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TEMPERED REPRESENTATIONS AND
THE THETA CORRESPONDENCE

BROOKS ROBERTS

ABSTRACT. LetV beaneven dimensional nondegenerate symmetric bilinear space
over a nonarchimedean local field F of characteristic zero, and let n be a nonnegative
integer. Suppose that o € Irr(O(V)) and = € lrr(Sp(n, F)) correspond under the
theta correspondence. Assuming that ¢ is tempered, we investigate the problem of
determining the Langlands quotient datafor 7.

L et F beanonarchimedeanlocal field of characteristic zero, let Vi, be anondegenerate
symmetric bilinear space over F of Witt index m and even dimension |, and let n be a
nonnegative integer. Fix a nontrivial additive character ¢ of F. Let wmn be the smooth
Well representation of O(Vin) x Sp(n, F) associated to ¢, where Sp(n, F) is the isometry
group of the nondegenerate symplectic bilinear space of dimension 2n. Let R(O(Vin))
be the set of ¢ € Irr(O(Vm)) such that o is a honzero quotient of wmn, and define
Rm(Sp(n.F)) similarly. The Howe duality conjecture states that the set known as the
theta correspondence

{(0,7) € Ra(O(Vim)) x Rn(Sp(n, F)) : Homgy, ). o (@imn: 0 @ ) # O}

is the graph of abijection between R,(O(Vm)) and R m(Sp(n. F)). The conjecture holds
if the residual characteristic of F is odd [W]. If ¢ € Irr(O(Vy)) and 7 € Irr(Sp(n. F))
correspond, i.e., the above homomorphism space is nonzero, then one can ask how
properties of o carry over to properties of «. In therange dimgVy =1 < 2n,if o is
unramified, and the L-group parameter of o is given, then « is unramified, and the L-
group parameter of 7 isknown [K-R2]. Also, if parabolic inducing datafor ¢ is known,
then parabolic inducing datafor 7 is known [K1]. In this note, given that ¢ is tempered,
weinvestigatethe problem of determining the Langlandsquotient datafor 7. Throughout
the note, we do not assumethe Howe duality conjecture or that the residual characteristic
of F isodd.

Our first main result addresses the question of when = is tempered. In the following
theorem, if k a positive integer, then Sty is the Steinberg representation of Gl(k, F), and
X is the quadratic character of F* defined by x (t) = (t, disc(Vin)).; for the definition of
the Langlands quotient, see Section 3.
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THEOREM 4.2. Supposethat o € Irr(O(Vyy)) is tempered, and = € Irr(Sp(n. F)) is
such that

HomO(Vm)xSp(n_F)(wm.n- o® ﬂ') # 0.

(1) If 2n < dimg Vi, =1, then 7 is tempered;
(2 If2n>dimg Vip =1, 0 ¢ Ry1(O(Vim)), and 7 is not tempered, then

=L@ @& D7),

where
12 IS DSty © -+ © S) @ (et et /2912

with min(py, . .., ps) > n—I/2+1andcaninteger suchthatmin(ps..... ps)—1>
c>0.

It would be very interesting to determine whether 7 asin (2) of Theorem 4.2 actually
exist, i.e., whether for 2n > dime Vi = | thereexist o € Irr(O(Vin)) and 7 € Irr(Sp(n. F))
suchthat o and 7 correspond, o is tempered, o ¢ Rn_1(O(Vim)), but 7 is not tempered.

Our second main result considers the situation when n varies. Assume now that
s Irr(O(Vm)) is pre-unitary, correspondsto «, and that = is tempered. Suppose that
n’ > n, and that o also correspondsto ' € Irr(Sp(n’, F)). Then the Langlands quotient
datafor 7’ is determined by 7 in therange2n’ > 2n > dimg Vi = |

THEOREM 4.4. Supposethat o € Irr(O(Vin)) ispre-unitary. Letnandn’ be positivein-
tegerssuch that 20 > 2n > dimg Vi = . Let 7 € Irr(Sp(n. F)) and 7’ € Irr(Sp(n'. F)).
If  istempered and

HomO(vm)x Sp(n.F)(wm-n' oc®m #0, Homo(vm)X Sp(n’.F)(wme”" o) #0,

then
T =L M ex] [T e ex| M2 o).

