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SPHERICAL HARMONICS, THE WEYL TRANSFORM
AND THE FOURIER TRANSFORM ON THE
HEISENBERG GROUP

DARYL GELLER

Introduction. In the early days of quantum mechanics, Weyl asked the
following question. Let A be a non-zero real number, 5 a separable

Hilbert space. Given certain (unbounded) operators W, ..., W,
Wi, ..., W, on#satisfying

W, =Wt and [W,, —W] = 2\
(on a dense subspace & of ) with all other commutators vanishing. Given
also a function f(¢, ) where { € C". Let W = (W,,..., W,), W' =
(W]+, . ,W;r ). How does one associate to / an operator f(W, W)?

(Actually, Weyl phrased the question in terms of p = Re {, ¢ = Im ¢,
P = Re W, Q0 = Im W, which represent momentum and position. In this
paper, however, we wish to exploit the unitary group on C" and so prefer
complex notation.)

If fis a polynomial, say f(¢, {) = §%§_], we want to associate to f a
polynomial in (W, W). But which polynomial; WiW,", Wi W} or even
(1/2[WiW + W, Wi W,]? The choice is apparently arbitrary. Neverthe-
less, the first two possibilities listed are stand-outs. To formalize this,
suppose that P is the monomial P(¢) = (P (p, y multi-indices; we are
using multi-index conventions). We set

(P) = (WHYYWP, 7(P) = WA(WH).

We extend 7, 7 to all polynomials by linearity. As for more general
functions f, Weyl’s construction is this (modified for complex notation).
Define 7. (C") — .#(C") as follows:

(F'F)) = f exp(—z- { + 2 OHF(z)dV.
(Dot denotes dot product.) This is a modification of the usual Fourier
transform %, the relation being that

F'F() = FF(—2Q).

Weyl shows that i(—z - W' + z- W) is essentially self-adjoint, so that
exp(—z - W' + z- W) is unitary. Thus one can define a map
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G 9 (C") — BH)

which is analogous to #’: namely

GF = | exp(—z- W+ Z- W)F(z)dV.

We call ¢ the Weyl transform. We then define #": £ (C") — B(X)
by

WF =G0 F '

This then is the operator associated to f, which we shall refer to as the
Weyl correspondent of f. Again, there are other possibilities for #; but this
one is in many ways the simplest.

But what of the previous question? What is the Weyl correspondent of a
polynomial? Let P be a polynomial; then A = %'~ '(P) is a distribution, a
linear combination of § and its derivatives. One can then make sense
of 9(A) = #'P in a variety of ways; for example, one could expand
exp(—z - W' 4+ Z- W) as a formal power series and perform obvious
manipulations. The relation of the above notions to harmonic polynomials
P is explored in Part A of this paper. As a small sample of this, we
assert:

ProPOSITION 2.7. If P is harmonic, #(P) = 1(P) = 7'(P).

In fact, the operators {#(P)|P harmonic and homogeneous} are
operator analogues of spherical harmonics. There is a complete theory for
them analogous to the classical theory of spherical harmonics. Part A
constitutes a defense of this last statement. The main objective of Part B is
the computation of an exact formula for the group F. T. (Fourier
transform) of certain regular homogeneous distributions on H" (the
Heisenberg group), using the theory of Part A. The paper is essentially
self-contained.

In Section 7, we give a few applications to the computations of formulae
for certain kernels that arise on H”. However, the most important
application to date of this work was to the study by the author and E. M.
Stein of singular convolution operators on the Heisenberg group [7].

I would like to thank E. M. Stein for many helpful discussions.

Part A. Spherical Harmonics and the Weyl Transform

1. Summary of basic properties of the Weyl transform. We begin with a
rapid summary of the properties of 4 Some short heuristic arguments for
the assertions made are included. For complete proofs we refer to the first
section of [8]. We use the prefix “I” for the results of [8]. Thus Lemma
I.1.1 refers to Lemma 1.1 of [8]. We have. however, changed one piece of
notation used in [8)]: the meanings of W and W™ will be the reverse from
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the usage in [8]. The reason for the change is to keep in accordance with
the philosophy enunciated in the introduction. We regret our earlier usage
in [8].

Many concepts to be introduced in Part A depend on the parameter
A € R* = R\{0}. As such, when we define these concepts, they will
carry A as a subscript. Usually, however, A will be fixed and we shall omit
this subscript entirely and without further comment.

To define %, formally we first let 54 be a separable complex Hilbert
space with fixed orthonormal basis {E4)}ac(zy- (Here Zz" = {0, 1

. }.) At times we shall identify all the 4 with each other in such a way

that E, is identified with E, , for all A, p. Let

2, = {finite linear combinations of the E, )}
and let
0(4) = {linear operators S|S: 9\ — J43}.

Sometimes if S is an operator on J#such that 2 = 2, C 2(S), we shall
think of S as an element of ((#); we mean more properly that
Slg € 0(F). We let

#(4) = {bounded operators on J4};

there is an obvious injection Z(#) C (O(5#) obtained by restricting an
operator to &. For v, w € 5 we set

Veow = D vy ifV = D vE, w = 2 wokE,
If S € OF) we let ST be the operator in 0(#) such that
Sv-w=v-STw,

if there is such an operator in 0(¥). Let ¢, denote (0, ..., 1,..., 0) €
(Z*)" with the 1 1n the kth position. On 9, we defme welghted shift
operators Wy, Wk afor 1 = k = n as follows:

WinEx = QaylA| )iEa_ek, zero if a; =
1
WHEs = [2ex + 1)\ PEqgs,

for A > 0. The right sides are to be reversed if A < 0. W, and
Wk)\ are closable; we denote their closures by W) and W,T)\ We set
TE = D(W,y); then

G = DWH) = v = 2 vaEar € Al S aylvel’ < 00}.
We have

[WiXs = Wial = 284, on 2, [W), Wial = 0
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(where I denotes the identity operator). If # is identified with L*(R") and

the {E,} with the Hermite functions, W) and W,‘.+ are the annihilation
1 1

and creation operators. When A = 3 these are 27 2(x;, = 9/0xy).

We shall not use Hermite functions but instead will sometimes use the
following representation of our operators on the Bargmann space. For
A > 0, let

A’y = {F holomorphic on C”|

(QA/a)! |, 1Fw) Pe25ay = ||FIP < oo},

H4 is easily seen [1] to be a Hilbert space with orthonormal basis £} )
where

1
Eq\(w) = [(27\)%W]"/(01!)E (@€ (@)

(Here a! = [T o, 2% = [I 2% if z € C") For X < 0, set

Hy\=H"), Epn = Ey
Identify S5, Eq\ with 5% Eqy. If A > 0, Wp, Wj}t are then identified
with the operations of multiplication by 2[Alw; and 9/9w; respectively,
while if A << O the situation is reversed. In the future, when we use this
representation, we will simply say “in the Bargmann representation’ and
omit the primes.

Through use of the Bargmann representation, one can give a subspace
24 of such that

n .
9 C oA C nl@/
j=

and such that i(—z - W' + z- W) is essentially self-adjoint on =/ Thus
V.=exp(—z- W™ +2-W)

is a well-defined unitary operator on 5 &/ may be chosen so that the power

series for exp(—z- W )g and exp(z- W)g converge absolutely to elements

of & for any ¢ € &Z One can then prove (a complex form of) the Weyl
relations, that

Vv, = Mt exp(z- W) exp(—z- W)
— e M exp(— z- WHexp(z- W) (*)
on «Z The second equality follows from the fact that
[exp(z - W)F]l(w) = F(w + z),
[exp(z - WHF|(w) = eM¥"F(w) for F € o
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in the Bargmann representation. These relations are trivial on the formal
level. The first equality of ( * ) is proved through use of Stone’s theorem.
For all this, see Lemma I.1.1.
One also checks, using the Weyl relations, that
(L.L1)y V.V, = exp(2iA Im z - w)V. 4.
On C" we define the differential operators
Z) = 0/3z; + Nz, Z\ = 3/07; — Az
Then
(12)  [Z, 2] = —28;\
Now Z":L'(C") — C(C") (see the introduction) satisfies
[F/(3F/32)) [(§) = {(FF)Q),
[(#'(0F/9z) I§) = —§(F'F)Q) if Fes
One wishes analogously to define %:L'(C") — %(5) in such a way that
(1.3)  9ZF) = (9F)W,,
YZF) = —(9F)W,on Y if F € &

By (1.2), this is at least a conceivable objective. As in the introduction,
one has only to set

9F = f V,F(z)dV.

Computing formally with the Weyl relations, one checks (1.3) at once.
We remark that the operators

R —

R _
; and 2 = 0/3z; + Az

also behave nicely under ¥ Namely, if F € % then 9F:# — 2/,
U2 F) = W' (9F), and

GF'F) = — W9F).

Again this is checked with the Weyl relations.
An operator which is frequently useful is

G = —(112) 2 (%2 + 2,2).
j=1

We also define 4 € 0@¥) by
Ay = (172) S (W, W, + W, W) on 9.
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Ay is closable; denote its closure by Ay. Then
DA) = {v € H| 3 |allv > < o0}

Here |a] = X a,. Note
AE, = 2|Np E,

where, here and elsewhere, v, = |a| + n/2. If F € %,
Y(FF) = (9F)A on U(A).

If Fis a function on C", let M, F, M, F(k = 1, ..., n) be the functions
defined by

(MiF)2) = 2 F(z), (MF)z) = ZF(2).
Then

F'(MyF) = —30F'F/0¢},

F'(MF) = 0F'FI13, fFE Y

An analogous result holds for @ if 9/0¢,, 8/0(, are replaced by certain

unbounded derivations. Thus, for 1 = k = n, we define the operators Dy,
D \:0(¢) — OF) as follows. The domain of the operators is

DDy) = YD) = {S € 0F)|S:2 — 9~}
and for S € (D, ) we set

DS = NS, WL DiS = —(2N IS, Wl
Note that

DW; = DiW," = 8,
just as

(3/881)8 = (/8518 = B

Note the further analogy of D,S with 9/79¢, = {f, {x} where {, } denotes
Poisson bracket. We assert:

ProrosiTioN 1.1. If F € S then 9F € Z(Dy) and $(MF) =
— D (9F), 9MF) = Dy(%F) on 2

A heuristic proof would be based on the “chain rule”:
Dy(V.) = e N exp(—z - WH)Dylexp(z- W) ]
= V:Di(Wy) = 24V,

An actual proof that DV, = Zz;V, is easily given in the Bargmann
representation. See Proposition 1.1.2.
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Let

FH) = (S € 00O) IS} = 2 |ISE,Jl < o0} and

1
HOB) = {S € 00O |1ISly = (2 ISEI*)? < oo}

Ifs e ﬂf, S is easily seen to be of trace class (more properly, can be
extended to ¥ as a trace class operator). ||S||, is the Hilbert-Schmidt norm
of S. Define %:J{s — L(C™") by

AS)z) = t(V_.,S).
Here then is a version of the inversion and Plancherel theorems for 4.
THEOREM 1.2 (a) If F € £ (C"), then
gF € 7Y N 5,
(b) If F € L\(C") and 9F € #¥ then
F = a "2\ )"9(9F)

for almost every z € C".
(¢) If F € % then

IFII3 = = "I ZFI5Q2IA )"

9 may then be extended to a constant multiple of a unitary map from LX(CM
onto S

A proof of (b) may be carried out along the following lines. We shall
assume F € Cf.o and indicate how to prove (b) for all z. We may assume
z = 0; otherwise we replace F by T,F where

(T, F)(w) = expQiA Imw - Z)F(z + w)

and use (1.1). One has then only to prove: (i) for some F, with F(0) # 0,
one has

F0) = 7 "IN Y'T(FF)(0).
(i1) For all F, if F(0) = 0, then
tr(9F) = 0.

For (i), we refer to Lemma 1.1.3 (b), where the function F(z) = e NP

is used. This function satisfies

ZF = ZF'F =0 forall .
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Thus

W(9F) = (9F)W," = 0.
Accordingly, (9F)E, = 0 unless @ = 0, and (9F)E, = cE, for some c. In
Lemma 1.1.3 (b), and also in Section 4 below, we show directly that

c= 7"\

and this gives (i).
For (i1), note

h
F= 2 (MF, + MFy)
k=1

for certain Fy, ..., F,, F,,..., F, € C?O. So
GF = —3 Di(9F,) + = Di(9F).

Now if S is suitable, tr(D;S) = 0; this follows heuristically from
t(SW, ) = (WS S).

(11) then follows. A proof of the ordinary Fourier inversion formula may
be given along the same outline, noting that for suitable G,

o (018506 = 0.
The formula of (c) can be proved as a consequence of (b). See Theorem
1.1.6 for the complete proof.

Frequently it is desirable to reduce problems about % to the case
A = 1/2. This is accomplished through the simple relations which follow.
For each A, p € R* define the unitary % .2 — 5, which identifies 53
and 5, so that

U(Ea)) = Eqp.
We abbreviate %, = %, ). Then
D" = a v, e = Vo 9,
so that if Fisin L' or L2,
(1.4)  (BF)" = U NG \F)%h = 4G
on %, where G(z) = F(—2z). Say A > 0. Then
1
Vzm = A
so that

(15)  GF = %G H) %,
2 2 2
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if

1
H(z) = F((2\) 22)(2\) "

If X, Y and Z are spaces and g:X — Y, /1Y — Z, we sometimes write

g ftomean fo g Thus, for example, if £:C" — C", U € U(n) (the unitary
group), then U f = fo U. There is thus a natural action of U(n) on many
spaces of functions on C”, for example L7 (C").

Next we examine the way in which U(n)" acts on 0(F). For this, we
return to the Bargmann representation. First note that, in this representa-
tion, if F € 5

(VMY w) = Fow + 2) exp[—2A(w - T + |2[2/2) Jif A > 0
(1.6) — F(w — Z) exp2\(—w - 7 + |2/2) ] if A < 0

One checks this first for F € /then extends to F € J# using the fact that
the power series of F converges to F both pointwise and in J#

The natural action of U(n) on C" induces a unitary representation of
U(n) on J# as one sees in the Bargmann representation. Note U(n):9 —
2.

Now if U € U(n), define U € U(n) by U = jUj where j:C" — C" is
given by jz = z. We define

WU ):06¢) = 00F)

as follows: if § € 0¥,

(L.7) 7(U)S =U S(U )* if x> 0;
(U )S = U S(U)* ifA<0

where the domain of these operators is 2. Similarly, if S is any operator on
H'such that 2 C 9(S), we define m\(U)S by (1.7) where the domain is
now the natural domain (i.e., U 2(S)if A > 0, U 2(S) if A < 0).

