
J. Aust. Math. Soc. 83 (2007), 423-437

THE GENERALIZED INVERSE A™s OF A MATRIX OVER AN
ASSOCIATIVE RING

YAOMEMG YU3 and GUORONG WANG

(Received 6 July 2006; revised 3 January 2007)

Communicated by J. Koliha

Abstract

In this paper we establish the definition of the generalized inverse A(-f's which is a {2) inverse of a
matrix A with prescribed image T and kernel 5 over an associative ring, and give necessary and sufficient
conditions for the existence of the generalized inverse A^'f and some explicit expressions for A^'f of
a matrix A over an associative ring, which reduce to the group inverse or (1} inverses. In addition, we
show that for an arbitrary matrix A over an associative ring, the Drazin inverse Ad, the group inverse As

and the Moore-Penrose inverse A\ if they exist, are all the generalized inverse A^\.

2000 Mathematics subject classification: primary 15A33, 15A09.

1. Introduction

It is a well known that, over the field of complex numbers, the Moore-Penrose inverse,
the Drazin inverse, the group inverse and so on, are all the generalized inverse A^s,
which is a {2} inverse of a matrix A with prescribed range T and null space S (see
[2,10]). Y. Wei in [11] gave an explicit expression for the generalized inverse /4(

r
2)

s

which reduces to the group inverse.
There are some results on generalized inverses of matrices, such as the Drazin

inverse, the group inverse and the Moore-Penrose inverse, over an associative ring
(see, for example, [3-8]). These results include necessary and sufficient conditions
for the existence of these generalized inverses. In [8], Corollary 1 implies that over an
associative ring, a von Neumann regular matrix A has a group inverse if and only if
A2Aa) + I — AA(1)isinvertible, if and only if Am A2 +1 - Aw A is invertible. Recently,
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similar results about the Moore-Penrose inverse and the Drazin inverse appeared in
[6,7]. This is a motivation for our research.

Throughout this paper, R denotes an associative ring with identity 1 and Rmy"
denotes the set ofm x n matrices over R. In particular, we write Rm for /?mxl and
Mn{R) for .ft"*", the ring of square n x n matrices over R. By a module we mean a
right /?-module. If S is an /?-submodule of an /?-module M then we write S c M.

Let A e /?'"*". We denote the image of A (that is {Ax\x e /?"}) by R(A) and the
kernel of A (that is {x e Rn \Ax = 0}) by N(A).

An m x n matrix A over R is said to be von Neumann regular if there exists an
n x m matrix X over R such that

(1) AXA = A.

In this case X is called a {1} inverse of A and is denoted by A ( l ) .
An n x /; matrix A over R is said to be Drazin invertible if for some positive

integer k there exists a matrix X over R such that

(2) AkXA = Ak,

(3) XAX = X,

(4) AX = XA.

If X exists then it is unique and is called the Drazin inverse of A and denoted by Ad.
If k is the smallest positive integer such that X and A satisfy (2), (3) and (4), then it is
called the Drazin index and denoted by k=lnd(A). If k = 1 then /4rf is denoted by Ag

and is called the group inverse of A.
Let * be an involution on the matrices over R. Recall that an m x n matrix A

over R is said to be Moore-Penrose invertible (with respect to *) if there exists an
n x m matrix X such that (1) and (3) hold and

(6) (AX)* = AX,

(7) (XA)* = XA.

If X exists then it is unique and is called the Moore-Penrose inverse of A and denoted
by Af. If a matrix X satisfies condition (3) then X is called a {2} inverse of A.

In Section 2 we shall establish the definition of the generalized inverse A(
r
2)

s, which
is a {2} inverse of a matrix A over an associative ring with prescribed image T and
kernel 5, and show that for an arbitrary matrix A over an associative ring the Drazin
inverse Ad, the group inverse Ag and the Moore-Penrose inverse A\ if they exist,
are all the generalized inverse A(

r
2)

s. In Section 3, we give necessary and sufficient
conditions for the existence of the generalized inverse A(j'f. In Section 4 we study
some explicit expressions for Aj'f of a matrix A over an associative ring, which
reduce to the group inverse or {1} inverses, and some equivalent conditions for the
existence of A^]\
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2. The generalized inverse A £'5

Suppose that L, M c R" and L @ M = R". Then every x € R" can be uniquely
written as x = x{ + x2, where X] € L, x2 e M. Thus

PL.MX = -*i

defines a homomorphism P/..A/ : R" -*• R" called the projection of /?" on L along M.
This homomorphism can be represented by a matrix with respect to the standard basis
of R", since the module R" is free. The symbol PL M is used to denote the matrix as
well.