Of course, one expects analogous results if one begins instead with an element of
Irr(Sp(n, F)). One obstacle, however, to extending Theorem 4.4 to this case is the key
result Proposition 4.3, from [K-R1].

One application which these results might make possible is the computation of the
standard L-functionsof thetalifts 7’ asin Theorem 4.4, and in particul ar the determination
of poles of these L-functions. Indeed, this was our motivation for this note. We plan to
return to this topic on alater occasion.

NOTATION. We will use the following notation. Let G be a group of td-type, as
in [Car], with a countable basis. Let S(G) be the C vector space of locally constant,
compactly supported C valued functions on G. Let Irr(G) be the set of equivalence
classes of smooth admissibleirreducible representationsof G. Welet 1 denotethetrivial
representation of G. Let 7w be a smooth representation of G. The smooth contragredient
representation of 7 is 7 and if = admits a central character, we denoteit by w,. If G is
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contained asanormal subgroupin G/, thenfor g’ € G’, welet g’ - = bethe representation
of G with the same space as 7 and action (¢’ - 7)(g) = 7(¢’*gg’). A representation 7
of G is pre-unitary if there is a nondegenerate G invariant Hermitian form on the space
of 7. Suppose G is unimodular, and M and N are closed subgroups of G such that M
normalizesN, MNN =1, P=MN isclosedin G, N isunimodular and P\ G is compact.
Fix aHaar measure dn on N, and for m € M, let 6(m) be the positive number such that
al f € S(N),

/N f(m~nm) dn = §(m) /N f(n) dn.

The normalized Jacquet module Rn(7) of 7 is the smooth representation of M defined
by Rn(7) = v @ 61/2, where my is the quotient of 7 by the C subspace generated by
the vectors v — m(n)v, for v € = and n € N. We define Rn(m) = Rn(7¥)Y. Suppose
that o is a smooth representation of M. Then IndS ¢ is the representation of G by right
translation on the C vector space of smooth functionsf on G with valuesin ¢ such that
f(mng) = 6(m)/2¢(m) f(g) forme M, n € Nandg € G. Wehave Frobeniusreciprocity:
Homg(rr. IndS o) = Homw (Ru(r). o) and Homg(Indg o, ) = Homy (. Ru(m)¥). If 7
is admissible we have Homg(Indg o, ) = Homy (o, R (). Throughout the paper, F is
anonarchimedean local field of characteristic zero, and (, )r isthe Hilbert symbol of F.
Welet | | denote the valuation on F such that if 4 isan additive Haar measure on F, then
p(xA) = |x|u(A) forx € Fand A C F.1f 7 € Irr(Gl(q. F)), then we let &(r) bethe unique
real number such that the central character of 7 ® |det|%™ is unitary. If n is a positive
integer, then an ordered partition of nis ak-tuple (ny, ..., ny) of positive integers such
that n=ny +--- + ne. If Gisthe group of F-points of a connected reductive algebraic
group defined over F then 7 € Irr(G) is tempered if and only if w, is unitary and every
matrix coefficient of 7 liesin L2*(G/ z(G)) for al € > 0. 1f = € Irr(Gl(n, F)), then =
is essentially tempered or essentially square integrable if = © |det|~™ is tempered or
square integrable, respectively. The algebraic closure of F isF. In thisnote, all functions
act on the left, and composition of functionsis taken from right to left. In this paper we
do not make assumptions about the residual characteristic of F or assume Howe duality.

1. Thegroups. Letqbe apositive integer. We use the standard notation for GI(q).
Asamaximal F split torus of Gl(q) we take the subgroup of diagonal matrices. Asabase
for the positive roots of GI(q) we take A®' = {e; — ey,&, — €3.... .€-1 — €&}. For an

subgroup defined by A% — {€q, — €4,+1, Eqecp — CqrtcptLs -« « » Etrotgn s — ot 1+1 )
..... ...q, denote the Levi factor and unipotent radical of Pgll.....qn’
respectively. We also define PG, = P, = MG, = MGy = Gl(a, F) and Ng, = N, = 1.
Asusual, we identify the center of GI(q, F) with F* viat — t - Iq.
Let Vo be a vector space over F of dimension d endowed with an F-structure and a
nondegenerate symmetric bilinear form (, )o defined over F which is anisotropic over