ProposITION 1.3. If F € LN(C") or LX(C"),
YU F) = m(U YGF for each U € U(n).
Proof. Note that it is an easy consequence of (1.6) that if U € U(n),
Vie = a((U V..
So if F e LI(C"),

YU F) = f V(U F)z)dV = f Vs, F(z)dV

= fw(U’ W, F(z2)dV = (U Y9F
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(integrals over C"). If instead F € L*(C"), approximate F by a sequence of
functions in L' N L? and note that

lm(U")Sl> = 1Sl
for any Hilbert-Schmidt operator S on J#
2. The Weyl correspondence and polynomials. For 7 € %'(C"), F €
F(C") we let (T|R) denote the sesquilinear pairing:
(TIR) = T(F).
Let
Cax = W_n(le )n‘
If R € O(¢) we say that 9T) = R if

(TIF) = ¢, > (RE,| (9F)E,) for all F € #(C"),

with absolute convergence. The definition is in agreement with the
polarization of Plancherel. As an example, note %0) = I. It must be

checked that the definition makes sense, that is, that if R, R, € 0(X)
and

2 (RIEW (9F)E,) = 2 (RyEo) | (9F)E,) for all F € #(C"),

a a

with absolute convergence, then R = R; (on @). To see this, observe that
by the discussion of (i) of Theorem 1.2, there exists Fy, € F(C") such
that

[“(Foo) 1Ey, = SoyEop;

Fyo(z) 1s a constant multiple of e
KL(C") such that

Azl Consequently, there exists Fog €

[g(E;B) ]E = 8ayE,B-

Indeed, because of the shifting properties of the W), F,p is just a constant
multiple of (2 R)~ aFyy. Accordingly, if R, R, are as above, then for any

x
a, B,
(RIEJER) = 2 (R\E,| (9Fup)Ey) = (RyE,|Ep);
Y
SO R; = RQ.
Observe that if 9T = R, then

P
92T = RW;", 9ZT = —RW,.
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Indeed,
(ZTIF) = (TI2ZF) = —c 2 (REJ (9F)W,'E,)

=~ 2 (RWEq 1| (9F)Ey+,)

= Ty % (R”/}EBI (gF)EB)’

so that g(f?j-T) = —RW;; similarly for Z/T. Further, if R:Z — 2,
92T = W'R. T[T = —WR.
as a similar argument shows. We then have:

ProPOSITION 2.1. (a) Suppose P is a polynomial in {, {({ € C"), and
deg P = k. Let A = %'~ 'p, a linear combination of 8 and its derivatives.
Then there exists R € O(F) such that 9\ = R. R is a (non-commuting)
polynomial in W, ..., W,, Wi, ..., Wi, wewrite R = Q(W, W"). We
may choose Q so that deg Q = k and such that Q({, {) = P(¢, §) in the sense
that if, in Q, we replace W by { and W' by §, we obtain P. We write
#P =R or P = Q.

(b) If P(z) = [§1% then #P = A. If P§) = &%, j +# k, then
WP = W;’(W,:L Y9 this is valid even if p = 0 or g = 0.

(c) Every non-commuting polynomial Q' in the W, W% equals
WP’ for some polynomial P'; we write P’ = % ~'Q".

Proof. (a) We argue by induction on k, the case k = 0 being immediate.
Assume it 1s known when k is replaced by & — 1; it suffices to prove (a)
when P is a monomial of degree k. Then for some j, and some monomial
Py of degree k — 1,

PG = (PG D o PED) = TPIC D).

We assume the former; the proof in the latter case is similar. Suppose #P,
= Q. Now

A=F"'P = —@35)F P, = ~(/DZ, + Z[)F P,
so that
GA = (/W01 + O W)),

and we are done.
(b) The proof of (a) shows that if P(§) = I¢]>, then WP = A. If
P() = {781, j # k, then

F'7IP = (=0/07)(3/324)%8 = (—Z )P 23,

since z;§ = ;8 = 0. Thus
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WP = W)

(¢) Any such Q’ evidently equals 9(A), where A = ¢(Z; ?")8, q being a
non-commuting polynomial in the &, ..., %, Z21,..., Z,. Since { is
supported at 0, it equals %'~ 'P’ for some P’, as desired.

We also define #24(C") — 41 by
WG = 97 'F.
It is a consequence of the definitions that # P is determined by the rule

(PIG) = Q)" X ((#P)E (WG)E,) for all G € LA(C").

Let 2 = {polynomials in { and {} ({ € C"). Each P € £ may be
written in the form

2.1)  PE) = 2 a,".

Here the sum is taken over all multi-indices p € (Z7)", vy € (Z7)"
a,, = 0 for all but finitely many (p, y); and we use multi-index
conventions. For p, g € Z*, m € 7", let

P, = (P € Pasin (2.1) with a,, = 0
unless |p| = p, Iyl = g}.

Note
A:‘@pq i .@pflyqﬁp

Let
A, = {P € Z,JAP = 0}.

Elements of /), are called (solid) (bigraded) spherical harmonics. For the
time being, we note only this important fact about ¢, which is well
known.

PROPOSITION 2.2. The natural action of U(n) on A4, is irreducible. If the
actions on 24, and X, , are equivalent, then (p, q) = (p1, q1)-

Proof. Fix (p, q); write z € C" as (z, z’) where z/ = (25, ..., z,). Let
V = {linear maps S:%,, > ?|SU = U Sforall U € U(n) }.

It suffices to prove that V' = {cl|c € C}. Suppose S € V. Since 4, is
finite dimensional, there exists a unique Zg € 5, with

(Zs, P) = [S(P)J(ey) forall P € 4,

(e; = (1,0); (, ) = L%(S* ) inner product). Now Z is invariant under
U,(n)" where
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Uin) = (U € Uln) [Ue; = &y},

Thus Zg is a polynomial in z; and |2’|*. (For, if Q is the polynomial over
C X Rwith Q(z, x) = Zg(z, x, 0,..., 0) then Q(z, x) = Q(z, —x) for
all 5; hence Q is a polynomial in z and x%. Now use the transitivity of
Uy(n).) So

Zs = Zyp a2y

for certain constants a;. But one easily computes that the a; are
determined completely up to a constant multiple by the condition
AZg = 0.So Zg = c¢Z; for some ¢ € C; so

(SP)(e)) = cP(e;) forall P € 4,

But SU = U'S for all U, so SP = cP for all P and S = cI. This
completes the proof. (Z; is called the zonal harmonic of bidegree (p, q)
and pole ey.)

kzlli_klle2k

Our next result is an analogue of Hecke’s identity for &. Recall that this
identity asserts that if P € 5, and if

P
f2) = e ),
then
FL(E&) = (= DI ()
(see e.g. [18]; recall #'F({) = FF(—2i{)).
Recall also that the fractional linear map ¢ with
Ya) =(a— 1)/(a+1
takes the right half plane onto the unit disc, and
YIs) = (1 + s)/(1 — s).

We say F € AC") is polyradial if it is a function of lz1% ..., 2,2 We also
call an operator § € O(¥) polyradial if there exist numbers c(a €
(Z)") such that SE, = ¢,E, for all a. Theorem I.1.3 asserts, among other
things, that if F € AC") is polyradial and § = %F then S is also
polyradial. We discuss this point in much greater detail in Proposition 4.1
below.

THEOREM 2.3. Suppose a € C, Re.a > 0, P € ;.. Fix A, and let

P=pifA>0,p =qifA\<0,4 =qif x>0,
(2.2)
g =pifA<0,k=p+q

Let
F(z) = exp(—al\| |zP)P(2).
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Then @F = (—1)?#(P)S, where S is as follows. For all a,
SEy = (oEq

where if N = p’,
ey = 7T (1 — s)/2A] RN

Here s = y(a), and our convention is that O° = 1. If N < p’, ¢ may be
defined arbitrarily, for if la| < p’,

(9F)E, = (WP)E, = 0.

Proof. We first claim that we may reduce to the case A = 1/2. This
follows from (1.4) and (1.5), together with the following facts. Suppose
P € #; define JP € by JP(z) = P(z). Then
(22)  WNIP) = UNW_\P)T

while if P € Py A > 0, then

(2.3) P = QN2 o \H3 2P ) 12

These facts are easy consequences of (1.4) and (1.5) and the definition of

W'P. A simple computation now shows that we may assume A = 1/2, and
we do.

Suppose next that P = 1. We already observed the case ¢ = 1 in the
discussion of Theorem 1.2. If @ # 1, we use roughly the same method. Say
9F = S. S is polyradial; say SE, = c,E.. If 1 = j = n, note

R
FFF = (1/2)1 — a)F,
soif 9F = S,
—W,S = —1/2(1 — a)D;S = 1/2(a — 1)\(W;S — SW)),

so WS = sSW,. Applylng this to E,, we find at once that co4, = 5¢q
where e = (0,. .. 0). Thus ¢, = Cs* for some constant C. 'We can
put Clo| = Cq-

cy = CsV  for some constant C.
To compute C, use the inversion formula:

N+n—l)

n—1

1= F0) =7 "t(S) =7 "CX (
n=0

=C(1 —s) "n "

so the result follows if P = 1. (We have noted that

(i)

=N}
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Suppose next that P(§) = {7¢¢,j # k. (If n = 1, then /%, = 0 unless
p=0o0rg=0,sosuchaPexistsevenif n = 1,if %, # {0}.) We change
our notation. Let

G(z) = exp(—alz]*/2),
F = %P and R = %G (which we have just computed). By Proposition 2.1
(b),

WP = WH(W{)
and indeed, then, (#"P)E, = 0 if |a| < p. Now

@ Y@E6 = (=127 — ay (1 + a)F

— (= 1)SP(1 — 5)"*F,

Suppose that a # 1, so that s # 0. Then

GF = (—1)s™7(1 — s)(— WP (W, )R

= (— 1) P(1 — s)*#(P)R.

The desired result follows in this case from our computation of R; in
particular,

(9F)E, = 0 if la] < p.

If a = 1, we obtain the desired result by taking a limit, in L'(C") and
HB(), of the result in cases we have demonstrated.

Finally, suppose P € 5, is generfil, P # 0. Select Py € 5, with
Pi(§) = {71 for some j, k, j # k; again put

G(z) = exp(—alz)*/2).

Because of the irreducibility of 5%, we may assume that, for some
Ue Un),P=UP,soF= U/(GP). Thus

GF = a(U)GP)) = (= 1)n(U)[#(P)S]
= (—DIUF(P)SU)*,

S as in the statement of the theorem. For N € Z, let
¥y = span{E,| la| = N}.

Checking in the Bargmann representation, we see that if 1 € U(n),
then

VAN — I
Accordingly, since S is radial, SV = V'S. We find
GF = (— 1)U % (P)(U)*S.
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In order to show 9F = (— 1)¥#°(P)S, it suffices to show this on Z. Since S
is radial, it suffices to show the following simple lemma:

LEmMA 2.4. Suppose Py, P € & U € U(n) and U Py = P. Then if
A >0,

UW (P YUY = #(P) on D
If A <0,
UwW(P)U)* = #(P) onZ

Indeed, if this is known, then in our present situation 9F =
(= 1D)9#1(P)S follows, as does the fact that #(P)E, = 0 if |a| < p, so that
the proof will be complete.

Proof of Lemma 2.4. Assume A > 0. We need only show
(UH(P\)U)*EEg) = (W(P)E,|Ep) for all a, B.

By the discussion in the second paragraph of this section, for any «, f
there exists H,p € #(C") such that

W(Hup)E, = 8,yEp.
Fix a, B and write H = H,g. Then

(W(P)EJEp) = 2 (W(P)EW(H)E,) = (P|H).
Y

On the other hand,
(UH(P\)U)V*EEg) = 2 (UW(P\)U)*E,|#W(H)E,)
Y

(U H (P (UYW(H)).

I

Indeed, U %(P))"(U)*%(H) is finite rank, hence trace class, since
W(H) has rank 1, UC, (U)*:#y — 75 for all N, and #(P))" simply
shifts. For the same reason, #{(P;)" (U )#(H) is trace class. Since U’ is

bounded, the trace equals
tu(W(P) (U)W H)U) = u(W(P) " #((U)*H))

(P\[(U)*H) = (PIH).

(We used Proposition 1.3.) This completes the proof if A > 0; similarly if
A <O.

One could prove the usual Hecke identity for C” in much the same
manner, and the proof can even be adapted to R™, m any positive
integer.
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Theorem 2.3 is our first, and most important, indication that the
operators #{(P) (P harmonic) play the role in 0(%) that harmonic
polynomials play in analysis of functions on C". Our main goal now is to
draw this analogy closer. The operator @y = X D, D, plays the role of the
Laplacian, in the sense indicated in this proposition:

PROPOSITION 2.5. Suppose P € # Then P is harmonic if and only if
Qw(P)) =0.

Proof. It suffices to show that if 0 € £,
(2.4)  DAQ) = #(3,Q), DH(Q) = #(3,:0).

(Here 9, = 9/3¢, 05 = 9/0%.) These can be easily seen in more than one
way, the simplest being to note

H(0,0) = U(—2.F ' Q)
=N 'UZ - Z0F710)
= N 'WHQ) — W(QWi] = D#1(Q);
similarly for the second identity.
We note, by the way, that a formal computation shows
Q = 2 DDy = 2 DDy
also.

The next result is more interesting. Let S, = §*"~ ! ¢ ", so that rS,, is
the sphere of radius r centered at 0. It is known, and proved below, that
the 5%, spaces, restricted to rS,, are orthogonal and have L*(rS,) as their
direct sum. We already have every indication that the spaces

¥y = span (E,||la] = N)

form the analogues of “spheres” in 5 Indeed, firstly we already know that
U 4y — #3if U € U(n). Secondly, if P({) = |¢|>, #' P = A is “constant”
on each ¥Y; that is, 4 is a constant multiple of the identity when restricted
to each #5. We call such operators “radial,” and S in Theorem 2.3 was
radial. Since

AE, = 2v |\ E,,
we think of ¥ in analogy to rS, where
P~ Q2N + n) .
Let
O(¥y) = {linear operators from ¥y to 5’};

this we intend to think of in analogy to L*(rS,,). The inner product we wish
to use on O(¥y) is
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(R, S)y = (2N Y™ ' |2_N(12Ea|SEa).

