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Abstract. Poincare's recurrence theorem says that, given a measurable subset of a
space on which a finite measure-preserving transformation acts, almost every point
of the subset returns to the subset after a finite number of applications of the
transformation. Moreover, Kac's recurrence theorem refines this result by showing
that the average of the first return times to the subset over the subset is at most one,
with equality in the ergodic case. In particular, the first return time function to any
measurable set is integrable. By considering the supremum over all p s 1 for which
the first return time function is p-integrable for all open sets, we obtain a number
for each almost-topological dynamical system, which we call the return time
invariant. It is easy to show that this invariant is non-decreasing under finitary
homomorphism. We use the invariant to construct a continuum number of countable
state Markov shifts with a given entropy (and hence measure-theoretically isomor-
phic) which are pairwise non-finitarily isomorphic.

1. Introduction
Let (X, 8ft, fi) be a probability space, and let T: X -* X be measurable and preserve
(i. For any B e % define

where Bc denotes the complement of B in X. For each p a 1 the number (which
may be +00)

s(p,B)= £ n"fn(B)
n = l

is the pth moment of the return time function on B. We define

p(B) = sup {p 6 R: s(p, B) < 00},
and call p(B) the return time exponent of B. Note that (by Kac's recurrence theorem)

\i=0

so that p(B) > 1 for each B e 38.
Next, let (X, 38, /i, T) be a dynamical system as above, and suppose in addition

that a topological structure is given on X, i.e. there is given a set T of subsets of X
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226 U. R. Fiebig

(the open sets), closed under arbitrary unions and finite intersections, such that
(i) T<= 38, and the er-algebra generated by T is S3, modulo /i-null sets;
(ii) T~*T<^T modulo/i,-null sets;
(iii) for each Ue r, / i ( t / )>0.

Such a dynamical system is called almost-topological.

Definition. To each almost-topological dynamical system we associate a number
p = p(T), 1 <p(T)<oo, called the return time invariant of the system, by setting

p(T) = mf{p(U): Uer}

The following result, which is easily verified, plays a central role in our further
discussion.

PROPOSITION. Let (Xu 381; /*,, T,) and (X2, 332, H2, T2) be almost-topological dynami-
cal systems with topologies T, and T2 respectively. Suppose that ij/ is a finitary
homomorphism from the first system to the second, i.e. ty is a measure-theoretical
homomorphism such that i/f~'(T2)c T, modulo null sets (see [1]). Then

Proof. If U2e T2, then ifj~x(U2) differs from some U{ e T, by a/tt,-null set. Therefore
for each U2€ T2 there exists Ux € T, with p(Ui) = p(U2), and the proposition follows
immediately from the definition of the return time invariant. •

It should be mentioned that the definition of the return time invariant does not
require the almost continuity of T. To make this somewhat more clear, define

p(T,d):=mf{p{A): Aesd}

for a measure-theoretical dynamical system (X, £i8, fi, T) and an arbitrary subsystem
si < 98 of measurable sets. Instead of the preceding proposition we obtain now the
following statement:

Suppose (X,, 38j, /*.,, 7̂ ) are measure-theoretical dynamical systems / = 1,2, s£t c 98,,
i = l,2, are subsystems of measurable sets and <j>: T, -» T2 is a measure-theoretical
homomorphism such that <f>~ls£2<= six modO. Then p(.Ti,s4i)^p(T2, si2).

This shows also that the number p makes sense for a measure preserving system
without topology, by taking si = 3&, but one can show that it is then always equal
to one. On the other hand, if (X, 38, ft, T) is a finite state Bernoulli scheme with
the usual product topology, then for any open set U the sequence fn(U) is easily
seen to be exponentially decaying, so that in this case p( T) = +oo. (This property,
called exponential recurrence, is of importance in [2]).

2. Statement of results
The first theorem shows that in the case of Markov shifts the return time invariant
can be finite:

THEOREM 1. Let fj. be an ergodic Markov measure on the countable state shift space
(Nz, S3, T). Denote by T the natural topology of this space. Then

/>(/*, T, T) = />(oM) for allxeN
where 0 M := {(wn)neZ e Nz\w0 = x}.
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By an easy construction one can derive from this theorem:

COROLLARY 1. For every real number k > 1 there are countable state mixing Markov
shifts with return time invariant k and arbitrarily small entropy.

