | " / _ c ) as f -> oo.) We then have: 

THEOREM 7.4. Suppose Re A: > 1 or k = 1. / w g G S, /?«/ 

(7.7) M e Vf) = / r.v + ï) k?(s)ds. 
. . . . . j i ; 

TTZÊTÎ yï:^ —» 7", tf^zd ̂  /s <z vector space isomorphism. In fact, jor J e 7" 
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put 

(7.8) (Bf)(s) = (k - \)(2vrir] I / ( f ) t f + s)k~2d$ / / R e k > 1. 

(7.8) (Bf)(s) = lim (277,) ' [ / ( - ^ ) - / ( - . v e ">)] if k = 1. 

//«pr^ ys. denotes the circle of radius s centered at 0, traversed counterclock­
wise, beginning and ending at —s. Then B:T —> S, and B is the inverse 
of A. 

The equivalence of (7.7) and (7.8) is implicitly in [12], chapter IX, 
especially page 235. Our formulation and the following simple proof may 
be original. 

L E M M A 7.5. .4:5 —> T. 

To avoid tiring the reader, we delay the proof of this until after Theorem 
7.4. 

Prooj oj Theorem 1.4, assuming Lemma 7.5. It is evident that B:T —> S. 
Indeed, this is transparent when k = 1. If k =£ 1, 

(Bf)(s) = (k - 1 ) (2TT)- 1 5 A ' ~ 1 / f(se'°)(el6 + \)k~2el6dd, 

so that B:T —> S in this case as well. 
As in Theorem 6.2, we begin by noting the special case 

gy(s) = sy~K 

fy(S) = r<Y)r(* - y)r(*)- 1r _ A , 
for 0 < Re y < Re k. Then gy e S,Jy e T and y4gy = JT just as in the 
remark of Theorem 6.2. Now we study the cases k = 1 and k ^ 1 
separately. 

Case \. k = 1. S a y / e T; then ABf = f by the Cauchy integral 
formula. Ag is called the Stieltjes transform of g, in this case. Thus we 
need only check BAg = g for all g e 5. 

First, we claim BAgy = gy. Indeed, Bfy = cgy, where 

c = IT T ( y ) r ( l — y) sin 777. 

Thus 

fy = ABfy = cAgy = cfy. 

This provides a simple proof that c = 1. Also, then, 

We prove that BAg = g for all g e 5. A dilation argument reduces us to 
showing that (BAg)(\) = g(l). Further, we may suppose g ( l ) = 0. Indeed, 
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if we can do this case, in general let 

G(s) = g(s) - g(l)gy 

for any fixed y, 0 < y < 1. Then (BAG)(\) = 0 implies that 

(BAg)(l) = g(l), 

since BAgy = gy. Now assume g(l) = 0; observe 

Mgx?) = /() (5 + $rl g(^)* + r ' /0 (̂  + r ' ) ' ^v)̂ v 

= 7(f) + h) 
where g(.s) = g(s), g(s) = s_1g(.s_1). For any € > 1/2, 

/ ( - ^ ) - / ( - * - ' * ) = h(v) + 

/ , _ c (̂  ~ e«?) lg(s)ds - J |_£ (5 - e-^)-]g(s)ds 

where h(y) —» 0 as q> —> 0. Since g(l) = 0 and g is smooth, 

|g(s)| < C{\ - s) for 1/2 ^ s ̂  \\ 

Thus 

| / ( - ^ ) - 7 ( - ^ - / v ) | < |A(V)| + 2Cc. 

Thus 

7 ( - ^ ) - / ( - * - ' * ) ^ 0 as v ^ 0 ; 

similarly for / ; so (A4g)(l) = 0. 
Case 2. k ¥= 1. First suppose / e r , and in addition that for some 

6 > 0, 

\f(z)\ = O d z r ^ a s z ^ O ; 

we show y4Z?/ = / Now, by the Cauchy integral formula, 

(Bf)(s) = (k - 1)(2T7/)
 ]

 /Q[/+(-0 -/-(-O] 

X (s - t)k~2dt, 

where 

/ + ( - 0 = lim / " ( - f A 

/ _ ( - r ) = lim / ( - / A 

Note that as s -* 0 + , 
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/ ; \f+(-n -f-(-t)\\(s - tf-M 

< CsRck~2 )Qt~xdt = 0 ( / _ l ) , 

while as s —» oo, 

/ j / + ( - D -f-(-t)\\(s - t)k-2\dt 

< 0(sRck~2) + C J | t'\s - t)k'2dt 

= o(sRcA_2) + aRc*_t_1 / r\\ - tf~2dt 
J 1 /.v 

= 0 ( j R c A ' " £ _ 1 ) . 