Our next result will show, in particular, that for any N, the restrictions of
the #1(4,) to ¥y are mutually orthogonal.
If P, Q € 2 we define their Fisher inner product (P, Q) to be

[P(0)Q](0). Here, if P is as in (2.1),
P@d) = 2 a,,0°9".
IfPeP,andQ € 2,,,
(P, Q) =0 unless (p, ) = (p1, q1)
It (p, ¢) = (1, @) and if Q(§) = 2 b, §°%7, then
(P, Q) = 2 Gpb,p!y!.
Thus, (P, Q) is indeed an inner product. If F, G € LX(S,), we let (F, G) be
their inner product, | FGdS. If N, k € 7", we write
N = NN —1)...(N — k + 1).

observe that

THEOREM 2.6. (a) Suppose P € %, Q € P, , and thatp) = p or q; = q.
Then

(Q, P) =27"(k + n — )" (Q, P),
while
(#1(Q), #(P))y = a(N, p, 4, \(Q, P)
where
(2.5)  a(N,p, ¢, M) = Qr") (N + ¢ + n =D DN

(Notation as in (2.2).)
(b) In particular, the A, spaces are mutually orthogonal, in either the
L2(S,,) or O(¥y) inner product.

Proof. We need only prove (a), since (b) is an immediate consequence.
For the first identity, note that

(Q,P) = 2I([k + k)2 + n — 1) ! - OO P)e ay

as an irzltegration in polar coordinates shows. However, if G({) =
P(§)e KT,

L 0P e Tav = (0I6)
_ 772"(37'7 lngsz IG)

= (= DI[QE)F 'G) 0)
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= 7 (= )" QE)P()eE) 0)
= 77"(_1)611+q<Q’ p>
by Hecke’s identity, and the fact that p; = p or ¢; = ¢. Since (Q, P) = 0

unless (p, ¢) = (p1, q1), the first identity follows. More generally, for any
a > 0, and any A,

(0. Py = [Q@)(P(2)e N EF) J0)
= (—D%F " 'QIF,)
where
F,(z) = e 9N MZP(Z).
Thus
(Q, Py = (=)' ") Z ((WQ)Ed (9F,)Ea),

with absolute convergence. Indeed, (#Q)" = #Q’ for some polynomial
Q’, and (WQ’)‘SWG) is the Weyl transform of a Schwartz space function, so
that it is in #]. By Theorem 2.3, then,

(0. P) = Q)51 — syrte X N

N=p’
< ;V ((WQ)E (W P)E,).

Thus, if by, = (#(Q), #(P) )uy, we find
2 baaps™ = QDT PY(1 — 5)T TR
M=0

The series on the left side converges absolutely for |s| << 1, hence is the
power series of the function on the right side. Hence

sy = @At (MR =) oo,

This, together with the first identity, at once gives the second identity.

Remark. The first identity was proved by Coifman and Weiss [2] on R,
in general, by use of representation theory. The simple proof above adapts
at once to the general case. For another proof, see the remark at the end of
Section 3.

We have yet to show that

l
OFn) = @ # () |4
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(orthogonal direct sum over all p, ¢), just as

LXS,) = © #,]s,.

We wish also to determine #7(P) explicitly, for 2 € . It is convenient
to do the latter first.
As in the introduction, if P is as in (2.1), we let

(P) = 3 ap(WHWP, §(P) = 3 a, WPV,
and we assert:
ProrosiTION 2.7. If P is harmonic, #(P) = ©(P) = 7'(P).
We begin with a lemma.

LEmMMA 2.8. Let P be any polynomial, deg P = k. Then there exist
polynomials Py and P,, of degree not exceeding k — 1, such that

W(P) = 1P + P)), 7(P)= W (P + Py,
similarly for 7" in place of 7.

Proof. Suppose (' is any non-commuting polynomial in the W, W, We
let 6(Q’) denote the polynomial obtained formally from Q’ by replacing W
by ¢, W' by {. Suppose that

o(Q') = 2 b 8°LY
and suppose k' is the degree of o(Q’). We then let
oprinc(Q,) = E bpyg’pfy'

ol +1yl=k’
For the first statement of the lemma, say
P = Pprine + Plower
where Ppin. 18 homogeneous of degree k and
deg Piower = k — 1.

By Proposition 2.1 (a), there exists Q such that #°(P) = Q and such that
o(Q) = P; thus

oprinC(Q) = Pprinc'

In Q, we use the commutation rules to commute all the W*’s to the left
and all the W’s to the right, to obtain a non-commuting polynomial Q. It
is evident that, although o(Q;) might not be P, we still have

W(P) = @1 and Uprinc(Ql) = Pprinc-

This, however, is just another way of saying
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W(P) = 7(P + P,) for some P,

with deg P, = k — L.

For the second statement, we argue by induction on k; it is trivial if
k = 0. Assume it is known when k = j — 1, and suppose k = j. By the
first statement,

#(P) = 7(P) + 7(Py) for some P|,deg P} = — l.

By the induction hypothesis, 7(P}) = #°(—P,) for some P,, deg P, =
j — 1. This proves the second statement.
Similarly for 7".

Proof of Proposition 2.7. We may assume P € 7, for some p, . We
show only #°(P) = 7(P); the proof that ¥ (P) = 7'(P) is similar.

By Lemma 2.8, 7(P) = #(P’) where P’ = P + Py, deg P, <k =p + q.
It suffices to show that P € &, so that P, = 0.

We first show that P’ is harmonic. Observe to begin that if Py € £ is
arbitrary, then

7(3Py) = Dy(Pg), T(3,Po) = D r(Py).

This is shown immediately by a check using the derivation law and the
facts that

Di(W,) = D(Wp) = 81y Di(Wpi) = D(W,y) = 0.
Accordingly,
0 = 7(AP) = Qr(P) = QW' (P'),

so that P’ is harmonic by Proposition 2.5.
To show P’ € £, we need only show

P
(§ - )P = pP', (§-9)P = qP.
Now, if Py € Zis arbitrary, we have for any j that
W (& — NHPy) = [—F,F" 'Po] = (WPYW,,
while
W(E — NPPy)) = UZ F' "' Py) = W (#Py).
Further,
T(§Po) = (WP)W, and ~(§;Po) = W, (#Py)
by the definition of 7. Now, since P’ is harmonic,
NP =1 — ) - 3P
Thus, using (2.4), we find
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W((E-OP) = #((§ — AJ) - 9P")
=2 WQOP) W =2 [DW(P)]- W,
=2 [Dr(P)]- Wy = 2 1(3P) - W,
= 2 7(({ - )P) = pr(P) = p#(P');

consequently (¢ - 9)P’ = pP’. Similarly, using the other identities, ({ - 9)P’
= ¢P’; this completes the proof.

We next show

Oy = @ H(H) | %

Let us first recall the proof of the following proposition.

ProrosiTION 2.9. (a) £, = © lzlzk,)fﬁ,k,qwk (sum from k = 0 to min(p,

q) )
(b) LX(S,) = © 8,

(c) For some C € R,
dimog, < C(p + g+ D" Xp +q+ 1) foralp g
Proof. For (a), one need only show ’

2
Pog = Hq @ 12I°%,

s, (orthogonal direct sum over all p, q).

—1lg—1-

This follows immediately from the fact that 5, is the orthogonal
complement of |z|2@p_1‘q_1 in Z,, under the Fisher inner product (, ).

Indeed, if P € ?},q,
PL|2PP 1,1 =AP L P, = AP =0.

(b) follows from (a), since polynomials are dense in LZ(S,,). For (c), note
that by (a)

dimJg, = dm%,, — dm %, |,
_(p+n*l)(q+n*1)
- n— 1 n —1
-(p+n—2)(q+n—2)

n— 1 n—1
== lg T p+n—2g+n—2)
X[(p+tn—1)¢g+n—1 — pg],
so (c) follows.

Here is the analogue.

ProrosiTION 2.10. (a) For any N
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(P | = © 15 -1 g-1) | %
(sum from k = 0 to min(p, q) ).
(b) OFy) = @ # (1 q—1) | %

(orthogonal direct sum over all p, q).

(c) dim #°(%,)
Otherwise, #1#,,) = {0} on 7y.

v, = dimJ, & N = p'.

Remark. In (a), we could replace by %; we omit the proof.

Proof. (a) follows at once from Proposition 2.9 (a) and the following
fact: Suppose p, g, k, N € Z" . Then there exists ¢ € R such that for all Py
S

P4

(2% Py)

v = CT(P()) Y

To see this, observe that we may assume k = 1, Py({) = ¢°¢". Suppose A
> 0, |a|] = N. Note

WPE, = cqpkq—, for some ¢,, € R;
here E, , is defined to be zero if « — p & (Z")". Thus
(2P P)E, = (WH(WT - WWPE,
= o WY(WT - W)Es—,
Cap2 AL (W) (la = pl )Es—,p
CapQANWN = pYW Y Eq—,
QINYN = p)1(Po)E,.

I

This proves the claim when A > 0, with ¢ = 2(N — p) [A|. Similarly for
A <O.

(b) follows from (a) and Proposition 2.7, once one shows that 7(P) | ; is
dense in O(¥y). If A > 0, it suffices to note that if

Spa = (WHEW® = 1(2°2F),

then {SgdB € (Z7)", lal = N} is an orthogonal basis for O(¥y).
Indeed,

SBaEy = CﬁasayEB

if [yl = N, where cg, # 0. Similarly, if A < 0.
(c) follows from Theorem 2.6 (a) if one notes

a(N,p,qg,\) >0 N = p'.
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3. An estimate for spherical harmonics. This section and the next are not
used in Part B; the reader may proceed there now if he wishes.
In the study of spherical harmonics on R”, one has the estimate

B Pl = C(x + D27 Y2l

Here P is a spherical harmonic of degree , the L*° and L? norms are taken
on the unit sphere, and C depends only on n. Such an estimate is essential
for characterizing the expansions of C® function on the sphere in
spherical harmonics. The estimate is simply a matter of estimating the >
norm of the zonal harmonic of degree k (see the proof of Proposition 2.2).
This is done by use of the transitive action of the orthogonal group on the
sphere. (See e.g. [18], page 144.) In the further study of the action of %on
functions which are C* away from the origin, it is similarly important to
have a sharp estimate for the norm of #°(P)|y; € O(¥y). To obtain this
estimate, in analogy to the Euclidean case, we study more closely the
action of U(n) on O(¥y).
As we observed during the proof of Theorem 2.3, if V' € U(n), then
Vity =

as one sees by checking in the Bargmann representation. One also sees
from this representation that ¥} is isomorphic to the spherical harmonic
space Sy with an isomorphic action of U(n). Thus ¥y is irreducible

under this action.
If U € U(n) we define

m(U):00%%) = O(¥7)

in the same manner as before Proposition 1.3. Namely if S € O(¥y),
m(U)S = U S(U)* if A > 0;
m\(U)S = USWUH)*if A < 0.

Let H = U(n). = is evidently a representation of H on O(¥y). Let p
denote Haar measure on H. We then have the following result.

LEMMA 3.1. (a) 7 is a unitary representation of H on O(¥y).
b)) If S € OFy), n(w)S = S for all u € H < for some ¢ € C,

S =cl I
() IfR, S € O¥y), w € ¥y, Iwll = 1, then

s = (V2 ey ) st
Proof. For (a), suppose R, S € 0O(¥%). Note that R* is a bounded

operator from s to ¥y. Suppose u € H, and put R; = #(u)R, S| =
w(u)S.

https://doi.org/10.4153/CJM-1984-039-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1984-039-0

HEISENBERG GROUP 639

Then if A > 0,
(Ri, Sy = (A1) t(RES))
— QA tr@R*Su*) = QAT tr(R*S)
= (R, S)-

(Here the trace is always taken of operators which map #% to itself.)
Similarly if A < 0.

For (b) suppose that S € O(¥y) and uSu* = S for all u € H. For each
K € Z7, let Q, denote the projection of #onto ¥x. Qx commutes with H,
so for each K,

uQrSu* = QgS for allu € H.

By Schur’s lemma and the irreducibility of the action of H on each ¥,
QxS = 0O unless K = N, and S = QS is a constant multiple of the
identity.

For (c) suppose A > 0 and let G = R*S. Consider

B = ﬁ 7(7*)Gdp(v).

By (b), B = cly for some ¢ € C, where Iy = [

»;- Thus, by (a),

@Ay ! (N :f 1_ 1) L, (Rvw|Svw)du(w)

= @2 )""(N A 1)(w|Bw)

—emy (VT Y )e = dweb

= ], 7 Gxdv)

= '/;I(IN’ G)Ndl’l'(v) = (1N5 G)N = (R7 S)N
as desired. Similarly, if A < 0.
Here now is the estimate alluded to at the beginning of the section.

THEOREM 3.2. There is a constant C,, depending only on n such that for all
R € W'(,), one has

(3.2) ||R||i/ = Ca(N. N7 + D(p + (g +D]""AR, R
Here ||R||y is the norm ole vy € O(¥N), k = p + qand

avony = (Y ey

n
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is the “area’ of ¥y, namely (I, I)y.
Proof. We denote
g = Wk and Ay = Hpy| ;.
Fix N, p, g, w € ¥y and w' € 5 with ||w|| = |[w|]| = 1. We may as well
assume N = p’, for otherwise X,y = {0} by Proposition 2.10 (c). It

will suffice to estimate | (w'|7(u)Rw) |* forallu € H,R € H,n by the right

side of (3.2), with an explicit C,. For each v € H, there exists a unique Z,

€ 4~ such that
(Z,. Ry = (Wlm(v)Rw) for all R € A7 y.

In fact, if {R;} is an orthonormal basis of )%N,

Z, = 2 () Rewlw)Ry.

k

We need to estimate (Z,, Z,)y. Suppose u € H, R € %,y By Lemma
2.4,

m(u*)R € K\
Thus, by Lemma 3.1 (a),

(W) Z,, R)y = (Z,. 7(u*)R)y = (W'[7(vu*)Rw).
Hence #(w)Z, = Z,,*. Now

(Z,, Z)n = WlT()Z,w) = (W T(W)Z,w)
(for all u € H)

= 2| (Wlm(R;w)

k

(for all u € H)

-2 L | wlm(u)Ryw) PPdp(w)

= ; ﬁ, llm(u)Rewl dp(u)
= a(N,\)"! % (Ris R

= a(N, )" dim H,5;

we used Lemma 3.1 (c). So by Proposition 2.10 (c).
| Wt WMRW) [P = (Z,. Z)n(R, R)y
= d'(N, A\)” ' dim % (R, R)y.
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The result now follows from Proposition 2.9 (c) if we set v = 1.

For N.p,q € 7", let

1
b(N, p, q.\) = [a(N. p. g, \)/d(N. N |
(see (2.5) ). Then we have:
CoroLLARY 3.3. Suppose P € o4, |[Pll, = 1 (][Il = LX(S,) norm).

