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We investigate the statistics of rogue waves occurring in the inverse cascade of surface
gravity wave turbulence. In such statistically homogeneous, stationary and isotropic wave
fields, low-frequency waves are generated by nonlinear interactions rather than directly
forced by a wave maker. This provides a laboratory realization of arguably the simplest
nonlinear sea state, in which long-time acquisitions are performed and compared with
theoretical models. The analysis of thousands of rogue waves reveals that some of their
properties crucially depend on four-wave resonant interactions, large crests being for
instance more likely than predicted by second-order models.
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1. Introduction

As a result of cheaper computational storage and improved sensors, the number of surface
waves included in databases of field measurements has soared over recent decades, going
from fifty thousand at the end of the 1970s to hundreds of millions in 2020 (Forristall
1978; Karmpadakis, Swan & Christou 2020). They allow for systematic correlation studies
with hindcast data, evidencing, for instance, that the probability of occurrence of rogue
waves (RWs) is independent of the instantaneous wind speed and direction (Christou
& Ewans 2014). These approaches are undoubtedly valuable as they single out the
environmental conditions that favour the occurrence of RW but remain far from being
exhaustive. For instance, the overwhelming majority of deep-water waves discussed in
this context in Christou & Ewans (2014) share the same directions of swell and current,
precluding the possible evidence of generation of RW by wave–current interactions, a
phenomenon yet recognized as a promising outlook (Adcock & Taylor 2014; Toffoli et al.
2015; Ducrozet et al. 2021). More fundamentally, drawing a comprehensive theory of

† Email address for correspondence: guillaume.michel@upmc.fr

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 943 A26-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

43
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:guillaume.michel@upmc.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.436&domain=pdf
https://doi.org/10.1017/jfm.2022.436


G. Michel, F. Bonnefoy, G. Ducrozet and E. Falcon

RWs based on these results is complicated by the lack of statistically stationary states: in
practice, wave elevation time series from different storms are spliced into 20 min samples
then recombined with others sharing similar proxies (e.g. wave mean frequency, mean
direction of propagation, etc.), which unavoidably introduces a bias and explains why the
distribution of rare events such as RWs is still discussed.

To assess theoretical models, laboratory experiments nicely complement field
experiments since they provide long-time statistics under controlled conditions. Most
of them take place in long flumes in which unidirectional waves, also referred to as
‘long-crested waves’, are randomly generated by a wave maker and propagate over more
than a hundred metres before being damped by a beach. Such experiments typically report
a transient overshoot of the kurtosis, of the spectral width and of the RW probability
associated with the emergence of high-amplitude structures locally akin to the so-called
Peregrine soliton (PS) (Onorato et al. 2004, 2005, 2006; Shemer & Sergeeva 2009;
Shemer, Sergeeva & Slunyaev 2010b; Shemer, Sergeeva & Liberzon 2010a; Cazaubiel
et al. 2018; Dematteis et al. 2019; Michel et al. 2020). This dynamics can be modelled
by the nonlinear Schrödinger equation (NLSE), an exact solution of the latter, localized in
both space and time, being the PS. The instability of a continuous wave train, called the
‘modulation instability’ and generating RWs, can also be studied in long one-dimensional
flumes and described by the NLSE, see, e.g. Lighthill (1965), Benjamin & Feir (1967),
Lake et al. (1977), Melville (1982), Chabchoub et al. (2017) and references therein. All
these results strongly depend on the directionality of the wave field, as shown both
theoretically through the existence of transverse instabilities (Badulin & Ivonin 2012;
Ablowitz & Cole 2021), numerically (Onorato, Osborne & Serio 2002; Soquet-Juglard
et al. 2005; Gramstad & Trulsen 2007; Toffoli et al. 2008) and experimentally (Waseda
2006; Onorato et al. 2009), questioning their relevance in accounting for in situ RWs.

On the other hand, another set of experiments investigates the theory of weak wave
turbulence (WWT), which predicts how energy spreads among random waves in nonlinear
interaction (Falcon & Mordant 2022). They take place in basins with reflecting walls and
deal with isotropic or at least strongly multidirectional waves (‘short-crested waves’). Until
recently, they essentially consisted of generating waves with a wavelength a fraction of the
length of the basin and measuring the energy cascade toward small scales (Denissenko,
Lukaschuk & Nazarenko 2007; Lukaschuk et al. 2009; Nazarenko et al. 2010; Deike et al.
2015; Aubourg et al. 2017; Campagne et al. 2018). A breakthrough occurred in 2020, when
it was evidenced that forcing multidirectional random waves of short wavelengths in such
basins not only generates even shorter wavelengths but also larger ones, corresponding to
the inverse cascade of WWT (Falcon et al. 2020). Such wave fields are valuable for the
study of RWs since the waves involved in their dynamics are spontaneously generated by
nonlinear interactions rather than directly forced by the wave maker. Moreover, they verify
isotropy, homogeneity and stationarity, and therefore offer a unique framework to confront
theoretical predictions on RWs to a simplified though strongly nonlinear model of the sea
state. The present study reports the statistics of thousands of RWs measured in such a state
and investigates the effect of high-order nonlinearities.