F. Let Vo = Vo(F). For manonnegative integer, let

Vin=Fx1 @ &Fxm) & Vo & (FX, D - -+ & FX).
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and define the symmetric bilinear form (, )m on V, as the direct sum of (, )o and
the form defined by (x.X%) = (x.x) = 0 and (x,x) = & for 1 < i,j < n. The
Witt index of Vi, = Viy(F) ism. Let | = dimg Vi, We fix the maximal F-split torus
of SO(Vm) whose elements are the maps diag(t, . . . , ty) which send x; to tjx;, are the
identity on Vo, and send x/ to t1x/. As a base for the F-roots of SO(V ) with respect
to our torus we take A = {e; — e;, &, — €3,..., €n-1 — em.em_1 *+ ey} if d = 0 and
{e1— e, —63,...,6n1 — €n, en} otherwise. For 1 < k < m, consider the parabolic
subgroup defined by the complement of the k-th element of A. Then the group PC of F
points of this parabolic subgroup is the stabilizer in SO(Vyy) of Fx; & - - - @ Fx. We shall
write the elements of PE° with respect to the decomposition

Vin = Xk & Vim—k & Yk,

where X = Fxq @ - @ Fxcand Yy = FX{ & - - - & FxX.. Then the elements of PE° have

the form

( h * % )

0 g *

\o 0 h1
where h* is the unique element of GI(Yy) such that (hx,y) = (x. h*y) for x € Xy and
Yy € Yk, and g € SO(Vnk)- Often, we will identify GI(X,) and GI(Yy) with GI(k, F) via
our choice of bases. Then h* = th. Let M° be the Levi component of Py and let N
be the unipotent radical of PE°. Via the isomorphism GI(X) =~ GI(k. F), we have an
isomorphism M =~ GI(k, F) x SO(Vm_). In addition, let P bethe subgroup of elements
of O(Vny) which stabilize Xy, i.e., the elements of the aboveform, with g € O(Vp_). Let
My be the subgroup of elements of Py of the form

/h 0 O )
0 g 0 |.
\o 0 ht
Then My normalizes Ni, Mg TNk = 1, and Pk = MiNk. Also, My =~ Gl(k, F) X O(Vwk).
Welet Pg = Mg = O(Vpn) and Ng = 1.
For n anonnegative integer, let

Wh=Fy;®--- ®Fyn®Fy, & --- @ Fy,

and endow Wy, with the symplectic bilinear form such that (yi,y;) = (y{,y/) = 0 and
<yi,%> = &j for 1 < i,j < n. Let W, = W,(F). We fix the maximal F-split torus
of Sp(Wn) whose elements are the maps diag(ty, - - - , tn) which send y; to tiy; and y;
to t1y/. As a base for the F-roots of Sp(W,) with respect to our torus we take A’ =
{e1—e.6—63.....6.1 — ey, 2e,}. For 1 < j < n consider the parabolic subgroup
defined by the complement of the j-th element of A”. Then the group P} of F points of
this parabolic subgroup is the stabilizer in Sp(Wy) of Fy, @ - - - & Fy;. We will write the
elements of PJ-’ with respect to the decomposition

Wh =X & W @Y/,
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where X/ =Fy1 & --- @ Fyjand Y] = Fy; @ - - - © Fy/. Then the elements of P have the

form
(h’ * * )
0 g =* |,
\o 0 n?
where ' is defined as the unique element of GI(Y]) such that (hx,y) = (x,h"y) for
x € X andy € Y], and g’ € Sp(Wh-j). Let M be the Levi component of P} and let
N/ be the unipotent radical of P{. Then Mj' 2 GI(j, F) x Sp(Wh-;). More generally, if

..... ;, be the subgroup of P/ whose

Ny = 1.

2. Results on square integrable and tempered representations. In this section
we recall some known results on square integrable and tempered representations. We
also prove some results that will be used in the proof of part (2) of Theorem 4.2. Let
o € Irr(O(Vm)). Then olso,) = 01 @ -+ & o, for some gj € Irr(SO(Vy)), 1 < i <t.
We say that o istempered if and only if every o; is tempered.

For the following theorem, see [C], Corollary 4.4.5 and Theorem 4.4.6.