(a) For some C,, € R,

l bl 2
I#°(P)lly = Co(k + 1D2[(p + 1)(g + 1) " 2*b(N. p. q. \).

(b) For some a. |al = N.
1#(P)E,)| = b(N. p, g, N).
Thus
b(N.p.q. N) = [[#(P)|ly = Cy(x + 1" 'B(N. p. g. M.

Proof. (a) is immediate from Theorem 2.6 (a) and Theorem 3.2. If (b)
were false, we would have

(W (P), W(P))y < b(N, p, ¢, NI, )y = a(N. p. ¢, N),
contradicting Theorem 2.6 (a).
Explicitly.
b(N,p. q.N) = (2IA| )”2[ Qm") (N + ¢ +n —1)<~+n~1)/

n —
if N = p’, and is zero otherwise. Thus
b(N, p, g, \) ~ (2NJA| )K/anfl/?_,

where w,, = 27/(n — 1)! is the area of S,,. Recall that ¥} is analogous to
rS,. where r> ~ 2N|A|. Thus Corollary 3.3 is analogous to (3.1). and the
simple fact that if ||P||, = 1, there must be a z on rS,, such that

—172
IP(2) | = rw,

Remark. An alternate proof of Theorem 2.6 could be given on the basis
of Lemma 3.1 (a) and the following fact. Suppose that « is an irreducible
representation of a group G on a finite-dimensional vector space ¥ and
that (,), (., ) are two different inner products on X#'with respect to which
7 1S a unitary representation. Then for some c,

(x,y) = c{x,y) forall x,y € A
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For the proof, observe that (x, y) = (A4x, y) for a positive operator 4. A
commutes with 7(G), hence A = ¢l by Schur’s lemma. This argument was
shown to us by H. Upmeier, who has proved a deep generalization of the
first identity of Theorem 2.6 (a) for bounded symmetric domains.

4. Exact formulae for the Weyl transform. We shall now derive exact
formulae for the Weyl transform of special types of functions. These
formulae are analogous to the Bessel function formulae one meets in R”
(see [18], Theorem 3.10). We claim originality only for Theorem 4.2 and
everything following it (except the well-known (4.6)). The material
preceding Theorem 4.2 has been expounded in many forms before, in
particular [14], [15] and [19]; our approach and formulation may be
original.

This section is not used in Part B.

For z € C", we write

Izl = ( lzll ~~~~~ \Zn| )
2 2 2
Iz1° = ((Zl|h ~~~~~ |:/1|~)-

We set oy = sgn A. If G is a function on C", m € Z", we say that G has
F. S. (Fourier Series) type m if

G(z) = F(Iz1 )e"? for some F.
(Here z; = |z;]e%.) If S € O(#) we say that S has F. S. type m if for all

a,
SE, = ryEy— oy for some r, € C.

(Here, Eg = 0if B & (Z7)".) Thus, polyradial functions and operators are
those with F. S. type 0.

PrROPOSITION 4.1. (a) Suppose G € L', G has F. S. type m. Then %G has
F. S type m.

(b) Suppose ¥ € L. The Zhas F. S. type m if and only if %G has F. S.
type m.

The analogue for #” is well known. For the proposition, we assume
A = 1/2 and compute V.E, In the computation, if a, B8 are two multi-
indices, we say a = Bif o = B, for all k. For m € Z", we let

mt = /2)Iml + m),m =m’ — m.
Then
FIYVE, = exp(—z- W) exp(Z - W)E,

! .
— X el - BIPL ' exp(- s WOE, 4
R=w
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1 1
= 2 2 [ — PPla/(a— BPA!

0=p=a y=Za—f
—1=B, _ \y—at
X (y —a+ B 'PB(—or T PE,
1

= 2 [ala = m)P X [Bla — BB -

meZ’ m ==

m)']— IEB(_Z)B_WEO(AHZ

1
> @ — mH(a+ m NP

meZ"

I

x 2 (=R e+ m
k=a—m'

0= m
X [(a — m" — kkWk + Imlyt] Nzl gmmbp

with all sums converging absolutely. (This is justified in Lemma 1.1.3 (a) ).
Here

5 = lzjle.
We have set k = 8 — m ™" and noted that

(k + mT)Wk + m ) = kl(k + Iml)!
Finally

m— | Aml —im.
41y V.E, = X (=Dt zPye g,

mel’

Here l';"l is a Laguerre function, defined as follows. First, if x € R", a, m
e Z%, put

Li(x) = 2

k=0

(arm 2

These are the Laguerre polynomials. Also put

1 o
INx) = [/ (a + m) XL (x)e /2.

If instead x € (RT)", a, m € (Z7)", put
n
Ly = 1T L.
=1

and let
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Iy (x) = 11 1;'(x).

From (4.1),
1M (x)| = 1 for all a, m, x.

Now let A be arbitrary. Suppose G € L' has F. S. type m; say
G(z) = F(1z1%)e"™®,

Letm® = m" ifo = lorm ifeo = —1. From (4.1) and a Fourier series
argument,

(‘(gG)Ea = ra‘Ea*om

where

@2 e = (=) R QNI FAzY.
Thus G has F. S. type m.
(Remark. In particular, suppose
G(z) = ¢ W 4f?,
As we remarked during the discussion of Theorem 1.2, (9G)E, = 0 unless
a = 0, while (9G)E, = cE, for some c. By (4.2),
¢ = fC e N gy — @A),

This, as we said before, essentially verifies the argument (i) for Theorem
1.2.) A density argument now proves (4.2) for G € L’. Simple
orthogonality arguments now complete the proof of Proposition 4.1. See
Lemma 1.3.1. ]

Other formulae follow rapidly. Suppose S € /f has F. S. type m, SE,
= roky- 5m Then

tr( VﬂzS) = 2 (EalV'*zSEa)
= E (VzEa|Ea~om)(Ea70m|SEa)
so that

43)  (IS)z) = 7 "N D (= DI QNI

a

As a special case. supposen = 1. A = 1/2.m = 0. If B € (Z")". define S
€ OF) by

SBEU( - 8[3uEu*}m-
Let Gg = 7 5p. Then

Gpz) = m (=D)L (JzP)e ™.
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We claim that ¥Gg = Sp. Indeed, as we said at the beginning of Section 2,
Sp = &Fp for some Fp € & By the inversion theorem, then,

F.B = ij,B = Glg.

Many properties of the Laguerre functions can be read off. By the
polarization of the Plancherel theorem, we find that

72 L Iy (12D (121dV = 7 ' ir(SESp) = 7 '8,

Evaluating the integral in polar coordinates, we see that the /)'(x). for

a € Z", are orthonormal functions in L*(R ™). Indeed, they are a basis.
For, suppose F € L*R™),

oo
f o I(x)F(x)dx = 0 for all a.

Let G(z) = F(lzF)e ™ Let G = S. and suppose
SEy = robatm-
Then

0= L(fl)’”lgl( 12)G(2)dV = tr(SES) = 1,

Thus S = 0, G = 0 and F = 0. Thus the formulae (4.2), (4.3) have obvious
interpretations in terms of Laguerre series.

We remark that, if G has F. S. type m, the well known analogous
formulae for #’G, involving Bessel functions, may be proved in the same
way; that is, through use of the power series expansion of exp(—z - { +
7-9).

Suppose now that G is radial on C", thatis G = G( Izlz), while P € 7.
We next derive the exact formulae for ¢(GP) which are analogous to the
Bessel function formulae for #’(GP) (see [18]. Theorem 3.10).

THEOREM 4.2. Suppose GP € LX(C") or L\(C") where G is radial and P

€ Ay

(a) UGP) = (—1)IH#(P)S where S is radial, SE, = cEy. where if
N Zp',

ev = — D[N — pY/N + ¢ +n— D

X e L';if_l,f " 2P G(lzhe M|z ay.

(b) If GP € L' and #(P)S € #¥. then

G(Iz2P) = 7 "N 2 enLi ! 2 fze TN
N=p'

Proof. In the situation of (b), let R = #(P)S. Then
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(V- R) = (= 1) Z(EJV_-#(P)SE,)

(4.4) = (17 2 ey 2 (V-EJH(P)E,)

N=p' lal =N

— (= 1) X exHypa

N=p'

say, with absolute convergence. Suppose A = 1/2. By Theorem 2.3 and the
inversion theorem.

e*u:fz/zp(:) _ (7])4 2 (1 — 5)”+K.Y’\v7/711_\'~p(: ).

N=p
Accordingly,
SV p(z) = (1 =) e WP,
-

whenever |s|] < 1, if ¢ = z,b"'(s). The series converges absolutely. so if
P(z) # 0 we can divide by P(z) and differentiate with respect to s, to find
that

[1\'+I,AI>(:) - K»’\,’J’( !:‘Z)P(:)

for certain functions Ky p; this then holds even if P(z) = 0. With x = 12|,
we find that

(45) Z X‘VK‘\'J)(.\') = (—l)‘/(] _ S)*H’*h‘eﬂ(n/l'
N

Ifn=1.m = 0and P = P,, where P,,({) = {", then by Proposition 2.1

(b).
]l‘\'~/’n,(‘:) - (V:E\'- E,\' — b’\ ﬂm|ﬂ/(Pm)E.\')
1
= I ZPe NN — m) R
= ¢ -|z M/JL{{I',,,”( lzl:):m~
Accordingly,

Kyp (1215 = ¢ FI2LY 2P,

n
We have derived the generating formula for Laguerre functions:

(4.6) 2 sVLV(x) = (1 — 5) eV,
N

But then by (4.5) and the uniqueness of generating functions we have

| +k

Kypto) = (- 0Lk e 2
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Accordingly, for general A, one finds that

1+

P h(zl}\| |Z|2)

(4.7) HE (V-EJW(P)E,) = (— 1IN "Ly~
al=N

X P(z)e M el

(4.4) and (4.7) yield (b).
For (a), a simple approximation argument shows we may assume GP €
L'. Suppose Q € ), for some py, q;, say N € 77, and observe that

(H(Q), UGP) )y

= Q)" fo 2 OHQIENV-ENGP)P()aV

lal=N

| +k

= (DI f L=y "IN DG
X 0@)P(z)e NEFgy
by (4.7). Accordingly, if (Q, P) = 0 (L*(S,) inner product),
(#1(Q). GP) )y = 0.
By Proposition 2.10 (b), there exist ¢y such that
YGP)E, = (— 1)lexyW(P)E, whenever |a| = N.
By Theorem 2.6 (a) and the preceding,
ey NN + ¢+ n— DT p)

= Jo LY SQIN DG 1P [P(2) e Ny,

This gives (a) at once.

(a) and (b) again have simple interpretations in terms of Laguerre
series; in particular they are consistent with the fact that {/), l+"|M €
Z"} is an orthonormal basis for LX(R™).

Several new special functions formulae follow from the relation between
Theorem 4.2 and the notion of F. S. type m. To see this, for m € Z~
let

P, = {P € PP has F. S. type m}.
Note that if P({) = 2 a,,{"¢7
P e <a,, =0unlessp — vy =m.

Ifp.aeZ'. let
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‘%ﬁqm = ._%:/ N ‘%w
Since A:%,, = £, and Z = © %, we find ¥, = © ¥, Note that
Hyum = {0} unless
p—Iim|=qg—|m | =0.
(The equality follows from the above restriction that p — vy = m for
non-zero terms. The inequality is evident.)
In what follows, we shall assume A = 1/2. For each p, ¢, m with

Hum # {0} select an orthonormal basis %,,, for J,, (orthonormal

5 pgm
in the L-(S,) inner product). Let

Ky = U %qm
P4

and let

Set

a(N, p,q) = Qu"y \(N + q+n— DD
as before. Let

¢(N,p.q) = a(N,p, )" "if N Z p, 0 otherwise.

By Proposition 2.10 (b) and Theorem 2.6 (a). if N € Z* and R is in the
Hilbert space 0(¥}), R has the orthogonal expansion

R = PEJ ¢(N, p, Q)W (P), R)\W(P).

(In the sum. of course, P € J4,) If lo]l = N. B € (Z")". the map
S — (E|SE,) is a continuous linear functional from O(#y) to C. Thus

(Eq—mlREg) = 2 ¢(N, py Q)W (P), R)N(Eqe | W(P)E,).
Pewn

Note that
(Eq—ml#(P)E,) = 0 unless P € %Z,,;
thus

(48)  (Ea-mlREy) = 2 (N, p, )W (P), R)N(Eq— n| W (P)E,).

PE‘%N

Note that all but finitely many terms vanish. Indeed, there are only finitely
many pairs (p, g) with
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p—qg=Im"| —|m| and p = N.
If these conditions are not satisfied,
(#(P), R)y = 0.

Putting R = V. in (4.8) and using (4.1) and (4.7), we find that if
la| = N:

(— 1)|m | 1'(;’1’” ) (|Z|2)efim‘0

49) = (=1 X o(N.p, 9Ly, (1ZHPE)e T2
Pe‘%"
X (Ea—l1z|W(P)Ea)
or equivalently
llo’:i m’ (IZIz)eAim‘aEafm
(4.10) . o
= 2 (VW p Ly, P)P@e TP,

Pe ),

ifr=r(g.m)=gq —|m |.Fixa P € %,,, Take the inner product with

pgnt-
#{(P)E, and sum over «a:

> (ZE, [ #(PIE)
lal=N

(411) n—1+k

— (— 1YLy, (1zP)e 2Pzt ),
Here we noted that
P(lzl) = P(z)e ™",

(4.11) is true for any P € Jg,,; it is an addition formula, known
previously only when P = P,,. In this case, (4.11) becomes

e = LR
al=N

which is proved easily through (4.6).
Note that (E,—,,|#(P)E,) is a very simple quantity. If

P(z) = 2 a,z’77,

then by Proposition 2.7,
1
(Eafmlw(P)Ea) = 2 apy[a(p)(a - m)(Y)]Z_

Thus (4.1) is a completely explicit formula. ‘
We can interpret (4.9) and (4.11) as follows. For m € Z", « € (Z7)",
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"
a = m, set

é’am(Z) = (_ 1)\'” !(2”7)_”/2 Lz’im ' (IZIZ)Pm(:’ )eiml.

For P € %4,,,, N € Z', N = p, let
. n—1+k -2
Svn(z) = (= DILN (PP (z)e 72
Then it is easy to see that the sets S| = {ey,} and S, = {fyp} are

orthogonal bases for L(C"). In fact,
leamll” = 27 + m )W/ (a — mT) = by
say, while
fvplP = 27N + g +n = DN = p)t = (N, p. q),

say. {4.9) and (4.11) express one basis in terms of the other. An expansion
of an L’ function using one basis can now easily be replaced by an
expansion using the other.