2. Experimental set-up

Experiments are carried out in the large-scale basin (40 m long × 30 m wide × 5 m deep)
of Ecole Centrale de Nantes, France. At one end of the basin, 48 flaps of width � = 0.62 m
are driven independently by different realizations of white noise filtered in the [ f0 −
�f , f0 +�f ] frequency range, with f0 = 1.8Hz the central frequency and �f = 0.2 Hz
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Figure 1. (a) Experimental set-up showing the 48 flap wave generator, the end wall and the 23 probes. Probes
1 and 2 are used to verify the wave maker behaviour and are not included in the data analysis. (b) Photograph
of a typical wave field (Run 3, the horizontal field of view is approximately one metre).

the bandwidth. Therefore, each flap generates independent waves of frequency around
f0 (wavelength λ0 = 0.48 m, group velocity vg = 0.43 m s−1) with a directional spread
that can be estimated as θ = 2 × (λ0/�) = 88◦. Three forcing amplitudes are considered,
hereafter referred to, in increasing order, as Runs 1 to 3. At the other end, a solid vertical
wall is built ahead of the usual beach. This set-up is sketched in figure 1(a).

As reported in Falcon et al. (2020), a statistically stationary, homogeneous and isotropic
nonlinear steady state is reached after a transient of up to twenty minutes. The general
picture is as follows: during this transient, the waves generated at f0 by the flaps travel
nearly 70 times the length of the basin (20 min/vg = 2.8 km). As they propagate, nonlinear
effects such as four-wave resonant interactions and very steep structures spread energy in
all directions. Some of these strongly nonlinear effects visible from the shore are found to
occur homogeneously in the basin, e.g. capillary waves generated by large gravity waves.
Note that white capping is not observed, see figure 1(b).

The surface elevations {ηi(t)}i=1...23 are recorded by 23 resistive probes of vertical
resolution 0.1 mm and frequency resolution 100 Hz during 27 to 30 h depending on the
run. These measurements can be used to verify the claims of stationarity, homogeneity and
isotropy. Stationarity is confirmed through the time evolution of statistical measurements
of the wave field, e.g. the standard deviation of surface elevations computed over one
minute samples, and is achieved after up to twenty minutes, see figures in Falcon et al.
(2020). The transients are not investigated in this study and only measurements performed
in the steady-state regimes are hereafter discussed. All probes are found to measure a
similar standard deviation of surface elevation up to a maximum relative difference of
10 %: homogeneity is closely achieved, and to remove the small remaining bias each
signal is normalized by the standard deviation of the corresponding probe. Isotropy is the
most challenging assumption to test since it cannot be investigated from a single elevation
signal. The cross-correlation between pairs of elevation signals is therefore introduced.
For each run, it is computed as

Ri,j(τ ) = 〈ηi(t)ηj(t + τ)〉√
〈ηi(t)2〉〈ηj(t)2〉

, (2.1)

where 〈·〉 denotes a temporal averaging. Over all runs, all lags τ and all probes i /= j, |Ri,j|
remains less than 0.2 and the probes are therefore largely uncorrelated, as expected from
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Figure 2. PSD of surface elevation for the three different steady states considered. Thin lines correspond to
experimental results and thick ones to their numerical model. The forcing bandwidth is also displayed.

their large spatial separation. Nevertheless, the remaining correlations evidence that Ri,j(τ )
is almost symmetric, i.e. that the wave field is essentially isotropic (Ri,j(|τ |) and Ri,j(−|τ |),
respectively, account for signals propagating from i to j and from j to i). Quantitatively,
with (i /= j) ∈ [13, 14, 15] standing for the three close central probes and τmax such that
Ri,j(τmax) is maximum, ∣∣∣∣Ri,j(τmax)− Ri,j(−τmax)

Ri,j(τmax)

∣∣∣∣ < 0.16, (2.2)

a strong indication toward isotropy. Finally, note that the power spectrum density Sη( f )
(PSD), reported in figure 2, reveals that most of the energy is located at frequencies
smaller than the forcing range, corresponding to waves forced by nonlinear interactions.
These PSDs present some features theoretically predicted for the inverse cascade of WWT
and derived under the assumption of stationarity, homogeneity and isotropy (Falcon et al.
2020).