THEOREM 2.1. Let1 < k < mand1 <j < n. Leto € Irr(O(Vm)) and 7 €
Irr(Sp(n, F)) be tempered. Suppose that Ry, (o) and Rw/(7) are nonzero, and o1 @ o2 €
Irr (Gl (k. F) x O(Vin—)) and my @, € Irr(GI(j. F)x Sp(n—j. F)) arenonzeroirreducible
subquotients of Ry, (o) and ﬁNj/ (), respectively. Then

1< |Wrrl(t)|', 1< |Ww1(t)|

for |t < 1.
Let p = p1+p2 beanorderedpartition of p. Letd € Irr(GI(p, F)) besguareintegrable.
Supposethat Ryg _ (8) isnonzero, andé; @ &, € Irr(Gl(p1. F) x Gl(p2, F)) isanonzero
1 P2
irreducible subquotient of ﬁNﬂy o (6). Then

1 < |ws, (t2)] |ws, (t2)]

for |ta] < [to].

PROPOSITION 2.2. Let p € Irr(Gl(q, F)) be essentially square integrable. Let q =
01 + 2 bean ordered partition of q. Assumethat RN(%'-QZ (p) isnonzero, and that p1 ® p2 €
Irr(Gl(q, F) x Gl(q, F)) isanonzeroirreduciblesubquotient of Rug, (0). If p2 = acodet
is one dimensional, then p =~ Stq ® G(det), where § = a| |%/272 and ais an integer such
that0 <a <.

PROCF. By the classification of essentially square integrable representations, p is a

quotient of | = 156%9(y @ (v © |det]) © -~ @ (v © |det|¥ ")), where n divides g and

v € Irr(Gl(a/n., F)) is supercuspidal. Since Ryar _ is exact, it follows that Rye _ (0)
N‘hﬂz NC|1-C|2
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is a quotient of Rug., (I) Hence, p1 ® p2 is an irreducible subquotient of Rug (I)
By, for example, the summary [Rod], Proposition 3, p. 204, for some permutatlon 7 of
{L...., q/n}, p1 @ p2 isasubquotient of

Gl(q1,F)xGl(0,F) (1)—1 (q/n)—1
Indee® o Br-aiq.ry (O @100 @@ (0 @ [detf D).

where the partition of g defined by z, namely g = n+ --- + n, is a refinement of the

partition g = g1 + g, and z(i) < z(i + 1) if inisnot g;. Thisimpliesthat q; and g, are
divisible by n, and that

1) <---<Zo/n). ZAq/n+1)<--- <Zg/n).
It follows that p, is an irreducible subquotient of
|ndS:Gﬁ?2r:F)((«/ ® |det|Z(Q1/N+1)—1) R --O® |det|Z(Q/n)_1)).

On the other hand, p; = o o det embedsin

(G, - - -
Ind%ﬁ?i”(ﬂ |0-®)/2 @ o| |G-R)/2g ... @ af @ D/2),

See [K2]. By, for example, [Rod], Proposition 5, p. 206, n = 1, and

..........

a |(1—qz)/2 Laf |@D/2

is a permutation of

y| DL

Asz(qi+1) < --- < Z(0), it followsthat | [A0+*D-1 = o| |@*+1-%)/2 for 0 < i < gp— 1.
Hence, v = o |(1-%®)/2+1-Za++1) for 0 < | < qp — 1, and weseethat i +1— z(qy +i +1)
for0<i<qgy—1lisconstant. Thus, z(gy +i+1) =i+1+zq) —qgefor0<i <, — 1.
This implies q > z(q) > gp. S0 7 = «f |(-®)/2%-2D = | |~(®-D/2-2 where a =
z(q) — Ge. ]
COROLLARY 2.3. Let p € Irr(Gl(q.F)) be essentially square integrable. Let q =
01 + gz bean ordered partition of q. Assumethat ﬁN% . (p) isnonzero, and that p» ® p1 €
> A1
Irr(Gl(qz. F) x Gl(qs. F)) isanonzeroirreduciblesubguotient of Rug, (0). If p2 = acodet
W M1
is one dimensional, then p =~ Stq ® G(det), where § = a| |%/272 and ais an integer such
that0 <a <.
PrROOF. We have by Corollary 4.2.5 of [C] and a straightforward isomorphism,
ﬁN%,ql (p) = RN‘?z'-ql (p")" =~ RN%.ql (p) =~ R,\,glyq2 (p). The corollary now follows from
Proposition 2.2. ]