About PL.M, we have the following results, whose proof is analogous to that over
the field of complex numbers.

LEMMA 2.1. IfL,McRn and L® M = R" then

(i) PL.MA = A if and only if R{A) C L,
(ii) APLM = A if and only ifN(A) D M.

We now characterize the {2} inverse of a matrix A over R with prescribed im-
age T and kernel 5. The proof of the following theorem is analogous to that of [13,
Theorem 1].

THEOREM 2.2. Let A be an m x n matrix over an associative ring R with identity
and T C R" and S C /?"'. Then the following conditions are equivalent.

(i) There exists some X € /?"*"' such that

(2.1) XAX = X, R(X) = T, N(X) = S.

(ii) AT © S = Rm and N(A) HT = {0}.

If these conditions are satisfied then X is unique.

PROOF. (i)=>(ii) Since XAX = X, AX is an idempotent homomorphism from Rm

to/?"'. So, by [1, Lemma 5.6],

R(AX)@N(AX) = Rm.

It is easy to see that R(AX) = AR(X) = AT and N(AX) = N(X) = S. Hence

AT ®S = Rm.

Next we will show that N(A) n T = {0}. Let x e N(A) n T. Then Ax =0 and there
exists a y e Rm such that* = Xy. Sox = Xy = X/lXy = XAx = 0. Therefore we
have N(A) (IT = {0}.
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(ii)=>(i) Obviously A\T is an epimorphism from T to AT. Since N(A\T) —
N(A)DT = 0, A\T isamonomorphismandso^lr hasaninverse (A\T)~l : AT ->• T.
From AT®S = Rm, we know that any y € /?m, can be uniquely written as y = >>i + >>2,
where y, e AT, y2 6 S. So we define X : Rm -+ R" by Xy = (A|r)- 'y,.
Obviously X is a homomorphism and satisfies

(Xy = (A|r)-'y, if ye AT;

[Xy = 0, \fyeS.

Because Rm and R" are both free modules, there exists a matrix of the homomor-
phism X with respect to the standard bases of Rm and R", and we write X for the
matrix as well. It is easy to see that R(X) = T and N(X) = 5 by AT 0 S = R'".

For every y e Rm = AT ® S we have y = .Vi + Vi where >| 6/47, y2 € S. Then

XAXy = XAXyi = XA(A|7-)-'.y, = X_y, = Xy.

This implies that XAX = X.
Now we prove the uniqueness. Suppose that X, and X2 both satisfy (2.1). Then

X\A and AX2 are idempotent matrices of order m and « respectively, and

AX2 — PR(AX2)N(AX2) = PR(AX7),N(X2) = PR(AX2),S-

By Lemma 2.1, we deduce that
X2 = PT,N(,X,A)X2 = (X]/4)X2 = X\(AX2) — X\PR{AXl).s — X\ C

A matrix X e R"*m is called the generalized inverse which is a {2} inverse of a
matrix A over R with prescribed image T and kernel S if it satisfies the equivalent
conditions in Theorem 2.2, and is denoted by A^s.

By (2.2), we have that

(2.3) A%s = (AW)-1
 PAT.S-

From the proof of uniqueness in the theorem above and Lemma 2.1, we have the
following corollary.

COROLLARY 2.3. Let A and G be matrices over an associative ring R. If the
generalized inverse AT s exists, then

(i) A{T]SAG = G if and only if R{G) C T;
(ii) GAAfs = G if and only ifN(G) D 5.

About the generalized inverse, we also have the following property.
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THEOREM 2.4. Let Abe a matrix over R. IfA™s exists and there exists a matrix G
over R satisfying R{G) = T and N(G) = S then there exists a matrix W over R such
that

(2.4) GAGW = G,

(2.5) AfsAGW = A%.

PROOF. Suppose Afs exists with R(G) = T and N{G) = S for a matrix G. Then
AR(G)® N(G) = R'" and so there exists an epimorphism Rm ->• N(G) -> 0. By
[1, Theorem 8.1], N(G) has a finite spanning set whose elements constitute a matrix,
denoted by L. Thus GL = 0, and the columns of (AG, L) generate Rm, that is, there
exists a matrix (WT, W[)T such that

AGW + LW]=Im.

If we multiply the left hand side by G and A(j)
s respectively, then we obtain (2.4) and

(2.5). ' •

The following theorem shows that for an arbitrary matrix A over an associative
ring, A\ Aj and Ag, if they exist, are all the generalized inverse A{^s.