Furthermore:

COROLLARY 2. If (Mz, 38, fi, T) is an ergodic Markov shift and ({1 , . . . , s}z, 2, v, <r)
is a Bernoulli shift, both systems with natural topology, then

p(T)=p(Txa).

The next theorem follows easily from the above corollaries.

THEOREM 2. For every two real numbers h>0 and k > 1 one can construct a countable
state mixing Markov shift with entropy h and return time invariant k.

This enables us to construct a continuum number of measure-theoretically isomor-
phic countable state Markov shifts which are pairwise non-finitarily isomorphic.

3. Proofs
Before passing to the proof of theorem 1 we state two propositions:

PROPOSITION 1. If T is a measure-preserving transformation on the probability space
(X,35,fi) and Bu B2e08 such that B, is a sweep-out-set, i.e. {J7T~'Bi = x> and

B^B2, thenp(Bl)^p(B2).

Proof. Using integral estimates one can establish the following. Let (an)neN be a
sequence of non-negative real numbers, such that an decreases monotonically to
zero and an - an+x is also monotonically decreasing. Then for p > 1

£ n"- 2 a n <oo» I np[(an-an + 1)-(an + 1-an + 2)]<oo, (1)
n=\ n=\

We leave the simple proof to the reader.
Now define gn(B):=/x (H""' T''BC). With an:= gn(B) it is easy to see that (1)

implies, for every sweep-out-set B, the equivalence

£ n"-2gn(B)<ao » X n"/n(B)<oo forall/>> 1.
i i

This equivalence, together with the fact that gn(B2) — gn(^i) for all n, implies the
proposition. •

Putting the proposition together with:
every open set in a shift space is a union of thin cylinders; and
every set in an ergodic system is sweep-out;

we obtain the

COROLLARY. For an ergodic finite or countable state shift system (Sz, 98, fi, T) with
natural topology,

p(T):= inf p(0[A]),

where 0 [ A ] := { ( w n ) n e Z e S z | ( w0, ...,wn) = A } .
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PROPOSITION 2. If (Nz, 3, fj., T) is an ergodic shift system with natural topology and
/*(oM)>0 for all xeN, we define

Sx := {(x, x,, ..., x,, x)|x € N, x, € N for all i;

x * x{, i = 1, . . . , / , / > 1; fi(0[x, x,, ..., x,, x]) > 0}.

Then the following statements are equivalent:
(i) p(T)=p(0[x]) forallxeN;
(ii) p(oW)<p(o[Z]) forallZefx, forallxeN;
(Hi) l<s</>(0[x])=»n=1nJ/,,(o[Z])<oo forallZe3x forallxeN.

Proof. It is clear that (iii) is a restatement of (ii).
(i) =>(ii) is trivial.
(ii) =^>(i): take any element A€U"=i S". Because A is finite and the process

is ergodic one can find xeN and Zegx with T"(0[Z])c:0[A] for some neN.
Proposition 1 implies p(o[x])sp(o[A]), so we have p(T) = infxeNp(0[x]) by the
preceding corollary. But taking A = (x) and x1 ^ x the same reasoning shows that
pCot*1]) — P(oM) for all x, x1 with x^x 1 . Therefore we have p(T) = p(0[x]) for
allxeN. D

Proof of theorem 1. It suffices to show part (iii) of proposition 2. Take a fixed xeN,
a fixed number s with 1 < s < p (<,[*]) and a fixed Ze.gx. Let Xn be the projection
on the nth coordinate.
Then

y,:=inf{m>0|Xm=x},

yn:=inf{m>yn_, |Xm=x};

and

W n :=y n -y n _ , forn>2.

From the Markov property it follows that the random variables (W,)lzl are indepen-
dent and also that the (Wi)ia.2 are identically distributed with

Let /> 2 be the number which appears in Z = (x,xu ... .x,-,, x). Because/u,(o[Z])>0
we can choose a fixed a with 0 < a </*( Wj =/). Put r = [£Vy2]+3. Now we want
to estimate

(see proposition 1). Therefore define

Kn := {w|TJw^ 0[Z] for; = 0 , . . . , n(

It is clear that gnr(0[Z])</x(Xn). To estimate fi(Kn) we use the events
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( n[EW2]+2n v

I h^rT^an) where obx]:=
Then we have

P(Kn) = P(Kn n £„) +P(Kn n £CJ

Now we will check, for every term in the above sum, that multiplying by ns~2 and
summing over n gives a finite value. Then we shall have Y.7 n$ 28nr(ol^D <°°; this
implies X «s 2g«(o[-^]) < 0 ° because gn(0[-Z]) is monotonically decreasing, and with
the proof of proposition 1 we can conclude X"=i n'fn(<JLZ]) < °o and the theorem is
proved.