COROLLARY 2.4. Letthe notation beasin Corollary 2.3. Thena < g1 /2.
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PrROOF. Lete = ¢(p). Since p, ® p1 isanonzeroirreducible subguotient of ﬁN%Aql (o),
it follows that (p, ® |det|™®) ® (p1 @ |det|®) is a nonzero irreducible subquotient of
ﬁN%‘ql(p @ |det|~®). Since p ® |det|~® is square integrable, takingt; = tandt; = 1in
Theorem 2.1, we havefor |t| < 1,

1 < [w,, )]t~
1 <af(t)[%®]t| %

1< |5(t)|CI2 |t|—(Q1/2—a)QZ—GQZ
1< [t|"@/2-ac

Here we have used that p =~ Sty ® B(det), so that [5(t)|% = |t|*®. This implies that
a<o/2 n

3. TheLanglands classification for Sp(n, F). We recall the Langlands classifica-
tion of Irr(Sp(n, F)) in terms of tempered representations. See [T], Section 6.

THEOREM 3.1 (LANGLANDS CLASSIFICATION). Letn = ng +--- + ny + ng, where
Ny, ....MN, Np are nonnegative integers, with ny,....n positive if t > 0. Let 6 €

Irr(Gl(mi, F)) for 1 <ii <tand € Irr(Sp(no. F)) besuchthat:
Q) 61,..., oy are essentially tempered and

&61) > - > eb) > 0;

(2) T istempered.
Then the representation Indﬁ’,n’f”‘Fn)t (61 @ -+ @ & © ) has a unique nonzero irreducible
quotient L(6: @ - - - @8 @7), Indﬁ’,:(”‘? ¢y @- - @6 @7) hasauniquenonzeroirreducible
subrepresentation S(61 @ - - - ®6tlétf), andL(1® - @671 ® - Q6 DT).
Moreover,if r € Irr(Sp(n, F)) thenthereexist auniquedecompositionn = ng+- - -+n+ng
as above, uniqued; € Irr(Gl(n, F)), 1 <i <t, and unique € Irr(Sp(no. F)) such that
(Dand(2) holdand T ~ L(61 ® - - - ® 6t @ 7).

4. Applications to the theta correspondence. In this final section we give the
proofs of Theorems 4.2 and 4.4. Fix anontrivial additive character ¢ of F. We let wmn
denote the Weil representation of O(Vm) x Sp(n, F) on S(V") associated to 1. Explicitly,
wmn IS given by the following formulas.

wmnn(@ D) = ¢(g V),

amn (1§ a1 ) ) = x(cet @) cet (@) (v,

ann (1 (g 5)) #00 = 0 (5000 o)

ana (1 8 5)) w00 =000
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Here, ¢ isthe Fourier transform defined by
500 = [ oW (trv.v)) av,

where the Haar measure is such that 3(v) = ¢(—V) for ¢ € S(V") andv € V", and
is afourth root of unity that depends only on Vo, n and . If g € O(V), a € Gl(n, F),
beMF),b=badv=(v,....V), V = (Vj,..., V) € V", we write g~tv =

(@ Vi, g7 VA), VA = (VL W) (@), (V) = (Vi V), by = B v Vh). Also,
is the quadratic character of F* defined by x(t) = (t, disc(Vim)).. We note that y does
not depend on m. We see that if Vi, = 0, then wmp = 1 and if n = 0, then wmp = 1.

We let R(O(Vm)) bethe set of o € Irr(O(Vin)) such that o is anonzero quotient of
wmn restricted to O(Viy). We define R m(Sp(n, F)) similarly.

We recall the computation of the Jacquet modules of wmpn from [K1]. We need some
notation. For 1 < j < nand 0 < k < r = min(m.j) let Q) be the subgroup of M; of

elements of the form
h" x 0 0 0

0 h o 0 0
0 0g O 0
0 0 =10
\o o .t
whereh” € GI(j—k.F) andh’ € GI(k. F). Also, definearepresentation o of Gl(k, F) x
Gl(k, F) on S(GI (k. F)) by ok (h. ) (X) = ¢(h~Ixh).