It is instructive to detail the energy budget of this wave field. Energy is injected in
the wave system at a rate Pinj that can be measured through decay experiments and is
of several watts (see Falcon et al. (2020), note that this power is much smaller than the
one supplied to the wave maker). Conversely, the power dissipated by viscosity at high
frequency (>2 Hz) at the surface boundary layer can be estimated from the experimental
PSD and reads (Miles 1967)

Pdiss = 2Sρg
∫ ∞

2 Hz
Sη( f )α( f ) df , (2.3)

with S = 30 × 40 m2 the surface of the basin, ρ = 103 kg m−3 the density, g = 9.81 m s−2

the acceleration due to gravity, α( f ) = 2νk2 = 2ν(2πf )4/g2 the damping coefficient for
clean water and ν = 10−6 m2 s−1 the kinematic viscosity. We find typically Pdiss ∼
Pinj/10, meaning that most of the energy is dissipated by another mechanism than viscous
dissipation of high-frequency waves in the bulk. We believe that this mechanism is linked
with the nonlinear dynamics at large scales, which involves very steep structures acting as
localized sources of dissipation (e.g. cusps of very steep slope).
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Run 1 Run 2 Run 3

exp num th exp num th exp num th

σ (cm) 0.98 1.02 — 1.63 1.74 — 2.31 2.37 —
S 0.21 0.19 0.20 0.25 0.24 0.23 0.22 0.20 0.22
K − 3 0.18 0.06 0.06 0.20 0.09 0.07 0.17 0.07 0.04
ν 0.25 0.21 — 0.30 0.22 — 0.36 0.31 —
f0 (Hz) 1.68 1.60 — 1.43 1.37 — 1.18 1.13 —
fp (Hz) 1.38 1.35 — 1.15 1.20 — 0.90 0.90 —
fT (Hz) 1.59 1.54 — 1.33 1.31 — 1.06 1.04 —
εT 0.10 0.10 — 0.12 0.12 — 0.11 0.10 —
Ntot 3 779 963 — 3 385 889 — 2 548 368 —
NRW 937 840 — 899 798 — 475 450 —

Table 1. Standard deviation σ , skewness S , kurtosis K, dimensionless spectral bandwidth ν, mean frequency
f0, peak frequency fp, Tayfun frequency fT and steepness εT based on fT . Here, ‘exp’ denotes experimental
measurements, ‘num’ numerical models and ‘th’ theoretical estimates given by (4.1) and (4.3) and computed
based on the experimental PSD. The number of waves Ntot and RWs NRW , defined as H > 2HS with HS = 4σ ,
are also reported.

3. Numerical model

To identify high-order nonlinear effects in the experimental data, these wave fields
are reproduced numerically up to second-order nonlinearities. The elevation at a given
location is computed as η(t) = η(1) + η(2), where the linear contribution η(1) is the sum
of Nω × Nθ = 512 independent progressive waves (Nω = 16 angular frequencies, each
of them associated with Nθ = 32 directions), and η(2) is the nonlinear correction. More
precisely, η(1) reads

η(1)(t) =
Nω∑

nω=1

Nθ∑
nθ=1

anω,nθ cos
(−ωnω t + φnω,nθ

)
, (3.1)

where anω,nθ are random numbers drawn from normal distributions of zero mean and
standard deviations Anω . The phase constants φnω,nθ are uniformly distributed in the range
[0, 2π]. The leading-order nonlinear correction η(2) stems from Longuet-Higgins (1977)
(up to a correction factor of one half, see Srokosz 1986). In particular, it involves the wave
vectors of the linear waves, set to model an isotropic wave field as

knω,nθ = ω2
nω
g

[
cos

(
2πnθ

Nθ

)
ex + sin

(
2πnθ

Nθ

)
ey

]
. (3.2)

The angular frequencies {ωnω} are linearly distributed in a given range with �ω =
2π × 0.1 rad s−1. Both this range and the constants {Anω} are adjusted to reproduce the
experimental spectra at large scale, see figure 2. For each run, 5 × 107 values of η(t = 0)
and millions of waves from time series of η(t)with a time step of 0.01 s are computed from
independent drawings of {anω,nθ , φnω,nθ }. The former are used to obtain the data reported
in table 1 and figures 2–3 whereas waves are documented in figures 4–8.

4. Moments

The first moments of η(t) from experiments and numerical models are reported in table 1.
The standard deviation σ = 〈η2〉1/2 is found to increase with the forcing amplitude,
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while the skewness S = 〈η3〉/σ 3 and the kurtosis K = 〈η4〉/σ 4 remain roughly constant.
Other characteristics of sea states are computed, namely the dimensionless spectral
bandwidth ν = (m0m2/m2

1 − 1)1/2, with mn = ∫
Sη( f )f n df the spectral moments, the

mean frequency f0 = m1/m0, the peak frequency fp, the Tayfun frequency fT = f0/[1 +
ν2(1 + ν2)−3/2] discussed later in the manuscript (Tayfun 1993; Tayfun & Fedele 2007)
and the steepness εT = (2πfT)2σ/g based on fT , with g the acceleration due to gravity. The
dimensionless parameters measured experimentally (S , K, ν and εT ) correspond to typical
values observed in the ocean, although field measurements yield f0,p,T = O(0.1) Hz and
σ = O(1) m (Christou & Ewans 2014). This confirms that the wave field under study
shares the complex dynamics at work in the ocean while allowing the recording of ten
times more waves over the same acquisition time.