(i) p{KnnEn)*(l-p)m mthp-~ii{jLZ\).flUxTl>0'
Proof. Without loss of generality assume /*(£„)>0. Then fj.{Kn n £„)</*(Xn|£n)
and by splitting £„ into sets according to the first q = inf {meN\msian} numbers
j \ , • • • ,jq with T~J'(w) e 0[#x] and using the Markov property the above inequality
follows.

(ii) To show fi(An) = o(n~r+l) for all r with s<r<p(0[x]) we use theorem 28
of [3] which states if {Xj)jeN is a sequence of i.i.d., centred, random variables in
Lr, ( r> l ) , then

"•HI;,?.*
Taking Xj'= Wj+l-EW2, jeN and any s<r<p(0[x]) it is easy to check the men-
tioned conditions. Setting e = 1 +[EW2]-EW2 shows /j.(An) = o(n'r+i), so

(iii) Put Ut := l{/)° W(; then

M(Bn) = M I U I < « « U M I - I W,-EU2)

with EU2-a>0 according to the choice of a. Because (U,-EU2)iz2 is an i.i.d.
centred process with finite exponential moment it is well known that fi(Bn) is
exponentially decreasing (see [3]).

(iv) ix{Cn) = gn(0[x]), so using the proof of proposition 1 and the fact l < s <
p(oM) we conclude that £"=) ns"V(Cn) <oo. •

Proof of corollary 1. Every sequence (cn)neN of real numbers with
(i) cn > 0 for all n, £ cn = 1;
(ii) cn>0 infinitely often;
(iii) ir=,«cn<°o;
(iv) - I ^ 2 ( I " . C) log ( I " , c,) < oo

leads via the stochastic matrix
ccn i=\,j=n,neN;

to otherwise;
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to an ergodic Markov measure /M on the shift space (Nz, 35, T) with finite entropy

( oo \ / oo \ ~ ' oo

I cnlogcj Z ncn) < - I cnlogcn.
n = I / \n=l / n = l

(Condition (iv) ensures that the entropy of the zero partition is finite.) So taking a
sequence cn := an~k with k>2 and a := (Z"=i «"*)"' one can check that conditions
(i)-(iv) are always satisfied. Now change the sequence cn by defining for every m>2,

I , = ,c, n = l;
0 2 < « < m ;
cn m<n.

The conditions (i)-(iv) remain satisfied for every m and, denoting by t̂m the
associated Markov measure, we have H(/O -* 0 when m -* oo. But by looking at 0[l]
it is clear that according to theorem 1 the return time invariant is equal to k - 1 for
all m. Because c f X ) the associated measure is always mixing. The corollary is
proved. •
Proof of corollary 2. From the proposition in § 1 it is clear that p( T x a) < inf {p( T),
p(o-)}. But p(a) =oo, so p(Txa)<p(T). By the natural identification

we can look at Txo- as acting on the right mentioned sequence space with the
natural topology. Because T x o~ is then again an ergodic Markov shift, by using
theorem 1 it is now sufficient to show Ks<p(0[l]) in the T-process implies
I"=i «s/n(o[l, 1)])<°° in the process ((Nx{l , . . . , s})z, Txa) in order to obtain
p(Txcr)>p(T). This is done by defining

Y , : 0 [ l ] ^ in the T-process w^min{w> l|7""we 0[l]};

Yn: w^min{m> Fn_,(w)|rm(w)e0[l]}.

and

WX:=YU

Wn:=Yn-Yn^ n>2.

Because T is an ergodic automorphism it follows that the (Wi)jal are identically
distributed. With vx := ^(o[l]) we have:

i = l

so, by exchanging summations

I «X(o[l , D ] ) = I I {\~vx

because || W,||s:=ZT=i nyn(o[l])<°°- The corollary is proved. •
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Proof of theorem 2. It should now be obvious how to construct a mixing countable
state Markov shift with arbitrary entropy h > 0 and arbitrary return time invariant
fc> 1 by using the techniques of the above stated corollaries. •

This work was carried out while the author was at Delft University of Technology.
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