THEOREM 4.1 (KuDLA). Let1 <j < nandr = min(m,j). Then the representation
Ri(wmn) of O(Vim) x M/ hasa filtration

[eoNe]

0=F" CF cF™c..- cF' CF°=Ry(wmn)
suchthatfor 0 <k <rr,

O(Vim) x M/
/P 2 Indp S ™ GOk @ wmen -

Here, the induction is normalized, and the action is defined by

"« 0 0 0
(h % O WO 0 0
0O0g * |./]0 0g¢g O 0 (¢ @ ¢)
\o o th/ |0 0 0 ! o0

0 0 0 % 't

= ¢i(det h)¢ i (deth)¢ (deth)ark(h. h')¢ @ wn—kn-j(0. 9)¢.

where
fk - | |7(I7k71)/2~ élk - X| |(Ifkfl)/2~ élk, - X| |I/2—n+(j—kfl)/2'

The statement of Theorem 4.1 was obtained by repeating the proof of the correspond-
ing theorem in [K1], adjusting for our conventions. See also [MVW)], Chapitre 3. We
can now give the proof of Theorem 4.2:
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PROOF OF THEOREM 4.2. First we make a preliminary observation. Let 1 <j < n,
and let p and p’ be smooth admissible representations of finite length of GI(j, F) and
Sp(n — j, F), respectively. Assume that

Homo(vm)xsp(n_’F)(wmn. o® Indg?(n-F)( 0@ ) 70.
Then by Frobenius reciprocity,
HomO(Vm)xGI(j,F)xSp(nfj.F)(RNj’(wm.n)s c@p®p) #0.

By Theorem 4.1, thisimplies that for somek with 0 < k < min(m,j),

OVm)xM ./ 1 /
HOMOw,)xci(i.Fxspin-i) (1Ndpxqy,  SkEKEK Tk @ Wm-kn—j- 0 © p @ p) 7 0.

By Frobenius reciprocity again, there isanonzero Gl(k, F) x O(Vm_x) x GI(j — k, F) x
Gl(k, F) x Sp(n —j. F) map

*) Ek€kéKOK © Wm—kn—j — R (0) ® ﬁNJGij(P) ®@p.

Proof of (1). Assumethat n < |/2 and = is not tempered. As in Theorem 3.1,
™ SE1® - @6®7), wheren = n+- - +ry+nowitht > 0,8 € Irr(Gl(ni. F)), 1 <i <t,
are essentially tempered such that (1) > --- > e(&) > Oand 7 € Irr(Sp(no. F)) is
tempered. Letj =m, p =6 and

p' = IndPIREY @ @8 @1).
N....0t
Since r isisomorphic to a subrepresentation of Indﬁf,’(“'F) (p @ p'), we have

HomO(Vm)xSp(n,F)(wmn' o® Indg?(n-F)( 0@ ) #0.

Sothereisanonzeromap asin (*), and hencethere exist nonzero irreducibl e subquotients

01® 02 € Ir1(Gl(k, F) x O(Vin—«)) of Ry, (0) and p2 @ pa € Irr(Gl(j — k. F) x Gl(k.F))

of ﬁNqu(p) such that there isanonzero Gl(k, F) x O(Vin—k) X GI(j — k. F) x Gl(k, F) x
e

Sp(n — j, F) map
&€k Ok @ wm—knj — 01 @ 02 @ p2 @ p1 @ p.

Hence,
Homg)  FyxGikF) (O'k- 125D (@ §/k_1)) 70
and

Homei (k) (§k-p2) 0. HOMgy, 3. s iy (Wm—kn—j- 02 @ p) 7 O.
Thisimpliesthat p; = 0 @ x(det) and &}/ = p,. Let

A=l/2—n+(j—k—1)/2.
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Thenfort € F*,

wﬂ(t) = wﬂl (t)wﬂz (t)
|w/’1(t)|71 = |wﬂ(t)|71|wﬂz(t)|
e (0] = 102~

Assumek > 0. Since o is tempered, by Theorem 2.1, for |t| < 1, we have
1 < |we, (t)] = |t|(jfk)/\fe(n)i.

This implies (j — KA < e(p)j = e(6;)j. Asn < 1/2, (j — k)X > 0, so that e(¢;) =
—e(61) > 0, acontradiction.
Assumek = 0. Then p = 6] = &f. Sinceé; is an essentially tempered representation,
we must havej = 1 and §; = x| |“*'/2, sothat n—1/2 = e($1) > 0, acontradiction.
Proof of (2). Let 7 >~ 61 ® --- ® & ® ), as in the proof of (1). Let e = &(01)
and §; @ |det|~® = IndG'(r11 F)(n @ --- @ ng), where i € Irr(Gl(pi.F)), 1 <i <'s, are

square integrable. Then (51 IndSé(.“l_pF)((nl ® |det]®) @ - -+ @ (s @ |det]®)). Letj = py,
p=(n © |det|®)" and

|ndSp‘n JF) ey o omse |d) 05 @08 o).