The skewness S can be compared with theoretical predictions. The linear model reduces
surface elevation to a sum of independent progressive waves of various frequencies
and amplitudes (η(1)(t) in (3.1)), for which S vanishes. In the 1960s, Longuet-Higgins
computed the second-order nonlinear correction η(2)(t) and showed that it only involves
non-resonant interactions, mathematically of the form of progressive waves that do not
verify the linear dispersion relation, the so-called ‘bound waves’ (Longuet-Higgins 1977).
The skewness then becomes non-zero and can be inferred from Sη( f ): simplified under
the assumption of an isotropic wave field, it reads

S =
∫

3k1

2πσ 3 Sη(k1)Sη(k2)I
(

k2

k1

)
dk1,2, (4.1)

where I is an explicit function, see Appendix A. Further, assuming a narrowband
frequency spectrum (ν � 1, i.e. f0 = fT = fp) numerically yields S = 2.07εT , in contrast
to S = 3εT for unidirectional waves of a narrowband frequency spectrum. The theoretical
prediction of S computed from (4.1) together with the experimental PSD Sη is reported in
table 1: it accounts for both numerical models and experimental results.

Several decades later, Janssen built on the canonical transformation introduced in
Zakharov (1968) to derive the surface elevation up to the next order and to consistently
compute the deviation of the kurtosis from three (Janssen 2009). Disentangling resonant
and non-resonant interactions, he obtained

K = 3(1 + Cdyn
4 + Ccan

4 ), (4.2)

where Cdyn
4 results from four-wave resonant interactions and only allows analytic

expressions for spectra that are narrow in frequency and direction (Fedele 2015; Janssen &
Fedele 2019). In contrast, Ccan

4 is associated with bound waves and can be inferred directly
from Sη( f ): for an isotropic wave field,

Ccan
4 =

∫
k2

1
π2σ 4 Sη(k1)Sη(k2)Sη(k3)ψ

(
k2

k1
,

k3

k1

)
dk1,2,3, (4.3)

where ψ is another explicit function, see Appendix B. Furthermore, if the spectrum
is narrowband in frequency, it reduces to Ccan

4 = 2.75ε2
T . The theoretical values of

3Ccan
4 computed from (4.3) and the experimental PSD Sη are reported in table 1. They

match our numerical models, in which no resonant interaction takes place, but strongly
differs from experimental measurements. This demonstrates that four-wave interactions
not only generate the low-frequency waves under study but also crucially affect their
statistics. Note that a similar conclusion has been reached in a regime of capillary wave
turbulence dominated by four-wave interactions (Shats, Punzmann & Xia 2010; Xia, Shats
& Punzmann 2010).
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Figure 3. The p.d.f.s of the normalized surface elevation η/σ from experiments (symbols) and numerical
models (thick coloured lines), compared with (a) a normal law and a Tayfun law and (b) the second- and
third-order Gram–Charlier series computed with S = K − 3 = 0.2.

5. Probability density functions (p.d.f.s)

The p.d.f.s of experimental and numerical normalized surface elevations f (u = η/σ)

are reported in figure 3, along with a normal law of zero mean and unit variance,
a Tayfun law and two Gram–Charlier series. The normal distribution describes linear
waves and accounts neither for the finite skewness nor for a kurtosis other than three.
The Tayfun law corresponds to unidirectional and narrowband waves with second-order
nonlinearities (Tayfun 1980), see Appendix C for its analytic expression. It only depends
on the steepness εT and has been shown empirically to provide a fair estimate of the
tails of f (u) for isotropic and broadbanded waves as well, provided that εT is artificially
tuned to generate the observed skewness (0.24 in the case of figure 3(a)) (Aubourg et al.
2017; Falcon et al. 2020). It is found here to fit the tails of the numerical p.d.f.s and
to underestimate the experimental ones. This difference in the probability of extreme
surface elevations translates into the difference in kurtosis discussed before. The p.d.f.s
are also compared with the low-order Gram–Charlier series commonly used in theoretical
work on surface waves, see Appendix D for definitions. They are reported in figure 3(b)
based on the typical experimental values S = K − 3 = 0.2 from table 1. As observed
in Klahn, Madsen & Fuhrman (2021), they both underestimate large positive values and
fail to capture large negative ones (for which the p.d.f. is either undefined, as for the
second-order Gram–Charlier approximation, or largely above the experimental data, as
for the third-order approximation).