Specifically, let ¢(N, p, g) = a@'(N, p, ¢)” ' if N = p, 0 otherwise. (4.9)
reads:

(412) Cam = 77"/2 2 C/(N, P, Q)b]a/Igz(W(P)Ea|E¢x—m)f:V.P if |a| =N
pPes,

(4.11) reads

(4.13)  fyp = 7" ‘ ?V b NN Eq W W (P)Eeqy it P € B,
o) =]

From either:
(414) (eam’ fNP) = 8|MN7T,'/2b0]“/,3‘ (Ea*mlW(P)Ea) if P e '%n-
(4.12) has a further significance. If one restricts to a sphere centered at

0, (4.12) gives explicitly the spherical harmonic expansion of e,,, restricted
to that sphere.

Part B. Exact Formulae for the Fourier Transform on the Heisenberg
Group

Introduction.

The Heisenberg group H” is the Lie group with underlying manifold R X
C" and multiplication
tz)-(t,2)y=@¢+7¢ +Imz- -7,z + 2,

n
where z - z = 2 z;Z].
j=r
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It is equipped with dilations D,(r > 0), where
D.(t,z) = (rzt, rz).

One may then speak of homogeneous distributions. Our main purpose is
to derive an exact formula for the group Fourier transform (F. T.) of a
class of regular homogeneous distributions (r. h. d.’s). Here “‘regular”
means C°° away from 0. An 1. h. d. K can be written in the form

ZP)Pi(z),

K(t, z) = 2 Ki(1.

where {P;} is an orthonormal basis for the bigraded spherical harmonics.
Each term in the series is also an r. h. d., and if one wished to find the F. T.
of K, it would suffice to determine the F. T. of each term. Thus we restrict
attention to K of the form K'(z, |z]*)P(z). For this purpose, we will make
use of the theory of Part A. We shall assume K’ has a specific form. A
general formula could be given for any K’; we hope to give this in a later
paper. The situation considered here, however, gives formulae which are
often useful in practice.

The first section is introductory. For proofs, we refer to the first section
of [8], and [4]. The author’s paper [9] contains relevant material. However,
we shall not refer to it for proofs, and we have improved the notation we
used there.

In Section 6 we give the main formula. In Section 7 we give some
applications, and in particular compute the Fourier transform of the
Poisson kernel and its variants. Confluent hypergeometric functions arise
here, as in related problems in [10].

5. Summary of the basic properties of the F. T. on H". On H", the
differential operators T = 9/0t and Z; = 9/0z; + iz;T are left-invariant,
and {T. 7, Z}(j =1 ..., n) is a basis for left-invariant vector fields on
H". The only non-trivial commutation relations are

(2, Z] = —2T.

Let #(H") = (R X C") denote Schwartz space.

Notation as in Section 1, we let # denote the set of operator families
R = (R(M\)) where A ranges over R*, where R(A) € O(&) for all A, and
where (EgIR(MN)E, ) is a measurable function of A for all &, 8. (We regret
that we omitted, though implicitly used, this last condition in [8] and in
[9].) Extend the notion of addition, multiplication and transpose in the
obvious manner to R. Let M; = (W), M = (A]). Let

# = {S € #| each S(A\) € H(A) and
IS = supl[SA) |l < oo}.
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The F. T. / is defined as a mapping from L'(H") to Zin such a way that
if f € S(H") then
Tf = =M. Zf = fW;'. 2,/ = =W,
(more precisely, e.g..: Z;f(A) = f(}\)W_/*A on @"}\ for all A\) and in such a
way that
g+f=gf(fge Ll
Note that the first three equalities are consistent with the commutation

relations.
If we define # M LY(H") — L'(C") by

(o)

(FM)2) = f V_OO eNf (1, z)dr,
we have only to set
SO = 47
Indeed, 7 (Z,f) = 2.7, etc. Thus
SO = Jip Unf )
where
Ul = eMrh

That g = f = gf is checked with (1.1). B
If fe L' g(t,z) = f(—t, —2), h(u) = f(u" ') then it is easy to see
that

g = f(=N) b = f*.
Fory € C, let
L, = —(1/2) 2(ZZ; + Z,;Z;) + ivT.

We note that if f € & L,f = fA where A = (4)).

Certain subspaces of # are useful. We set 2 = {(SAN)) € ZISpa(N) =
(EgAlS(MEN) € C.°(R*) (as a function of A) for each . B; and for some
N € Z", SgN) = O forall Xif la| + |8] > N}. Then if Se€2S8=ffor
some / € ¥(H"). We set

A = {(S\\)) € % for ae. A,
IS 1T = 2 ISA)E,l > oo and

7 IS 1 i < o).
Let
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={S =(S\)) € #| forae A,
IS [l < oo and

15 = [ IS0V 1 @I e < o)

Here ||S(A) ||5 is the Hilbert-Schmidt norm of S(A). Then
Vi — C(H") N Lo(H")

by

S - 7 wwsoenya
is well defined. Here is a version of the inversion and Plancherel theorems
for ', which may be proved on the basis of Theorem 1.2:
THEOREM 5.1. (a) If f € A(H") zhenf' S Q‘l’ N %.
(b)Iff € L\(W')and S = | € R| then
fu) = c{,Si(u) for a.e. u:
here ¢, = 27"~ 1. ,
(c) If f € Lthen ||ﬂ|7 = c,,llf]lw can then be extended to a constant
multiple of a unitary map from L*(H") onto 9.

One thus sees that 2. 9?,5 and %, play the role on the Fourier transform
side that C.° L', and L? play on the Fourier transform side in the usual
Fourier analysis on R".

One has a natural pairing for elements of R. Namely if R, § € #, and
if

(5.1) f o ZRMEJSMNEY | N"dh < oo

we set

(RS) = f o; 2 HRMAEJSNEHQIA] )"dN.

Thus (by polarizing Plancherel) if f, g € L’ we have
(ﬂg) = Cn(./]é)

where the inner product on the left side is the L? inner product.

Given R € %’ it is particularly important to be able to tell simply
whether R € jz’l (for example, for Theorem 5.1 (a) ). Given R, S € %, we
would also like simple criteria for (5.1) to hold.

Now if f'is a measurable function on R” such that

f(x) = O(|x|7™)as x — 0,
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where m; < n, while
f(x) = O(|x]” ™) as x — oo,

where m, > n, then / € L'. The analogue in the present situation is
this:

PROPOSITION 5.2. Suppose F{(Z')" X R* — R satisfies
F(a, A) < C(voJA|) "™ for some my < n + 1 and
F(a, \) < C(vJAl )™ for some my > n + 1.
Then

oo
I = /700 > F(a, ) A"d\ < oo.
(43
(As always, v, = |la| + n/2, and F is measurable in \.)
Proof. Indeed, for N € Z", put Ny = N + n/2. Then

SN -0 1 /N .
I<c 2( " ))[Ni'"' fo 1

No0 n—1

(0'6) (oo
—ny n—ni n—1xn 01
+ N7 A <CVZ:ON N < oo

If we make use of this proposition, we see the importance of the
classes

Ord(m) = {R € Zlsup2ra]Al ) R 2IROVE,||
- a A

= ||R[O"™) < o0} for m € C.

Let

Rap = N Ord(m),

m=0

topologized as a Frechet space. (Ord stands for “order”’; Rap stands for
“rapid decay”. In [9], Ord(m) was called %(—m/2), while Rap was called
%.) These spaces are analogous to the spaces on R” defined by

{1/ x) | < CIx|™} and
(1 (x)| < C,lx™ for all m = 0}
respectively. From Proposition 5.2 follows immediately:

ProrosiTION 5.3. (a) Rap C %’f continuously.
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(b) Ord(m) is contained in the dual of Rap (under the natural pairing) if
m > —2n — 2.

The analogue of this on R" is evident.
Theorem 5.1 (a) is now an easy consequence of the fact that [¥(H")] C
Rap. Indeed. if f € %,

f = [L, ]] e Fforall N,

so this inclusion follows at once.
As a trivial consequence of the above arguments and the dominated
convergence theorem, we have:

ProrosITION 5.4. Suppose that {RyIN € N} is a bounded subset of
Ord(m) where m > —2n — 2, that B € Rand that for all a, X we have

lim Ry(ME, = R(\)E,.

N—o00
Suppose further that S € Rap. Then
(RylS) = (RIS).

Suppose R € Zand (5.1) holds for all S € [#(H") ] (For example, this
will hold if R € Ord(m) if m > —2n — 2, by Proposition 5.3.) Suppose
F e % (H"). We say F = R (in the ¥ sense) if for all G €

(FIG) = c/(RIG).
We note the following useful proposition.

ProrosITION 5.5. Suppose R & 9?1& Let

F(u) = C;zé(u) = C;z /_OO tI'(U_”R()\) )(2|}\| )nd}k
Then F — B in the & sense.

Proof. F is a bounded continuous fraction, hence in %’. Suppose G €

SF(H"). Then
@) = & [ 3 (£l | o v- sG] rove, ) o o
= ¢(GIR)
as desired.

One may now investigate the FTs of regular homogeneous distributions.
Recall that these are defined as follows. For r > 0, define D,:H" — H"
by

D,(t, z) = (r’t, rz).

If fis a function on H", r > 0, define the new functions D,.f, D'f by
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Df =foD,. Df=r*""oD,.

By duality, one defines D,, D".%" — &’ . If K € &', | € C, K is called
homogeneous of degree / if

DK = r'K for all r > 0.

K is called regular if it agrees with a C*° function away from the origin.
It 1s shown in [9] that if K is an r. h. d. of degree /, Re / < 0, then

K € Ord(m) wherem = —2n — 2 — [.

(Thus Re m exceeds —2n — 2. As we said before Proposition 5.5, this is
important.) However, no formulae for K were computed in [9]; we are
about to give some in the next section. We will not be assuming any of the
theory of [9].

The situation is of course modelled on the well known Euclidean theory.
For example, if K is an r. h. d. on C", of degree /, where Re / > —2n, one
may write K as an infinite sum of terms of the form clzlle‘P(z). where P
& 4, for some p, g, c € C;and | = k — 2k (k = p + ¢). To find #'K,
one need only find all #'(|z| 2kP(z)). This is done in [18]. by use of
Hecke’s identity. The result, placed in our notation, reads that

F(L(k) |21 2 P2)) = (= 1)"T(j) 517V P ()

where j = n + k — k.

On H", suppose —2n — 2 < Re/ < 0, and that Kis an r. h. d. of degree
[. It is not difficult to show that one can write K as an infinite sum of terms
of the form G(1, |z|)P(z), where G is homogeneous of the appropriate
degree. (We shall not use this, but state it for motivational purposes.) Thus
it is reasonable to seek a formula for the F. T. of such a GP. We do this in
the next section, in specific cases. It could then be done in general, but we
do not do this here. We shall use Theorem 2.3, the analogue of Hecke’s
identity for @.

The case where K is an r. h. d. on C" of degree —2n is also of particular
interest in the Euclidean theory. Away from 0, K can be written as an
infinite sum of terms of the form c¢|z] *KP(z), where P & Ay, and k = 1.
(The last restriction is evidently necessary for the mean value zero
condition.) Under these circumstances we have

F'(PNL(k) 2172 P(z))) = (= 1D)Pa"T() 517 YP Q)

where j = n + k — k. Similarly, on H", we shall also seek formulae in the
case where K is an r. h. d. of degree —2n — 2, of the form P.V. [G (s,
lzI)P(z) | (see Section § of [4] for the definitions). In the H” case, however,
one could have P = 1. The following proposition may elucidate matters
somewhat.

PROPOSITION 5.6. Suppose F(t, z) = G(1, |z|*)P(z) is smooth on H" X\ {0}
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(and not necessarily homogeneous), where P € J¢,, p + q = 1. Then if
0 <a<hb,

/ F(u)dV(u) = 0.
a<|ul<b

(Here, if u = (1, z), lul = (|zI* + )4 In particular, if F is homogeneous
of degree —2n — 2, there exists an r. h. d. K of degree —2n — 2 which
equals F away from 0.

Proof. Integrate in the order dzdzdr.

We further assert, but shall not use, the following fact, which clarifies
the situation when P = 1. Suppose G(t, lzI?) is smooth on H"\ {0}, is
homogeneous of degree —2n — 2, and that it has mean value 0. Then
there exist an r. h. d. K| of degree —2n and ¢ € C such that

PV.(G) = TK, + ¢ and K, = G(1. |z]»)

for some smooth homogeneous G;. This fact may be verified without
difficulty if one thinks of H" as R*" ™! and considers the Euclidean Fourier
transform of P.V.(G). Details are left to the interested reader.

6. The main formula. In this section we derive an F. T. formula of
considerable applicability (Theorem 6.2). It immediately gives the F. T. of
many homogeneous distributions. Lemma 6.1, which contains the heart of
the matter, is in part a special case of Theorem 6.2.

In what follows, if k € C we write f(z) = z* to denote the principal
branch of this function, defined in the complex plane with the negative
real axis removed. Thus if z|, z; are in the open right half plane,

2125 = @iz
Also note that z¥/|z|R¢ and |z|R¢}/z¥ are bounded functions of :z.
If u=1(,z) € H', we set

h(u) = |z — i
¢ will be as before Theorem 2.3.

LEMMA 6.1. Suppose 6 > 0, s € C, [s| < 1 =8, ¢ > 0, P € 5,
n = =*1. Let H;:R — R be the characteristic function of [0, co) if

= 1,and of (—o0, 0] ifn = — 1. Supposej € C,n + (k/2) + 1 > Re},
andL]:"x = Je € A satisfies

JNE, = cd lal, N N /H{(P)E,
where if N Z p’,
cdN,N) = (= D" 12V T + ok + 1 = )7
X stp’(l — s)/_] exp(~(z,b_ls) [Ale)H (N).
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(Again, 0 = 1) Letk = n + « + 1 — j. Then J, € &/,
||{E||{; = C independent of s for |s| < 1 — 4.

v

Further ¢;J . = K, where
K(u) = G(w(u) )P(z) and
Gw) = (s(w + e + (W +eo) “ifng=1
Gw) = (s(v + & + (w+ ) Fifn = —1

(Observe that if |s| < 1 — & then s(w + € + (W + €) never lies on the
negative real axis if w = w(u), u € H".) Thus K, = Je in the & sense, by
Proposition 5.5.