Arguing as above, there exist an integer k such that 0 < k < min(m,j) and nonzero
irreducible subquotients oy ® o € 1rr(GI(k. F) x O(Vin—i)) of ﬁNk(a) and p, @ p1 €
Irr(GI(J —k, F) x GI(k, F)) of R RNG| (p) suchthat £ = p, and p1 = o} ® x(det).

Assumek > 0. Asin the proof of (1), wefind that A\(j — k) < je(p) = —je. Now
j— k>0, ae > 0,it follows that j — k > 0. Hence, by Corollaries 2.3 and 2.4,
p = Stp, @ x(det)|det]***/2-2 with a an integer such that 0 < a < k/2, or equivalently,
n @ |det|® = Stp, ® x(det)|det|"!/2-¢/2, with ¢ = j — 1 — 2a satisfyingj — 1 > ¢ > 0.
Thisimpliesthat e = e(61) =n—1/2 — c¢/2. Also, we have that

Mj—K < —je
(1/2=n+(j—k=1)/2)(j -k < —j(n—1/2-c/2)
(/2= -k +(—k=1(—K/2<—jn—1/2) +j(c/2)
kn—1/2)+ (j —k—=1)(j —k)/2 <j(j — 1)/2
(n—1/2)+(k+1)/2<j,

sothat (n—1/2)+1 <j.

Assume k = 0. The we have ¢ € R, j(O(Vin)) and hence o € R _1(O(Vim)), @
contradiction.

SmcelndG'(nl F)(n @ @1s) 2 IndS ™ F) (77 21) @ - - - @ 1) for any permutation

pz(
zof {1,..., s} the same results hold for all of the ni. The claim (2) now follows. m
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To prove Theorem 4.4, we recall some results from [K-R1]. For s € C and N a
positive integer, let In(S, x) be the degenerate principal series representation induced
from the quasi-character x| |° of the Siegel parabolic of Sp(N.F), i.e., the space of
smooth functions ® on Sp(N, F) such that

o ((g ta*il) g) = x(deta)| det al**'% d(g).

a b
0 &t
variants of wmn.

where ( ) € Py and g € Sp(N. F). Finally, let (wmn)Qyy,, be the O(Vim) coin-

PROPOSITION 4.3 (KUDLA-RALLIS). Assumethat 0 < | < Nandlet s = —I/2+
(N+1)/2=(2N+2—1)/2— (N +1)/2. Then thereis a surjective Sp(N. F) map from

In(S0- X) 10 (wmN) Oy, )-

PROOF. See Proposition 5.5 of [K-R1]. ]
Finally, we give the proof of Theorem 4.4.

PROOF OF THEOREM 4.4. The argument is similar to the proof of the theorem for
supercuspidal 7 and 7’ in [K1]. By hypothesis, there exist a nonzero O(Vy,) x Sp(n, F)
map wmn — o @ 7 and anonzero O(Vm) x Sp(n’, F) map wmy — o @ «'. Since o and
7 are pre-unitary, there exists a C-anti-linear isomorphism o @ © — oV ® 7 which is
O(Vm) x Sp(n. F) intertwining. If wmn is defined by Wmn(9, 9)¢ = wmn(0. 9')@, where
we use the above model for wm n, then the map Wmpn — wmn defined by ¢ — Fisalso
a C-anti-linear isomorphism which is O(Vy,) x Sp(n. F) intertwining. Composing, we
obtain a nonzero O(Vm) x Sp(n, F) map Wmn — o' @ ©¥. Thisimplies that there is a
nonzero O(Vm) x Sp(n, F) x Sp(n’, F) map

- /
wm_n®wm_n/—>0v®a®7rv®7r.

and by composition with the canonical O(Vim) map ¢¥ @ o — 1, a nonzero O(Vm) x

Sp(n, F) x Sp(n’, F) map

_ ’
Wmn ® Wmpy — e

_ 1 0
Wmn = | 1. 0 —1 * Wmn-

Defineamap T:S(V1) @ S(VI) — S(VI™) by

It is easy to verify that

T(r @ )X @ X) = ()" (X).