Time series are then analysed in terms of zero down-crossing waves, i.e. events separated
by zero crossings (η = 0) in which η assumes negative then positive values (IAHR 1989).
By definition, the wave height H is the sum of the wave trough ηT (taken positive) and
wave crest ηC, the duration of the wave being the period T . In this manuscript, RWs are
defined as waves for which H > 2HS, with HS = 4σ the significant wave height, whereas
large crests are defined by ηC > 1.25HS. The threshold 1.25HS = 5σ corresponds to an
alternative definition of RWs in the literature (Fedele et al. 2016). The numbers of recorded
waves and RWs are reported in table 1.

Consider first the p.d.f. of ηC and ηT . For unidirectional and narrowband wave fields,
they have been explicitly computed by Tayfun up to second-order nonlinearities (Tayfun
1980), see Appendix E for their analytic expressions. Similar to surface elevation, the
p.d.f. of ηC has been empirically found to fit the tails of multidirectional wave fields
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Figure 4. The p.d.f.s of the normalized wave troughs and crests compared with numerical models (thick
coloured lines), a Rayleigh distribution (black solid line) and the first nonlinear corrections for unidirectional
and narrowband waves (dotted lines).
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Figure 5. The p.d.f.s of the normalized wave height H/HS from experiments (symbols) and numerical
models (thick coloured lines), compared with a Rayleigh distribution.

as well (Soquet-Juglard et al. 2005; Denissenko et al. 2007; Klahn et al. 2021). Both
experimental and numerical p.d.f.s are reported in figure 4 along with the theoretical
Rayleigh distribution (fR(ξ) = ξ exp(−ξ2/2), capturing linear waves) and the Tayfun
distributions with the steepness parameter tuned to describe a skewness of 0.24. Our
numerical models with bound waves only indicate that the fortuitous agreement between
Tayfun’s predictions for unidirectional waves and data from isotropic wave fields is
restricted to crests. Moreover, one of the main outcomes of this work is that large crests
are much more likely to be found experimentally than numerically or expected from the
Tayfun law.
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The wave height H = ηC + ηT is then investigated. As routinely observed, the
distribution of H/HS as a function of the wave period T peaks close to the inverse
Tayfun frequency f −1

T (Tayfun 1993; Tayfun & Fedele 2007), see the additional figures
in Appendix F. The experimental and numerical p.d.f.s of u = H/HS, reported in figure 5,
are compared with the Rayleigh distribution fR(u) = 4u exp(−2u2), which describes
narrowband waves with no assumption on directionality and is valid even when the
second-order nonlinearities are included (Longuet-Higgins 1952; Tayfun 1980). These
data are all found to be similar. The wave height H = ηC + ηT is therefore not only
independent of second-order nonlinearities, as can be shown theoretically, but also seems
to be largely independent of higher-order corrections. This is in sharp contrast with the
statistics of ηC and ηT detailed above.

6. Shape of large crests

The mean surface elevation at a given position right before/after a large crest occurs
(identified as η(0) with time origin shifted such as the crest manifests at t = 0) is
approximated at second order in the joint limit of small amplitude and frequency
bandwidth as

η(t) = η(0)

⎡
⎢⎢⎣
Ψ (t)+ ηCF(t)

Hs

1 + ηCF(0)
Hs

⎤
⎥⎥⎦ , (6.1)

where Ψ (t) = 〈η(0)η(t)〉/σ 2 is the autocorrelation function, F is a function of Sη detailed
in Appendix G and ηC is the linear component of η(0) (Fedele & Tayfun 2009). Previous
studies have only tested this result in the linear limit in which ηC = 0 (Soquet-Juglard
et al. 2005; Klahn et al. 2021). The normalized elevation η(t)/η(0) computed from (6.1)
with both ηC = 0 and ηC = 1.25Hs is reported in figure 6, along with experimental
and numerical values for crests such that ηC > 1.25HS. Our data confirm that the
linear approximation overestimates the depths of the troughs preceding and following
the crest, a discrepancy fixed with second-order corrections. However, both theoretical
models are symmetric in time reversal (since Ψ (t) = Ψ (−t) and F(t) = F(−t)) whereas
experimental measurements before and after the crest occurs persistently differ. This
asymmetry also manifests in steeper slopes before the crests (t < 0) than after (t > 0).
The numerical simulations of Fujimoto, Waseda & Webb (2019) have shown that, at a fixed
time and for directional wave fields, high crests are not symmetric in space as a result of the
four-wave resonant interactions not captured by the second-order model reported in (6.1).