Proof. We may assume 1 = 1. We note the estimate
(.1 IFPIE < CrglAl )2

C independent of a, A, directly from Proposition 2.7. (Corollary 3.3 gives a
much sharper estimate.) Now

(o]
P I = ce My Rt 3 gverya(V ),
N=p’

C independent of s, for |s| < 1 — §. The sum is bounded by

[ee]

C, 2 |S|MMH~1+K/2 = G,
M=0

C, independent of s, for |s] < 1 — 8. So

£ & A/ C
Wit = ¢ [y ve <y
where
r=n—Rej+ k/2 > —1.
Thus ||J€]|,E < (4 as desired. Finally, if u = (z, z), in the notation of

Theorem 1.2 we have

e du) = ¢, f o @NARUN)) NN

= T(k)~'(1 = s)7*P(z) fzo exp[ =AW '())(IzI* + ¢
ir) W

(1 = ) ' o)(1zP? + o) + i7" P(2)

= (s(w + o + (W + ) FP(2),

+
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as desired. We used Theorem 2.3, and its notation. To deform the contour,
we noted that

[ ') 12 + o) + ir]
is in the open right half plane.

THEOREM 6.2. Suppose k € C, P € 2, Suppose p.is a complex measure
on R™, and for some 8,0 < 8§ < 1, there is a smooth function g on

Is=[1 =80 -8

such that dp(s) = g(s)ds on ls. Let p, denote u restricted to [0, 1], and on [0,
1] assume there is a measure |y with

dp—1)(s) = —skdu(1/s) for s € [0, 1].

We assume that p, p 1y are finite measures.
Suppose € > 0. For each u = (t, z) € H", set

(6.2)  Kdu) = Gdw(u))P(z)

where

(6.3)  Gdw) fzo (sw + € + (w + ¢) Fdu(s)

Il

1
= |, 6w+ o+ @+ o) Fdus)

1
6.4) + fo W+ € + (w+ ) Kdu— ().

(Note that if 0 = s = 1, |s(w + €) + (W + €)| = ¢, so the integrals are well
defined.)

Next, suppose e = 0,j € Candn + (k/2) + 1 > Rej > 0. Define J, €
R by

(6.5)  JANE, = (= 1)in" 71217 Se((lal, N#A(P)Eq
where, if N Z p’,
N, N =N Tin +k +1 =) ! f(]) sV — )/
X exp(— (¥ '(5)) INe)dpo(s)
(0 = sgn A). Then
(@) Ko = lim K, exists in C°(H" — {0} ).

e—0

(b) Suppose
(6.7) Rek<n+ 1+ (xk/2)
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or
6.8 k=n+1++(k/2),x = 1.

If (6.7) holds, then K = Ky isanr.h.d. on H". If (6.8) holds. K = PV (K,) is
an r. h. d. on H".

(¢) K =lmK,in%'(H").

e—()
(dy Jo € Ord(k — 2j) and

lim J, = Jo in [#(H") ]*.

e—0 =
@) Ife>0.j=n+«+ 1~k then K. = Jinthe & sense. If e = 0
and (6.7) or (6.8) holds, K = J in the " sense.

Remark. The theorem is, on a formal level, an immediate consequence
of Lemma 6.1. The proof involves a series of limiting processes. Before we
give it, we derive the most important special cases.

Ify € C,Rey > 0, Re(k — y) > 0, du(s) = 57 'ds, then

dp—1y(s) = s 777 s,

Ife >0andv = w + € then

(&)

G(w) = 0 (sv + v)s¥ lds

vy kY /::O[(V/V).\‘ + 11 /)t (v/v)ds

Il

o0
=y Yy ko /() (s + l)fl‘ﬂflds

Tk — YIk) 'w + ¢ Y(w + ¢ *Y

I

so certainly (a) 1s true in this case. In addition (b) and (c¢) are apparent if
(6.7) holds. In addition,

NN =N T(n +k+1—j) 'T(VN —p' +7)
X T(HIN = p' + v + )"

wherey = yY(A\) = yif A > 0,y = k — yif A < 0. We also note the more
special case P = 1, k = n,j = 1, in which

co(N. N = N7 ') "N + y) .
Thus if ¢, = wYw "7 (c) of the theorem implies

(6.9)  @yEq = [N + 2Y) N | 'E, ifla] = N
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where
¢, = "2 ()T IT - y) T
If f € S(H") then, settingn = 2y — n,
(Lof) ME, = QN + 2¥) NJMNE, if o = N.
It follows easily that
(6.10) Ly(g,) = ¢,

which is Theorem 6.2 of [4] if 0 << Re y < n. (The volume element of [4] is
27" times ours; see 5.1 of [4].) To extend (6.10) and hence (6.9) to general
y € C, simply observe that if f € #(H"), both (L,;—,.f le,) and ¢, f(0) are
analytic functions of vy, so they coincide.

Proof of Theorem 6.2. For (a), if w lies in the open right half plane we
may use (6.3) with e = 0 to define Gy(w) since then sw + w will also lie in
the open right half plane if 0 = s = 1. Let us first show that G, can be
smoothly extended to

D= {we CRew =0} — {0).

Gy is evidently C*° where it is defined. It suffices to prove that if wy € D
has the form wy = (0, ¢),¢t # O and if M, N € Z™, then

lim(3/0w)M (/9 w)V G,

exists as w — wy through int D. For, by the homogeneity of G, it will then
be clear that these limits will exist uniformly at (0, ¢’) for # near ¢, and the
smoothness of Gy will follow readily. Using (6.3), we reduce at once to the
case M = N = 0 by allowing & to vary. We may assume Re k > 0, since
otherwise the conclusion is immediate. Let / = [Re k] ([ ] = greatest
integer function). Let ¢ = 0 if / # Re k; otherwise, let ¢ = 1/2. Write

s'g(s) = p(s) + v(s) in I
where p is a polynomial of degree not more than / —1 and
v(s) = (1 — s)/vo(s) where vy is C* in I,
Let
dp (s) = s ‘p(s)ds;
dw'(s) = s (1—s)vy(s)ds if s € I,
dp”(s) = 0 otherwise;
dp”’ = dp — dp — dp”.

We verify the conclusion with each of dy’. du”. du”’ in place of du. For dy’.
use the special case we computed in the Remark. For du”’, if
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1
Fiw) = f() [s + (W/w)]*/‘d,u'”(s).
then F(w) converges absolutely and uniformly for w € D since
s +¢=6if0=s=1-206[{ =1

Thus dp”’ is easily dealt with. For du”, we need only examine

(-8
/I s [s + (w/w)] ks (1 — ) vo(s )ds.
Now

I[s + w/w] * < Cls + w/w| Rk = (s — 1| ReA

so that the integral converges absolutely and uniformly for w € D, and the
desired limit exists.

Thus Gy has a smooth extension, which we also call Gy, and Gy(w(u) ) is
smooth for u € H'"\ {0}. As e — 0,

Gw) = Gy(w + €) = Gy(w) in C(D).
(a) therefore follows. For (b), if (6.7) holds, note that
K()(rzt. rz) = r'Z/‘J"‘K()(l, z),

first if z # 0, then if (7, z) # 0 by the continuity of K. If instead (6.8)
holds. use the same fact together with Proposition 5.6. For (¢), we reduce
again to using dp’, du”, dp”’ in place of du. The above analysis showed that
in each case |Gy(w + ¢€) | is bounded by

Clw + ¢ Rk = Clw| Rek,
Thus, if (6.7) holds, the dominated convergence theorem may be applied.
and (c¢) holds. If (6.8) holds, and /" € & by Proposition 5.6

(Klf) = ﬁdgl Kol f () — [(0) 1dV (u)

+ ./|;|>1 K(u)f (u)dV (u).
Again
[Go(w + ©) | < Clw|~ R

independent of € so that the dominated convergence theorem still applies.
This concludes the proof of (c).

For the first conclusion of (d), we can split up du, into two parts and
study two cases: (1) dug(s) vanishes if 1 — 8§ < s < 1.

(ii) duy(s) = f(s)ds where f € L*(0, 1).

In case (1), we have

led NN | < Ci(1 = §)MINT
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where C is independent of A, N or e. In case (ii)

1 l / ! aj—
N1/ lleo f oSN = )R ds

1A

[cdN, N |

[

G R flloo(N = p" + DI(Re j)[(N — p’

+ Rej + 1)~
SO
(6.11) e N, N | = Cill flloo(N+) R

Here Ny = N + (n/2) and C,, C; are independent of A, N, € or f. So in
both cases

led N, M| = C(N 4N ™R,

I

whence, by (6.1),
IVCA)El = C(N A )27 RY,

where C is independent of A, N, €, as desired. For the second conclusion, it
suffices to use this last fact, the fact that

JMNEy = J(NE,
for each «, A, and Proposition 5.4.

For (e), we may assume by the results of (a), (b), (c) and (d) that e > 0.
We fix € and drop it. For each / € Z" with 1/1 < §, define ¢, € L(R)
by

g(x) =1 — xs(x)
where x; is the characteristic function of (1 — 1/4, (1 — 1//)""). Let
dy = edp.

and let K/, {[ be obtained from 4y in the same way that K, J, were
obtained from du. As [ — oo, K/ — K pointwise and

JINE, — J(\)E, for each a, X;
we claim K — K\in S, .1/ — .[ in [5”]*. For, from (6.3),
1K oo = € RECflpll + flnal )
= e Rl + llpall),

so dominated convergence shows K’ — K in.#’. To show J/ — J, we reduce
to case (i1) of the proof of (b) and use the estimate (6.11) and Proposition
5.4.

Thus, to prove (e) we may assume that € > 0, g = 0 (changing § if
necessary). At this point our only restrictions on j and k will be
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Rej<n+ 1+ (k/2).

Notation as in Lemma 6.1, we have
1-8 s 1-8 s

s = [0 s+ f) 5 e o
and we know

A =X
independent of s € [0, | — §]; so

Je #° and e = K.
By Proposition 5.5, the proof is concluded.

For a different method of proving (a), see the proof of Lemma 7.5.
The interesting case k = n + 1, P = 1 is not covered by Theorem 6.2,
and we treat it separately now.

THEOREM 6.3. Hypotheses as in Theorem 6.2, up to and including
equation (6.4), but now assuming k = n + 1, P = 1. Then:

(a) Ky has mean value 0 if and only if g(1) = 0.

Suppose Ky has mean value 0. Let K = P.V.(Ky). Then

(b) Withe = 0, = 0, the integral in (6.6) is absolutely convergent. We
may therefore define Jy by (6.5). Then Jy, € Ord(0).

(c) There exists ¢ € C such that (K + ¢8)" = Jo-

Proof. For (a), first suppose g(1) = 0. Define a measure 8 on R™ by
dp(s) = —[ni(1 — s)]1 'du(s).

Because g is smooth, B satisfies all the same conditions that u does. We
may therefore put
oo
H{w) = |, (s(w+ ¢+ (w+ e ) "dB(s).

Let K (u) = H{(w(u) ). The analogue of (6.4) for H, shows that TK; = K..
Since K, — Kjyin &', TK, — TK}in &’; but TK, = K, — K in C*°(H" —
{0} ) by Theorem 6.2 (a). Thus Ky = TKpaway from 0. TKjis an r. h. d. of
degree —2n — 2, so that K; must have mean value zero. (Note for later
purposes, then, that TKj = K + ¢ for some ¢ € R.)

Suppose next g(1) = a # 0. If du(s) were equal to as | "+ D27 1lgg the
computation in the remark would show that

Ko(u) = ablul =2
where
b =[[((n+ 1)/2)1*/T(n + 1).

This does not have mean value zero. If du is general, consider
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Ko(u) — ablu] "+
— ZT(I) /ZO [sow(u) + ¢ + (wu) + ¢ ] "

X du(s) — ast (2= 1gq),

By the first part of the proof, K, — ablu|~*"*? does have mean value
zero; consequently, K, does not. This proves (a). If K; has mean value 0,
we return to the notation of the first paragraph. It is easy to show, from
Theorem 6.2, that K/, = J where

TN = (=N o),

Jo as in (b). Thus (TKp)" = Jy, and (c) follows. Further we conclude
J' € Ord(—2),

so it follows easily that
!0 € 0rd(0);

thus (b) also follows.

Because of the arguments in the preceding proof, and also the
considerations mentioned at the end of Section 5, the following question is
of some interest. Suppose K’ is an r. h. d. of degree —2n; K'(t, z) =
G(t, |z%) for some G; TK' = Ky away from 0, where Ky € C(H")\N{0};
and K = P.V.(Ky). Then certainly TK’ = K + ¢§ for some ¢ € C. One
would like a simple means of determining ¢; in particular, this would make
Theorem 6.3 (c) more explicit.

For this purpose, we introduce “polar coordinates” on the Heisenberg
group. Suppose f(z, z) € L'(H"). Define p, £ by p = |z°, £ = z/|z| and
suppose f(t, z) = g(t, p, £). Then

f"de =172 fg /R fzo g(t, p. £)0" " 'dpdud.

We now let
R =%+ A= (]2 + 2,
¢ = arctan(z/p)

so that
lzI> + it = p + it = Re'?.

Suppose (1, p, §) = F(R, ¢, §); then

Jusar = am f [T [ pag
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X (cos ¢)" ' R"dRded¥.

We call (R, ¢, & polar coordinates on H". We note that, in polar
coordinates,

T = (sin ¢)d/0R + [ (cos ¢)/R]d/dg,

as one sees at once from the change of variables (z, p, §) — (R, ¢, §).
In the problem under consideration, we can write K* = R "h(¢) for
some bounded function 4. We wish to determine ¢ such that

K(F) = TK'(F) — ¢F(0) for all F € #S(H").
We may assume

supp F € {R < 1}.
Writing F = F(R, ¢, £), we have

/2 1
2K(F) = /S f_m fo sin [0/dR (h(g)R ") ]
X [F(R, ¢, &) —F(0) ]R"dR cos" 'gdeds

+ ﬁ f f) f _/, cos ¢[d/9g(h(¢)R ") ]

X [F(R, ¢, &) — F(0)] cos" 'gdgR" 'dRdE.

In these inner integrals we integrate by parts, to find
7/2
2K(F) = —2K/(TF) — ﬁ f _, F(O)h(g) sin ¢ cos" ! qdedt.

Accordingly, K(F) = TK'(F) — ¢F(0) where

I

c=a"(n— 1! /_77/7 h(g) sin ¢ cos” ' gdy.

and TK' = K + ¢6.

7. Applications. In the remark of Theorem 6.2, we gave the most
important cases. Let us begin by giving some very simple extensions of
these. Specifically, suppose the r. h. d. K = w’P(z) where a. b € C
and

—2n — 2 < Re(deg K) << 0.
We compute K.