Defineaninclusion Sp(n, F) x Sp(n’, F) — Sp(n+ ', F) by

a 0 b O

ab a b H(O a 0 b

c d)’'\cd o c 0d O
Cl

\O 0o d
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Then it is astandard fact that T gives an isomorphism

wWmn ©@ Wmy — Wmnsy |O(Vm)><(Sp(n.F)xSp(n’.F))'

whereweregard Sp(n, F) x Sp(n', F) asasubgroup of Sp(n+n’, F) viatheaboveinclusion.
It follows that if we use the inclusion Sp(n, F) x Sp(n’, F) — Sp(n +n', F) given by

a 0 —-b O

ab a b (O a 0 b
((C d)'(c’ d’))'_) —-c 0 d O
\ O ¢ o0 d

then we have an isomorphism

mn @ wma = wmae [0, (spn P spt. ) -
Thus, there is anonzero O(Vy) % (Sp(n. F) x Sp(n', F)) map
Wmn+y — .

By Proposition 4.3, sincel < 2n < N = n+n', there is anonzero Sp(n,F) x Sp(n', F)
map
In(So. x) — 7" @ 7.

Now by Proposition 3.4 of [K1] (see also the explicit computations in [G]), In(So- X)
admits afiltration of Sp(n, F) x Sp(n’, F) representations

o=I1"tci"c---cltcl1=In(s0. %)

such that

11 o IngPCRLSUR) 3| [ o | [502 2 py

for 0 <i < n.Here, p; isthe representation of Sp(i. F) x Sp(i. F) on S(Sp(i. F)) defined
by pi(9.9)o(X) = #(g~1xg). It follows that for some 0 < i < n,

Homsyn ) «spt.;) (IG5 x| 972 @ x| 99 @ pi.n¥ @ ') #0.
By Frobenius reciprocity, we obtain

Hom, L, (x| 1% @ x| [ @ oi.Ry, () @Ry, (7)) 0.

Hence, there exists an irreducible subquotient m; @ > € Irr(Gl(n —i.F) x Sp(i. F))
of Ry, (") and an irreducible subquotient ©j © 5 € Irr(GI(n' — i, F) x Sp(i,F)) of
Ry, () such that

Homu, saw, (x| [¥°7 @ x| [¥*% @ pi. (m @ 1) © (m; @ 7)) # 0.
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In particular, thisimplies that x| |30+# = 7m1.

Now supposethat i < n. Thenl < n—i < n. By Theorem 2.1, since 7 is tempered,
1 <|wr, (t)| for |t| < 1. Hence,

(n—i)(so+ (W —10)/2) <0.

So,n—i+2n"+1 <I.Butl < 2n. Therefore,n—i < —2(n' — n) — 1. Sincen’ > n, this
impliesthat i > n, a contradiction.

Sincei = n, weobtain

HomSp(n,F)xsp(n/.F)('nd?gﬁﬂjgiﬁfle)(XI * @ pn), 7 @ 7') #0.

By Frobenius reciprocity, thisimplies that

Homsynp)xp,, (Pn-?fv @ ((=" |P"1,7n)v ® x| I‘S"éiff )) #0.
Let
—5¢l/2
pn— @ (], ) O x| |08 )
be a nonzero Sp(n,F) x P},_,, map. By the lemma on p. 59 of [MVW], there is an
Sp(n, F) x Sp(n, F) isomorphism

7Tv®7rgpn/ N ker(f).

feHomgy(n Fyx 1 (n.mV@U),

U aC vector space

Let
pn— T @
be the quotient map. It follows that there isan Sp(n, F) x 1 map
—s¢cl/2
mer— o (e, )Y exl 6 )

such that

On ™en

\ l

@ (e, ) Xl )
commutes. Thismap isalso an Sp(n. F) x P;,_,, map. Hence,
Homp;/7n<7r, (7r’v|p;_n)v @ x| |7S°5,%/2 ) #0.
By Frobenius reciprocity, -
Homsp(n/.p)(lndg’,:/(n;‘F)(xl [* @ m).7") #0.
Now thereis asurjective GI(n’ — n, F) map
'”dgéi({i,fm(xl "2 @@ x| M2 — x| [P
Hence, there is a surjective Sp(n, F') map
g | [T x| M@ m) — .

Thisimpliesthat 7/ = L(x| |" 2@ --- @ x| "2 @ 7). .
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