7. Conclusion

Laboratory experiments with simplified directional spectra provide useful hints about the
various processes taking place in the ocean without the usual bias of, e.g. wave breaking
regularization in numerical simulations or varying environmental conditions in field
measurements. In this study, more than two thousand RWs were observed in statistically
homogeneous, isotropic and steady wave fields, allowing the predictions of commonly
used theoretical models to be confronted with data in which strongly nonlinear events
take place. To highlight the consequences of these high-order nonlinearities, numerical
simulations associated with similar PSDs and valid up to second order were carried out.
Therefore, they include the leading-order bound wave correction but not the resonant
interactions.
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Figure 6. Shape of the large crests (η(0) > 1.25HS) for Run 2. The coloured area corresponds to experiments
(mean value ± standard deviation), the black dashed line to numerical models and solid lines to first- and
second-order theories. Similar figures for Run 1 and Run 3 are reported in Appendix F.

The third and fourth normalized moments of surface elevation are compared with
theoretical results in which the leading-order bound wave correction is accounted
for. These analytic expressions are found to accurately describe the skewness of
both experimental and numerical data. However, they significantly underestimate the
experimental kurtosis while being in agreement with the numerical ones, evidencing a first
consequence of resonant interactions on the statistics. This discrepancy is also manifest in
the tails of the normalized surface elevation p.d.f.s.

The surface elevation time series are then split into individual waves whose heights,
crests and troughs are analysed. The wave height is found to be robust to high-order
effects, the experimental p.d.f.s being similar to the numerical ones and to the Rayleigh
distribution. A similar conclusion cannot be drawn regarding the wave crests and
troughs, for which large values are much more likely experimentally than numerically,
indicating that four-wave resonant interactions strongly affect their statistics. The impact
of high-order nonlinearities on large crests is further evidenced through the comparison
of their mean shape with first- and second-order theoretical predictions, none of them
being able to capture the asymmetry under time reversal. Therefore, the phenomenology
of rogue waves crucially depend on how they are defined: high-order nonlinear effects do
not seem to play a significant role if the wave height criterion H > 8σ is used, whereas
for RW depicted as ηC > 5σ (referred to as ‘large crests’ in this paper) they significantly
enhance their probability of occurrence. This finding demonstrates the current need for
higher-order theoretical models that disentangle troughs and crests.

Note that, as reported in previous studies (Soquet-Juglard et al. 2005; Denissenko et al.
2007; Aubourg et al. 2017; Falcon et al. 2020; Klahn et al. 2021), some features of our
second-order numerical model of isotropic waves are surprisingly well fitted by theoretical
models derived for unidirectional and narrowband wave fields, provided that the single
parameter they depend on, the steepness εT , is tuned to generate the observed skewness.
This applies to the tails of the p.d.f.s of both the normalized surface elevation and wave
crests, but not to the wave troughs.
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Many geophysical processes that are both challenging to model theoretically and
to disentangle from other effects in field experiments could benefit from similar
investigations with these isotropic nonlinear steady states. This includes, but is not limited
to, the impact of waves on mixing and air–sea fluxes, the effect of rain in calming the sea
and the effective parameters of random nonlinear waves (diffusion of a pollutant, damping
and scattering of a wave train, etc.).
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Appendix A. Detail on (4.1)

Following Janssen (2009) and its notations, the third moment of the surface elevation μ3
is related to the standard deviation

√
μ2 and to the skewness parameter C3 through its (51)

and (52), that are

C3 = μ3

μ
3/2
2

= 3

m3/2
0

∫
dk1,2E1E2

(A1,2 + B1,2
)
, (A1)

where m0 = ∫
dk1E1 and E(k) is the first-order spectrum. After lengthy but

straightforward computations using various equations of Janssen (2009), we obtain the
transfer coefficients A1,2(k1,k2) and B1,2(k1,k2) for deep-water gravity waves

A1,2 = 1√
k1k2

⎡
⎢⎣
(√

k1 + √
k2

)2
(k1·k2 − k1k2)

(
√

k1 + √
k2)2 − |k1 + k2|

−
(

k1·k2 − k1k2 − √
k1k2(k1 + k2)

2

)⎤⎥⎦ ,
(A2)

B1,2 = 1√
k1k2

[
(
√

k1 − √
k2)

2(k1·k2 + k1k2)

(
√

k1 − √
k2)2 − |k1 − k2|

−
(

k1·k2 + k1k2 − √
k1k2(k1 + k2)

2

)]
.