ProrosiTION 7.1. Suppose k € C, P € 7,

k — vy are not nonnegative integers, and that

k = p + ¢q. Suppose y and

—2n — 2 <<k — 2 Re k < (.

or that
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k =1,k — 2k = —2n—2

Define
Gry(w) = TPk — s *w Y, and
Kiyp(u) = G (w(u) )P(z).

Letj =n + k + 1 — k. Then Kiyp = Jyp, an element of Ord(k — 2j).
defined as follows.

JiypNE, = (— Dz 12175, (lal. N#A(P)E,.

where if M = N —p' 2 0,y =vifA\>0andy =k — vy if A < 0.
then

N XY = N TTM + ) DCHIM + v+ )

Proof. This has already been verified in the remark and in the proof of
Theorem 6.2 if Re y > 0, Re(k — y) > 0. It follows in general by analytic
continuation. Indeed, for fixed &, P, let

S={ylyv.k —vy & Z }.

It suffices to show that if f/ € % (f|K;yp) and (f1/,yp) are analytic
functions of y € §S. Indeed, Re k > 0, so that there does exist an open set
of y in § with Re y > 0, Re(k — y) > 0. That (f[Ky,p) is analytic is
immediate. Now

k —2Rej= —2n—2+2Rek — k> —2n— 2.
Thus, by Proposition 5.3 (b),

](,jll‘l/yl’)i < (Vll‘]/y/’H
where the norm is taken in Ord(x — 2j). It suffices then to show that
Il/;ypll remains bounded if y varies through compact subsets of S. But this
is easy. Note first that if ¢, b € C, ¢« = Rea > 0, b = Re b > 0.
then

l
(a)I(h)/ T(a + b)| = 1[() N =
= [/ T + b).

Soif M = N —p" > —Revy,
(7.1) ley(N A | = Crgrey(N.A) = C(N LA R

Here N. = N + n/2. This estimate then holds for all N. If we recall (6.1),
the proof is concluded.

The formula has a simple generalization to the case where y or k — vy is
a negative integer.

https://doi.org/10.4153/CJM-1984-039-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1984-039-0

668 DARYL GELLER

ProprosITION 7.2. Suppose k € C, P € J,, p + q = k. Suppose
—2n —2<k—2Rek <0

or that

v

K I,k —2Rek = —2n — 2.

Letj=n+« + 1 — k Suppose 1)y = =l €L or(i)k —y= —I[€
Z . (Both cannot occur simultaneously, since Re k > 0.) Define

Giyw) = (= DTk + Hiv Twrkw,
Let
Kiyp(u) = Gpy(w(u) )P(2).
Then Kkyp, = J,yp, an element of Ord(x — 2j), defined as follows.
JpWE, = (= D" 7121705, (Jal, N#R(P)E,
Here, if M = N — p’ =2 0, M = |, then
(N A) = M= DY) + j = D — M)

provided X > 0 in case (1) and provided N\ << 0 in case (i1). For all other values
of N, A, ¢;y(N, N) = 0.

Proof. Say we are in case (i); case (ii) is handled similarly, or through
use of the symmetry of the F. T. under (z. z, \) = (—¢. —Z. —A). We need
only show that

IIIT(I) (K/\‘Y“’C‘P - K/‘YP in’ and
€

limJ; iep = Jyp in Ord(k — 2)).

e—0

(Here Ky y+cp and J; ¢ p are as in Proposition 7.1.) The first is easy by
dominated convergence, since if y = —/,

lim el'(y + ¢ = (=111 L

e—=0

For the second, note that if M > [/, or A < 0,
€Cjy+ N, A)—0

trivially. If M = [,

limel(M + vy + ¢) = (= 1)/"M1@ — M),

0

SO
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€Ciy+dNo A) = ¢4(N, A)

for all A. We still have the bound (7.1) for M > /and A > 0, or for A < 0,
with y + € replacing y. By Proposition 5.4, we are done.

We shall not give explicitly any analogous formulae in the case P = 1,
—2 Re k = —2n — 2, since by the proof of Theorem 6.3 the only
examples can be read off by considering TK’, K’ homogeneous of degree
—2n. One case of this, however, is quite important; the Cauchy-Szegd
kernel. We discuss this, and its application to H> theory, now.

Let

Ul = {[z,.2] € C X C"h = Im z5 — |z]* > 0}.

This is the Siegel upper half space of type II. Frequently we use instead the
coordinates (h, u) where u = (1, z), t = Re z;. In these coordinates, one
thinks of U" ! as R™ X H”. The reason: if u € H”, the “left translation”
T,U'Y > Ut by T,(h. v) = (h, uv) is then easily seen to be a
holomorphic homeomorphism of U” "', Thus one thinks of H" as 9U" "
We write H = 9d/0h. We record the transformation law from [z, z] to
(h. u) coordinates:

T — iH = 20/0zy, Z; = 0/9z; + 2iz;0/0z.
Thus a function fon U""! is holomorphic if and only if
(12) (T + iH)f=Z,f=0, forall,.

In particular, if /is analytic, then Tfis analytic. U"*! is biholomorphic to
the unit ball under a “Cayley transform.” (See [6] for this and further
information. and [16] for H> theory for the unit ball.) If F is a function on
U" !, we define, for A > 0, the function Fj, on H" by F,(u) = F(h, u). We
let

HX(U"™!y = {F holomorphic on U"*! sup |Fll, < oo}

Here || ||, denotes L*(H") norm. Define P € % by P(ME, = 0 unless
a = 0, A < 0, in which case P(A\)Ey = Ej. Let

V= {fe AP = [},
topologized as a subspace of L>. The following result is then known; see
[13]. We give the natural proof in our context.

ProOPOSITION 7.3. (a) If F € H*(U"™Y), there exists Fy € V such that
F), — Fo(L?) as h — 0. The map B:H*(U""') — V defined by BF = F, is an
isomorphism.

(b) The projection Cy:L> — V is given by

Cof = i fP).
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Iff e L% let
h _
Cpf = (B~ 'Cof
Then
Chf = GUEWP) where Ey\) = e ML
(¢) Let
S(z, z) = 12" lg =D (—jzg) =D,
K(u) = —i(n — D12 a0 [wuy 177,
K(u) = n12" g P Dy 0D for y € H'N {0}
Let Sy = TK' in the ¥ sense. Then Sy = P. V. K + (1/2)8. Further, if
J € LXHY),
h o -
Cof =f*Sh Cof =f* S0

Proof. Suppose F € H?. The condition ZJ-F,, = 0 holds in the sense of
distributions, hence in the sense of tempered distributions since C is
dense in . Accordingly

(RWIFj) =0 forallR € 2.

(See the beginning of Section 5 for 2.) This easily gives F;,P = F,,. If we
knew that F, TF € H', and hence HF S H', we could conclude by Fubini
that H[F,(\) ] existed and equalled AF,(\), whence

(7.3) e ME, () = e WKE (\) for all h, k > 0.

To obtain (7.3) for general F & H?, regularize: select N > n + 1,
¢ € C.(H"), [ ¢ = 1. Fore,n > 0, put

Uiz, 2) = Nz + i) N,
9 = Dy
(a dilate of ¢),
G" = y,F,
BY = ¢ * G,

Since ¥, € H?> N L™, G" € H' N H? Since ¢ € L' and ¢ has compact
support, B" € H' N H? (7.2) being checked at once. Also

TB™ = Tg, x G" € H' N H,
so we have (7.3) for B" in place of F. Now
B" = ¢.G",

ed\) = ¢(€2X) —> I  strongly as € — 0,
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so that (7.3) holds for G" in place of F. Asn — 0, G} — F, in L*. so we
find, by Plancherel, (7.3) for F for a.e. A. So for some R = (R(M\)) with
RP = R.
FrA) = e MR,
By Plancherel and monotone convergence, R ePsoR = F() for some
Fy, € L’. By Plancherel, F, = Fy(L*) as h — 0.
Conversely, given R € 9 with RP = R, put R, = E;R. Then R, &

j’l Define F, = R F, = R,,, F(h, u) = Fy(u). To complete the proof
of (a), it will suffice to show F is analytic on U"*!. Let us begin with the

observation that if /. g € L then (f* g)" = fg in the ¥ sense. Indeed,
one easily sees that if ¢ € .7

T4 Gl g) = ([ elg) = fale) = Glal/* &) = alfe)
where f(u) = f(u ) Next, we apply Lemma 6.1 with P = 1, ¢ = h,

j=0,5 =0 7n7= —1tofind £, = S, (S is as in (c); note that
w(u) + h = —izyif [zg, z] = (h, u).) From these two facts,
Fy = Fy * S

(7.2) for F is now immediately checked. This proves (a). (b) follows also.
the first part being a consequence of Plancherel.
For (c), the arguments of the last paragraph show that

Chf=f*S,forfe L

By the Proposition 7.2 case (ii) with k =y = n, [ = 0, P = 1, we have
al(—iM) P = K.

Thus
P =TK =5

by the discussion at the end of Section 6. Indeed, one has only to note
that

m/2
/ ,, €Y sin g cos ! gdp = —[2"] 7.
— 7/

This last formula is easily proved if one writes sin and cos as linear
combinations of exponentials and notes

/2
f e ¥y — 78, for k € Z.

—a/2
From this it follows easily that C,f = f * Sj. Indeed, (7.4) with f € ¥,
g = Sy shows that

(f*So) =/P,

and this extends at once to / € L°. This completes the proof.
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As another application of Theorem 6.2, we turn to the Poisson-Szego
kernel and its variants on U""!'. In [6] we explained that the
Laplace-Beltrami operator on functions on U" ! is

Ay = 4h(hH? — nH + hT> — Ly).
We defined the variants
Aep = A — 4h[ (a« + BH + i(a — BT ].

These operators occur as part of the Laplace Beltrami operator on forms.
For u € H", we set

(7.5) Kﬁﬂ(”) = Cup2h)" T B () 4+ )yt
X (W(u) + h)y" BT
where
cp =1 "2+ + ) T(n + B+ 1)
XTn+a+pB+ 1)

Suppose Re(a + B) > —(n + )andn + a + l,n + B+ 1 & Z . In[6]
we asserted that

Kip € L'(H") and fK’;ﬁ = 1.

Iff € IP(H')(1 = p = oo) and g(h, u) = f * Kag(u), we asserted that
Aaﬁg = 0.

Thus KZB acts as a “Poisson kernel” for A,z (Since Kfi/g = DﬁK(Ix&
Kﬁ/g — & as h — 0.) We claimed that these assertions could be verified
directly, but could be better motivated by use of the group Fourier
transform. We do this now; for applications, see [6] and [11].

It is easy to see directly that

Kig e LIHY) for 1 = g = oo,

and that this is also true for all of its derivatives. It suffices, then, to check
that

fo;B = 1 and AgpKop = 0 if Kop(h, u) = Kng(u).
Formally taking the F. T., we begin by seeking a solution of
(hH*> — (n + a + B)H — h\* — (a — BNJ(h, N)
— J(h, M)Ay = 0
where

JuN) = J(h, D) € AR,
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and where
J(N) — I strongly as h — 0.
Jy, 1s to be the F. T. of K{:r/) Assume J;,(A) is radial. so that
JiNME, = g(h. YL ME,
for some tunction g/, N, A) with
g(h. NNy — 1las h — 0.
Let
gy = g(h. N.N):
then we want
g N T a8 A
—[ Q2N +n + a — B)yA] + AA-Jgyy = 01t A > 0
a and B should be reversed if A < 0. Let
SN T 8N 8 T 8N -1/
If we can find gy 4. gv . we can therefore obtain gy) by putting
gw(h) = gv o (2Ah) for A > 0.
gwah) = gy (2IAlh) for A < 0.

(This is as it should be, since Kf;/; — pVh Kl/;.) Let us find gy : we can
find gy later by interchanging a and . Put gy = gy .. Let

gy = e "Gy
the differential eauation then becomes
WG — (n + o« + B+ MG, — (N — BGy = 0.

(We also need that Gu(h) — 1| as h — 0). This is a confluent
hypergeometric equation ( [3], page 248). The general such equation has
the form

L,.f = [hD* + (¢ — h)D — a) f = 0;
here D = d/dh, f = f(h). It is easy to see that

Lie) = 0= Lycira o/ = 0if fith) = k7 'f.
We propose. then. to seek Gy in the form

Gy(hy = P et Bl o)

where
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Loygyv=0a=N+n+a+l,c=n+a+pf+2
If Re ¢ > 0, one has the solution ( [3], page 255. equation 2):
Yy = [[a)/T(c — 1) |W(a, ¢; h)

(o]
= (¢ — 1)7] f() eiT”'r“*l(l + 7)‘7"71(17.
(This 1s evident if one notes that
(€-~T/1 u<|(1 4+ T)(*(I*I) —(d/dT)(€¥ThTu(l + T)(i“).)

(/(

With Gy = h¢ "Wy, as above. one does have Gy(h) — 1 as h — 0.
since
(o)

Gylth)y = T(c — 1! 0 e % Yh + o) ¢ Ydo.

If, then, Re(n + a« + 1) > 0, Re(n + B + 1) > 0. we obtain a
solution

g NN = T(n + a + B+ 1) '@y ot B!

(o)
X f() e*(2~r+1)])\\1171\'+/1+a(1 +T)*(N»/f)d7_

for A > 0. If A < 0, one must interchange « and 8. If we make the
substitution s = 7/(1 + 7), we find for A > 0,

(7.6) g(h’ N, }\) — F(I? + a + B + 1)*|(2|}\|h)n+(y+/)’+]

1
X /0 S.\'+n+(\((l o S)7(11+¢r+/3+2)
exp(— (¢ () Al )ds

(where ¢ Y(s) = (1 + 5)/(1 — s)asin (6.6)). If A < 0, a and B are to be
reversed. Now, for 0 < 8 < 1, A > 0, define gg(h, N, A) by formula (7.6)
with f() replaced by f() . Define gs(h, N, A) similarly for A < 0. Define
J/I.(S(}\) by

Jh.B(}\)Ea = g8(h~ N, }\)Ea;
also J,(ME, = g(h, N, M)E,,.