Thus we can substitute the expression for g = Bj into (7.7), interchange 
integrals and find 

/

oo 

X I J (s - t)k~\s + f)~A'<fc U . 

The inner integral is 

/

OO 

= (̂  - \y\t + ?)_1 

since t + f e C \ R ~ . Just as in the case k = 1, by the Cauchy integral 
formula we now find ABf = f. These considerations apply tofy if Re A: — 
1 < Re y < Re k. Further, it is apparent from (7.8) that for all y (with 0 
< Re y < Re k), Bfy = cygy for some cy. But now, if Re k — 1 < Re y < 
Re£, 

fy = ABfy = CyAgy = Cyfy, 

so that cy = 1. By analytic continuation, then, cy = 1 for all y(0 < Re y < 
Re /c), and we always have Bfy = gy, BAgy = gy. This proves the 
identity 

J -ir 
(7.9) / e>(y-i- + i)^e:v + \f-ide = 277r(A- - l)[r(Y)r(* - y ) T 

for 0 < Re y < Re k, and hence for all y e C. ( (7.9) is actually the same 
as [4] equation (6.5), after a simple change of variables. The expression for 
Bf(s), that was used at the beginning of the paragraph, specialized to the 
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case/ = / ( R e k — 1 < Re y < Re /c), could also be used directly to prove 
(7.9U 

Next, let us show that BAg = g for all g <s S. We need only show 
(BAg)(\) = g(l); further we can assume that g vanishes at 1 to order at 
least / = [Re k]. Indeed, let c = 0 unless k G N, in which case put 
c - 1/2. Write 

s'g(s) = p(s) + v(.s) 

where p is a polynomial of degree no more than / — 1 and 

v(s) = (1 - sivoisl 

where v0 e C°°(R*). Then we could always let 

G(s) = g(s) — s~cp(s) = .v_i'v(.ç). 

Now G G S. so if we can show 

(BAG)(\) = G(\) = 0, 

we find (BAg)(\) = g(\) from the corresponding facts for the gy. Now say 
that g vanishes at 1 to order at least /. Then if |f| = 1, 

(Ag)(Ç) = / ((.v + Ç)~kg(s)ds 

+ rk fi} (s + rlrlg(s)ds =/(?) + /(f), 
where 

g(.s) = g(^), g(s) = sk~2g(s' '). 

Because of the behavior of g at 1, the integrals converge, absolutely and 
uniformly, for |f| = 1. To show (BAg)(\) = 0, it suffices then to show that 
if 0 < s~< 1, 

l (s + f)~A'(f + 1)A"~2<# = 0 and 

f is + r')"*(? + n*~2r*# = o. 
where y = y|. It is easy to see that if f e y, 

(.v + rrA = r*(i + srxrk. and 
(f + i)*-2 = f*-2 (i + r ' / - 2 . 

Writing z = p 1 . we see that we must show 

jf (1 + « ) - * ( l + z / - 2 r fz = J(s$ + l)-k($ + \f-2d$ 

= 0. 
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This is evident, since the integrand is analytic inside y. Thus 

BAg = g for all g e S. 

Finally, we must show ABf = fTor a l l / <E T. Let 

I(s) = / | / ( ^ ) | | (sel° + s)k-2\sdQ. 

As .v -> 0 + , 

as .v —» oo, 

7(5) = 0 ( 5 R e A " £ _ 1 ) . 

Thus we can substitute g = Bf as given in (7.8), into (7.7), and 
interchange the order of integration. We find 

(7.10) ABf (I) = (k - 1)(27T)_1 j \ F(0, f)(e''" + \)k~2ei0d0 

where, if — TT < 6 < 77, 

/

CO 

() /vy-'(* + rr** 

/

CO 

0 f(se>e)(sée)k-\e>eyk{s + frV'<fc. 