(A3)

It can be readily confirmed that this expression of the skewness corresponds to the
one initially derived by Longuet-Higgins ((3.11) of Longuet-Higgins (1977) corrected
by a misprint of one half). Given that the wave field is assumed isotropic, E(k) dk =
Sη(k)/(2π) dk dθ , with Sη(k) the surface elevation PSD. Moreover, since the transfer
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coefficients are invariant by a simultaneous rotation of k1 and k2, (A1) reduces to

C3 = 3

m3/2
0

∫ 2π

0
dθ
∫∫

dk1 dk2
Sη(k1)Sη(k2)

2π
√

k1k2

⎡
⎢⎣
(√

k1 + √
k2

)2
(k1·k2 − k1k2)

(
√

k1 + √
k2)2 − |k1 + k2|

+ (
√

k1 − √
k2)

2(k1·k2 + k1k2)

(
√

k1 − √
k2)2 − |k1 − k2|

− k1·k2 +
√

k1k2(k1 + k2)

⎤
⎥⎦ , (A4)

with k1 = k1ex and k2 = k2(cos θex + sin θey). Define a function I such that

I(α) =
∫ 2π

0
dθ

[ √
α
(
1 + √

α
)2
(cos θ − 1)

(1 + √
α)2 − √

1 + α2 + 2α cos θ

+
√
α(1 − √

α)2(cos θ + 1)

(1 − √
α)2 − √

1 + α2 − 2α cos θ
+ (1 + α)

]
, (A5)

and (A4) then reads

C3 = 3

m3/2
0

∫∫
Sη(k1)Sη(k2)k1

2π
I
(

k2

k1

)
dk1 dk2, (A6)

which corresponds, with C3 → S and m0 → σ 2 (our notations), to (4.1).

Appendix B. Detail on (4.3)

A similar procedure can be applied to compute the canonical contribution to the kurtosis
from (59) of Janssen (2009),

Ccan
4 = 4

m2
0

∫
E(k1)E(k2)E(k3)Ψ (k1,k2,k3) dk1 dk2 dk3, (B1)

where Ψ is an explicit interaction coefficient not detailed here. With E(ki) =
Sη(ki)/(2π) dki dθi and σ 2 = m0,

Ccan
4 = 4

(2π)3σ 4

∫
Sη(k1)Sη(k2)Sη(k3)Ψ (k1,k2,k3) dk1 dk2 dk3 dθ1 dθ2 dθ3. (B2)

Since Ψ is invariant under a simultaneous rotation of k1, k2 and k3, a first integration can
be performed

Ccan
4 = 4

(2π)2σ 4

∫
Sη(k1)Sη(k2)Sη(k3)Ψ (k1ex,k2,k3) dk1 dk2 dk3 dθ2 dθ3, (B3)

with k2,3 = k2,3(cos θ2,3ex + sin θ2,3ey). Finally, note that the function Ψ is such that

Ψ (k1ex,k2,k3) = k2
1Ψ

(
ex,

k2

k1
,

k3

k1

)
, (B4)

and define a function ψ by

ψ (α, β) =
∫
Ψ
(
ex, α

[
cos θ2ex + sin θ2ey

]
, β
[
cos θ3ex + sin θ3ey

])
dθ2 dθ3. (B5)
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The coefficient Ccan
4 then reads

Ccan
4 = 4

(2π)2σ 4

∫
Sη(k1)Sη(k2)Sη(k3)k2

1ψ

(
k2

k1
,

k3

k1

)
dk1 dk2 dk3, (B6)

which corresponds to (4.3).

Appendix C. Tayfun p.d.f. of surface elevation

The p.d.f. of surface elevation can be explicitly computed in the case of a unidirectional
and narrowband wave field in which only the first nonlinear correction is computed.
However, several misprints make the expression of this p.d.f. difficult to obtain from
the literature. In particular, the original derivation of Tayfun (1980) must be corrected
as follows: his (24) should read

Fξ (u) = (2π)−1/2
∫ ∞

α(u)
e−τ 2/2 {erf [A(τ, u)+ β] + erf [A(τ, u)− β]} dτ, (C1)

and his corrected (27) is

A(τ, u) = β

√
1 +

√
2γ u
β

+ τ 2

2β2 . (C2)

Note also that only approximate expressions of this p.d.f. are reported in Soquet-Juglard
et al. (2005): indeed, their (7) becomes undefined for large negative values of the surface
elevation (if their 1 + 2σ z < 0, their C(0) required in the integral is no longer real valued).

For completeness, the full set of equations required to compute the p.d.f. f (u) of the
normalized surface elevation u = η/σ (σ = 〈η2〉1/2) is reported below

f (u) = dF
du
, F(u) = 1√

2π

∫ ∞

α(u)
exp

(
−τ

2

2

)
[erf (A(τ, u)+ β)+ erf (A(τ, u)− β)] dτ,

(C3a,b)
with

A(τ, u) = β

√
1 +

√
2γ u
β

+ τ 2

2β2 ,

β = 1√
−1 + √

1 + 4σ 2k2
,

γ =
√

1 + √
1 + 4σ 2k2

2
, (C4a–c)

and

α

(
u � − β√

2γ

)
= 0, α

(
u < − β√

2γ

)
= β

√√√√−2

(
1 +

√
2γ u
β

)
. (C5a,b)
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Appendix D. Second- and third-order Gram–Charlier series