Then Theorem 6.2 applies withj = —(n + a + 8+ 1),k =2n + a + 8
+2 to show that if

g =a "D +a + BT+ a+ B+ 1)L
and if
KZ/))(S(“) _ (';B(Z/’l)’l+a+ﬁ+]

1—8
X [,[0 (s(w(u) + h)
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+ (W) + b)) G tB gty
16
+ f{) (s(w(u) + h)

+ (w(u) + h))*(211+a+ﬂ+2)sll+ﬂds .

then (Kﬁﬁs) = J )5 Now, as § — 0, Kﬁﬁs - Kﬁ/; in L', where

K{i/}(l,l) _ ((/YB(Zh )r1+a+ﬁ+ 1
0

X (sv(u) + by A+ (Fu) + ) ) (rrarBEhgtag

One sees that Kzﬁ 1s as in (7.5), just as in the remark of Theorem 6.2. To
see that (Kfiﬁ) = J . it suffices then to show that J, 5 — J, in [¥]*. By
Proposition 5.4 we need only show that {J,,510 < 8 < 1}\is a bounded
subset of Ord(—2). Note, however, that for fixed 4 > 0, there exists C > 0
with

1
lgs(h. NN [ < CIN f oSV ) ARt

X exp(—y (s) [\h)ds
/

X

for A > 0. However, for any b > 0, the function x"¢” " is bounded for

x = 0. Thus, for some ¢’ > 0,
l .
lgs(h. N.A) | < CIA] ! fﬂ shds = C'L(N + 1)\ .

if A > 0. Similarly for A < 0, and the boundness of {J, 5} is established.
Accordingly,

/
(Kap) = J)
Since Ky € L,
Jp(A) — (/ Kﬁﬂ)l strongly as A — 0;
thus f KZB = 1. Since also all derivatives of KZ,; are in L.
(ApKap) = [HH> — (n + a + B)H — W\’
— (a — BAY(h, A — J(h, M)A,

= 0. with J(h. N) = J,(\).

This verifies all our claims.
We leave as an exercise to the reader to use Theorem 2.3 to find the
known formula ( [5], and the author’s thesis) for the Fourier transform in ¢
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of the “*heat kernel” for L, that is. the kernel for (d/d7 + Ly)K = (. One
wants

K(ME, = o Clalt ”)WTEQ.

2JAlr

Theorem 2.3. with s = e <7, then makes it easv to find # K. (# = F. T.

intz.)

We wish to studv brieflv the question of which functions can be
represented essentially in the form f?f (sw + u")f"dp(s) (as in (6.3) when
e — 0) for w in the closed right half plane. We would like to indicate a
class of functions for which this 1s possible, which includes the
functions

Pk = Pty w8

(Re y > 0, Re(k — y) > 0) of the remark of Theorem 6.2. We put ¢
= w/w, so that we may as well consider

/0 (s + &) Pdus).

This integral will evidently exist under weak assumptions on dp if
¢ € CNR where

R — {{Re¢{=0.Im¢ = 0}.

The problem comes when { approaches R~ \ {0} as happened in the proof
of Theorem 6.2 in the corresponding case when w was pure imaginary. We
shall assume

du(s) = g(s)ds for g € C(R™).

More precisely, let § = {g € C°(R") | there exists € > 0 such that for all
e 7"

[g'(s)] = Ot * Yass — 07,
while
lglis) | = ORH T Ty as s — o).
|

Let T = {f analytic on C\R "~ ’ﬂ”m ¢ ~ 0y can be extended smoothly to
{Im¢{ = 0};f|{1m ¢ < 0y can be extended smoothly to {Im { = 0) }: and
there exists € > 0 such that for all / € Z7. [f(5)| = OCKIT RE1) g
¢ — 0. while [ /(5)| = O(I¢1™" 9 as { = 00.} We then have:

THEOREM 7.4. Suppose Re k > 1 or k = 1. For g € S, put

(1.7 (Aot = JI (s 4 O kelsds.

U

Then A:S — T, and A is a vector space isomorphism. In fact, for [ € T
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put

(7.8)  (Bf)s) = (k — )Q2mi) ! /y J(OE + ) e if Rek > 1.
(7.8)  (Bf)(s) = lim Qmi) '[f(—se?) — f(—se ] itk = 1.
A0t

Here v, denotes the circle of radius s centered at 0. traversed counterclock-
wise, beginning and ending at —s. Then B:T — S, and B is the inverse
of A.

The equivalence of (7.7) and (7.8) is implicitly in [12], chapter IX,
especially page 235. Our formulation and the following simple proof may
be original.

LeMMma 7.5.4:S — T.

To avoid tiring the reader. we delay the proof of this until after Theorem
7.4.

Proof of Theorem 7.4, assuming Lemma 7.5. It is evident that B:T — S.
Indeed. this is transparent when & = 1. If & # 1.

(Bf )(s) = (k — D)2m) s ! f ’_,W fise?ye? + 1) el
so that B:T — S in this case as well.
As in Theorem 6.2, we begin by noting the special case

g,(s) = sYL

SO =TTk = k) ¢
for0 < Rey < Re k. Then g, € 5./, € I and Ag, = f,. just as in the
remark of Theorem 6.2. Now we study the cases A = 1 and k& # 1
separately.

Case 1. k = 1. Say f € T, then ABf = f by the Cauchy integral
formula. Ag 1s called the Stieltjes transform of g. in this case. Thus we
need only check BAg = gforall g € §.

First, we claim BAg, = g,. Indeed. Bf, = cg,. where

¢ =a 'U'(y)I(1 — y) sin 7y.
Thus

Jy = ABf, = cAg, = df,.
This provides a simple proof that ¢ = 1. Also, then,
bagy
We prove that B4g = gfor ali ¢ « 8. A dilauon argument reduces us 10
showing that (BAg)(1) = g(1). Further, we may suppose g(1) = 0. Indeed,
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if we can do this case, in general let
G(s) = g(s) — g(g,

for any fixed y, 0 < y < 1. Then (BAG)(1) = 0 implies that
(BAg)(1) = g(1),

since BAg, = g,. Now assume g(1) = 0; observe

0

1 I
(Ag){) = f s+ 0 Tads + T s 8 TR
= J& +J©
where g(s) = g(s). gs) = s 'g(s ). For any e > 1/2.

J(=d%) = fi—e %) = h(g) +

/ll . (s — ¢'%) "Z;(s)ds — /: . (s —e ¥ lQ(S)d.«y
where hi(¢) — 0 as ¢ — 0. Since g(1) = 0 and g is smooth,
lg(s)] < C(1 — s)forl/2 =5 = 1;
Thus
[J(=e9) = fl=e )| < Ih(g)] + 2Ce
Thus
f(—e%) — f(—e ) > 0as ¢ — 0

similarly for?; so (BAg)(1) = 0.
Case 2. k # 1. First suppose f € T, and in addition that for some

~

e > 0,
/()] = Oo(lzZ[¢ Yyasz—0;

we show ABf = f. Now, by the Cauchy integral formula,

A

(Bf)(s) = (k — 1)2mi) : /() fi(=0) —f(—0)]
X (s — DF 2,
where

fi(—1) = lim f(—1te").
6—0

f(—=1) = lim f(—re?).
i)

Note that as s — 0",
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f() [fo(=0) = [ (=016 = 0f i

« (CgRek—2 f() £ — O(Sf-l)’
while as s — oo,
G = s = b 2
< Okt 4+ ¢ fl s — 0 de

|
— O(SRC/\*z) + CSRCA*C‘I /l/‘ 17((1 . r)/\“zd[

_ O(SRC/\'—ef 1 ).

Thus we can substitute the expression for g = Bf into (7.7), interchange
integrals and find

ABf(§) = (k — DQ2mi) ' | (=0 = [ (=D)]

X [fjo (s — 0)F s + §)"‘ds]dt.

The inner integral is

[k — HDIMTk) '@+ o7F
=k =D 'c+pn!

fo STUs o+ O Kds

since 1 + { € CNR". Just as in the case k = 1, by the Cauchy integral
formula we now find ABf = f. These considerations apply to f, if Re k —
1 < Re y < Re k. Further, it is apparent from (7.8) that for all y (with 0
< Rey < Re k), Bf, = ¢,g, for some ¢,. But now,if Rek — 1 < Rey <
Re k,

fy = ABfy = ¢, Agy = ¢/,

so that ¢, = 1. By analytic continuation, then, ¢, = 1 for all y(0 < Rey <
Re k), and we always have Bf, = g,, BAg, = g,. This proves the
identity

(7.9) /W_W SR04 K249 = 20Tk — DDk — v) ]!

for 0 << Re y < Re k, and hence for all y € C. ((7.9) is actually the same
as [4] equation (6.5), after a simple change of variables. The expression for
Bf (s), that was used at the beginning of the paragraph, specialized to the
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case / = f(Rek — 1 < Rey << Re k). could also be used directly to prove
(7.91)

Next. let us show that BAg = g for all g € S. We need only show
(BAg)(1) = g(1); further we can assume that g vanishes at | to order at
least / = [Re k]. Indeed. let ¢ = 0 unless k& € N. in which case put
¢ = 1/2. Write

sg(s) = p(s) + v(s)
where p 1s a polynomial of degree no more than / — 1 and
v(s) = (1 — s)lv()(s),
where vy € C°(R*). Then we could always let
G(s) = g(s)—s ‘p(s) =5 ¥(s).
Now G € §. so if we can show
(BAG)(1) = G(1) = 0,

we find (BAg)(1) = g(1) from the corresponding facts for the g,. Now say
that ¢ vanishes at 1 to order at least /. Then if [¢] = 1,

I
(A2)() = [ (s + O Fg(s)ds

I - <
M e DT Rds = (D + [
where
a(s) = g(s). gs) = 5 2g(s7 ).

Because of the behavior of g at 1. the integrals converge. absolutely and
uniformly, for |{] = 1. To show (BAg)(1) = 0, it suffices then to show that
if 0 <ts < L.

[/(s + O ke + D =0 and

/ (s + M+ DR RaE = 0.
where vy = v,. It is easy to see that if { € v,

s+ O k=¢*1+s¢H K and

€+ D2 =

Writing z = (!, we see that we must show

I

f(ss“ + DA DN

'[/(1 + s:)*/‘(l + z)l‘"zdz

= 0.
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This is evident, since the integrand is analytic inside y. Thus
BAg = gforall g € S.
Finally, we must show ABf = fforall f € T. Let

I(s) = f S [ e )b 2 sdd.
Ass — 0",

I(s) = O(s ')
as § — oo,

I(s) = O(sReh <),

Thus we can substitute g = Bf, as given in (7.8), into (7.7). and
interchange the order of integration. We find

T

(7.10)  ABf(}) = (k — HQ2m) ™! f CF@. e+ 1k 2eldn

where, if —7 < 6 < 7,

F(0. %) o f(se?)sh s + &) hds

_ ) j.(sel(/)(xel(/)/\ |(e/(7’) - /\(S + g») - Ae’”ds,

Let us be very careful. Up to now we have used the principal branches of
the power functions. Right now, though, we must distinguish several cases.
Let ¢ = re'?, and define a function G(z) as follows. If Im ¢/? and Im ¢'¢
have opposite signs, or if ¢l =1 ore? = 1, let G(z) be the principal
branch of z A If Im €% > 0, Im ¢'? > 0, let G(z) be the branch of z *
which is analytic away from R" and agrees with the principal branch in
the upper half plane. Finally. if Im ¢? < 0.Im 'Y < 0. let G(z) be the
branch of z % which is analytic away from R" and agrees with the
principal branch in the lower half plane. Then we can say

(0]
F@, ¢ = 0 f(se)(se)E G (se? + re!? T Pl
B f(l)zl‘"lG(z + re"(w‘p))d:.
where B is the path z = 5¢®(0 < s < co). Deforming the contour of

integration to the path B’ on which z = se'?, we find

S N N
F@,¢) = /ﬂ f(se'P)se') T G(se'Y + re' VT V) Vs

= j() f(se¥)sh T i(s + re'%) hds = (Aglp)(re’ﬁ)

https://doi.org/10.4153/CJM-1984-039-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1984-039-0

682 DARYL GELLER

where
ggls) = [(se'®)sh e s,
Then, from (7.10),
AB[(§) = [B(Agg) Ir) r 70
= ggryr 7D = [ ) = (0.
as desired. This completes the proof.

Proof of Lemma 7.5. We show that Ag|¢jn¢~¢y has a smooth extension to
a segment with —1 in its interior. A dilation argument shows that —1
could be replaced by any point —s << 0. The proof that Ag|{1,1,§<“} can be
extended smoothly to {Im { = 0}\{0} will be similar.

Note that the function Fy({) = ¢ K can be smoothly extended to {Im §
= 0}\{0}., and further that for every n € 7" there exists F,({) which 1s
smooth on {Im { = 0}\{0}, analytic on the interior, and such that
F(,,”) — F,. (F, will be a constant times {" X if k ¢ Z . whileifn — k €
Z . F, will be of the form p({) log ¢ + ¢(¢) for certain polynomials p. ¢.)
Now, if Im { > 0, we can write, for any 8§ with 0 < § < 1,

18 (1-8) !
(Ag)§) = f o 6O felsds f Ly 0 feds

1—§
+ ¢ "f (s + ¢ ) "M g(s)ds

0

1i($) + 1) + I58)
A

(where 2(s) = 2g(s*]) ). 11(§) and Ix({) can clearly be extended
smoothly to a short segment with — 1 in its interior. As for 7, take any N
> Re k. For Im { > 0, we integrate by parts N times to see that

(1-8 !

I$) = Gy(§) + /

where Gy({) can certainly be extended smoothly in the desired way.
However,

s Fy(s + H)g™M(s)ds

(18 ! ,
f R N O)g™M(s)ds
can clearly be extended to a CM function to a segment including — 1. for
any M << N — Re k. Since N is arbitrary, the extendability property of Ag
is established.
Let f = Ag; we must still show that for all /
SO = OCRITRATh as ¢ — 0.

while
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SO =009 as§ - co.
Since £(¢) = ¢ KA 1) where 3(s) = s g(s ') € S. we need only
show the first of these. Now. if [{| = 1, note

-9
TASIEN [ f o g+ 1gs)[)ds
(-8 !
+ ‘ /1 s (s + ok /g(s)ds) ]
|
< C;[/o (lg(s) | + &(s) [ )ds
+ max{ [gMs):1 =8 =s=(1 -8 |

O§N§k+l+l}].

Here C,, C} depend only on / and not on g, and we have again integrated
by parts. Now suppose instead { = r{’, |[{’| = 1, r > 0. Then

JOOEy = g ) O,
where g.(s) = g(rs). Now
;{r = ’J\ ) 2(E)I/r-

Thus
1
SOy | < G Rkl l[r l /0 lg(s) Ids

—+

1/r
pRek=1 /() | 2(s) |ds

+ N max{ |g‘N)(s)l (1 = d)r =z
=1 -8 'MO=SN=k+1[1+1}.

From this, the desired property is apparent, and the proof is complete.

We leave to the reader to verify that f‘{1m§>()} and flgme<oy can be
extended analytically past R~ \ {0} if and only if g is real analytic. For an
application of this idea, see [17].
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