Let us be very careful. Up to now we have used the principal branches of 
the power functions. Right now, though, we must distinguish several cases. 
Let f = rel(f, and define a function G(z) as follows. If Im el° and Im el(p 

have opposite signs, or if e = 1 or el(p = 1, let G(z) be the principal 
branch of z~k. If Im e,e > 0, Im eiq> > 0, let G(z) be the branch of z~k 

which is analytic away from R + and agrees with the principal branch in 
the upper half plane. Finally, if Im eie < 0, Im el(p < 0, let G(z) be the 
branch of z~~k which is analytic away from R + and agrees with the 
principal branch in the lower half plane. Then we can say 

/

CO 

0 f(seie)(sel6)k~-]G(seie + rel{d^^)el0ds 

= I f{z)zk-xG(z + ré« + V)dz. 

where /? is the path z = sel6(0 < s < 00). Deforming the contour of 
integration to the path /}' on which z = seiq), we find 

foo 
F(0, f) = J /(se'VHse'^-'Gise'V + re'{^^)e^ds 
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where 

gv(s) = / ( 5 ^ ' V - ' e S. 

Then, from (7.10), 

ABJU) = [B(Agv)](r)r-ik-l) 

= gv(/-)/--<A-" =f(re"f) = /(£) , 

as desired. This completes the proof. 

Proof of Lemma 7.5. We show that ^g|nm£>o} has a smooth extension to 
a segment with — 1 in its interior. A dilation argument shows that — 1 
could be replaced by any point — s < 0. The proof that ;4g|{im£<()} can be 
extended smoothly to {Im f = 0}\{0} w ^ ' ^ e s i m i ' a r -

Note that the function F0(f) = f_A can be smoothly extended to (Im f 
^ 0} \{0 ) , and further that for every n e Z + there exists /%,(£) which is 
smooth on {Im f ^ 0} \{0} , analytic on the interior, and such that 
FII = F{). (Fn will be a constant times f"~A if A: £ Z , while if n — k ^ 
Z + , F/7 will be of the form/?(f) log f + q(Ç) for certain polynomials/?, </.) 
Now, if Im f > 0, we can write, for any 5 with 0 < 8 < 1, 

n s m-8) ' 
(Ag)($) = JQ (s + £rkg(s)ds + J 1 - ô (* + f) AgCv)<fc 

n-ô 

+ r A J() cv + r 1 ) " 1 ^ ^ ) * 
= 7, (ft + 72(f) + 73(f) 

(where g(s) = sA'~2g(iS_1) ). 7j(f) and 73(f) can clearly be extended 
smoothly to a short segment with — 1 in its interior. As for 72, take any N 
> Re k. For Im f > 0, we integrate by parts yV times to see that 

f(\-8) 

\-8 

where GN(Ç) can certainly be extended smoothly in the desired way. 
However, 

f(\-8) 

8 

can clearly be extended to a CM function to a segment including — 1, for 
any M < N — Re k. Since N is arbitrary, the extendability property of Ag 
is established. 

L e t / = Ag; we must still show that for all / 

l/( /)«-)l = 0 ( | ? r R c A - ' ) a s f ^ O , 

/ 2 (0 = GN(S) + f\_x FN(s + Ç)g{N\s)ds 

/ : FN(s + Ç)giN)(s)ds 

while 
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l/ ("(f)l = 0 ( l f r ' " £ ) a s f ^ c x ) . 

Since/(f) = f _A'(>lg)(f_1) where g(^) = sk~2g(s~l) e S, we need only 
show the first of these. Now, if |f| = 1, note 

l/%)l <ci[j0 (1^)1 + 11(̂ )1)̂  

l r ( i " ô ) ' L i + I J,_fi (̂  + ?) to* 

< Q [ / 0 ( toi + K*)D* 

+ max{ \g{N)(s) | : l - 8 ^ 5 ^ ( l - 8 ) " 

Here Q, C) depend only on / and not on g, and we have again integrated 
by parts. Now suppose instead f = r£', |f'| = 1, r > 0. Then 

/ ( /vn = /--*-/+WAn, 
where g,(s) = g(rs). Now 

&• = i*-Hgh/r. 

Thus 

l / ( / V D I < C,r-Kek-i+l[r-1 f0 \g(s) \ds 

+ rRck~l / ^ I !(*)!* 

+ rA? max{ |g(A^(s) | : (1 - 8)r ^ ^ 

^ (1 - 8)~V, 0 ^ AT ̂  £ + / + 1}. 

From this, the desired property is apparent, and the proof is complete. 
We leave to the reader to verify that /|{im^>o} and /|{imf<o} can be 

extended analytically past R~ \ {0} if and only if g is real analytic. For an 
application of this idea, see [17]. 
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