A theoretical approach to the p.d.f. of surface elevation consists in using low-order
Gram–Charlier series. Following Klahn et al. (2021), we define in this manuscript the
second-order approximation as

fGC2

(
u = η

σ

)
= 1√

2π
e−u2/2

[
1 + S

6
H3(u)

]
, H3(u) = u3 − 3u, (D1a,b)

and the third-order one

fGC3

(
u = η

σ

)
= 1√

2π
e−u2/2

[
1 + S

6
H3(u)+ 1

24
(K − 3)H4(u)+ 1

72
S2H6(u)

]
, (D2)

with
H4(u) = u4 − 6u2 + 3, H6(u) = u6 − 15u4 + 45u2 − 15. (D3a,b)

Appendix E. Tayfun p.d.f. of the crests and troughs

For unidirectional and narrowband wave fields, the p.d.f. of crests accounting for
second-order nonlinearities reads (Tayfun 1980)

fC(ξC) = 2ε

−1 + √
1 + 4ε2

(
1 − 1√

1 + 2εξC

)
exp

[
−
(−1 + √

1 + 2εξC
)2

−1 + √
1 + 4ε2

]
, (E1)

with ξC = ηC/σ and σ = 〈η2〉1/2 (note that the p.d.f. reported in Tayfun (1980) considers
instead the wave crest normalized by the standard deviation of the linear component).
The steepness parameter ε = σk, with k the central wavenumber of the narrowband wave
fields, is in that case related to the skewness S = 3ε + O(ε3). Similarly, for the troughs,

fT(ξT) = −2ε

−1 + √
1 + 4ε2

(
1 − 1√

1 − 2εξT

)
exp

[
−
(−1 + √

1 + 2εξT
)2

−1 + √
1 + 4ε2

]
, (E2)

with ξT = ηT/σ .

Appendix F. Additional wave features

The raw data of the normalized wave height H/HS plotted vs the wave period T are
reported in figure 7, while the shape of the large crests for Runs 1, 2 and 3 are shown
in figure 8.

Appendix G. Expected shape of large waves

From (5.7) of Fedele & Tayfun (2009), define in the deep-water and isotropic limit the
function

F(t) = 2
(2π)2σ 3

∫
Sη(k1)Sη(k2)

× [
(A1,2 + B1,2) cos(ω1t) cos(ω2t)

−(A1,2 − B1,2) sin(ω1t) sin(ω2t)
]

dk1 dk2 dθ1 dθ2, (G1)

943 A26-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

43
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.436


Statistics of rogue waves in isotropic wave fields

0

0.5

1.0

1.5

2.0

2.5

Rogue waves

1/f0
1/fT
1/fp

Regular waves

Run 1

0.5 1.0

Wave period T (s)

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5
Run 2 Run 3

0.5 1.0

Wave period T (s)

0.5 1.0 1.5

Wave period T (s)

N
o
rm

al
iz

ed
 h

ei
g
h
t 

H
/
H

s
(b)(a) (c)

Figure 7. Experimental normalized wave height as a function of the wave period. The mean value is plotted in
thick black and peaks close to the Tayfun period 1/fT . Vertical lines indicate f −1
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Figure 8. Shape of large crests (η(0) > 1.25HS) for Runs 1, 2 and 3. The coloured area corresponds to
experiments (mean value ± standard deviation), the black dashed line to numerical models and solid lines
to first- and second-order theories. The central figure corresponds to figure 6.

with ω1,2 = √
gk1,2. A first angular integration can be performed to obtain

F(t) = 1
πσ 3

∫
Sη(k1)Sη(k2)

× [
(A1,2 + B1,2) cos(ω1t) cos(ω2t)− (A1,2 − B1,2) sin(ω1t) sin(ω2t)

]
dk1 dk2 dθ,

(G2)

with k1 = k1ex and k2 = k2(cos θex + sin θey). Further assume

J(α) = √
α

∫ 2π

0
dθ

[ (
1 + √

α
)2
(cos θ − 1)

(1 + √
α)2 − √

1 + α2 + 2α cos θ

− (1 − √
α)2(cos θ + 1)

(1 − √
α)2 − √

1 + α2 − 2α cos θ
+ 2

]
, (G3)
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to obtain

F(t) = 1
πσ 3

∫
Sη(k1)Sη(k2)k1

×
[

I
(

k2

k1

)
cos(ω1t) cos(ω2t)− J

(
k2

k1

)
sin(ω1t) sin(ω2t)

]
dk1 dk2, (G4)

which allows simple numerical integration. The elevation profile η(t) close to a crest of
linear elevation ξc then follows from (5.10) of Fedele & Tayfun (2009) and reads at leading
order

η(t) = ξcΨ (t)+ ξ2
c F(t)
4σ

, (G5)

with Ψ (t) = 〈η(0)η(t)〉/σ 2 the autocorrelation function.
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