THEOREM 2.5. (i) Let A be an m x n matrix over R and let * be an involution
on the matrices over R. If A' exists, then A~ = ^RIA').N(A')-

(ii) Let A be an n x n matrix over R, and k —lnd{A). If Ad exists, then
A , - A<2)

(iii) Let A be an n x n matrix over R. If Ag exists, then Ag = A(
R^A) N{A).

PROOF, (i) Since /T e /1{1, 2} and Au 6 A*[\, 2}, we easily see that

R(A*) = R{A*A) = R((A'A)*) = R(A*AU) =

N(A') = N(AA^) = N((AAy) = N(A'*A*) = N(A*),

and N(A) = N(A'A).
Since AA^ and A* A are idempotent, we have

Rm = R(AA') 0 N(AA') = AR(A*) 0 N(AA') = AR(A*) © N(A*)

and

N(A) n R(A*) = N(A*A) n R(A*A) = {0}

by [1, Lemma 5.6]. So, by Theorem 2.2, A^^ N(A,} exists and A* = ^(RIA-),N(A
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(ii) Firstly, we shall show that

R{Ad) = R{AAd) = R(A') and N(Ad) = N{AAd) = N(A')

for any positive integer I > k. Since

R(Ad) = R(AA2
d) c R(AAd) = R{AdA) c R(Ad),

we have R{Ad) = R(AAd) and so

R{AAd) = AR(Ad) = AR{AAd) = A2R{Ad).

It is easy to obtain inductively that R(AAd) = AhR(Ad) for any positive integer h.
This gives us that R(Ad) — R(AAd) - R(A') for any positive integer / > k. Also,
since for any positive integer I > k,

N{Ad) C N(Al+]Ad) = N(A') c N{A>dA>) = N(AdA) c N(A2
dA) = N(Ad),

we get that N(Ad) = N(AAd) =
Since AAd is idempotent, by [1, Lemma 5.6], we have

R" = R(AAd) ® N(AAd) = AR(Ak) © N(Ak) = R".

Since

N(A) n R(Ak) c A (̂/\*) D R(Ak+]) = {0},

^ , exists and AR^)^^^ = Ad by Theorem 2.2.
(iii) Take A: = 1 in (ii). •

3. The generalized inverse A^'f

If the generalized inverse A(^s satisfies A A£5 A = A then it is called the generalized
inverse which is a {1,2} inverse of a matrix A over R with prescribed image T and
kernel S, and is denoted by A{^\ (Its uniqueness is guaranteed by the following
theorem.)

THEOREM 3.1. Let A be an m x n matrix over an associative ring R with identity
and T C R" and S C Rm. Then the following conditions are equivalent.

(i) AT 8 S = Rm, R(A) n 5 = {0} and N(A) HT = {0}.
(ii) R(A)®S= Rm, N(A)®T = R".

(iii) There exists some X e Rnxm such that

AX A = A, XAX = X, R(X) = T, N(X) = S.

If these conditions are satisfied then X is unique.
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PROOF, (ii) = > (i) It is obvious that R(A) n S = {0} and N(A) n T = {0}. To
obtain AT © 5 = Rm, it suffices to prove AT = /?(A).

Obviously, AT c fl(A). For any x e /?(/4), we have x — Ay, where )> € R".
Since N(A) © T = R", we can write y = yx + y2, where Vj € N{A), y2 e T. Thus,

x — Ay = Ayi + Ay2 — Ay2 e AT,

and therefore /?(A) c AT. Consequently, AT = R(A).
(i) ==• (iii) By Theorem 2.2, from A7 8 5 = Rm and JV(A) n7" = {0}, we know

that X = Afs exists and that R{X) = T and yV(X) = S. We shall show AX A = A.
Since X/1X = A", we have XAXA = XA and then X{AXA - A) = 0. So

R(AXA - A) C /?04) n JV(X) = /?G4) n S = {0}.

Hence AX A = >i.
(iii) =»(ii) From (iii), we have (AX)2 = AX, (XA)2 = XA, and

N(X)
N(XA)

R(XA)

R(AX)

n / v A \
I\ \A /I)

c
c
c
c

=

N(AX)
M ( 4 V A \

R(X)

R(A)

N(X) = S,

C A^(XAX)
A (̂A)

= R(XAX)

= R(AXA)

N(XA) = A

=
C

C

c

'(>

yv(X),
A'(XA),

R(XA),
R(AX).

R(AX) = R(A).

So

By [1, Lemma 5.6] and the four equations above, we reach (ii).
By Theorem 2.2, X is unique. •

The next result is concerning the equivalent conditions in Theorem 3.1.

THEOREM 3.2. Let A be an m x n matrix over an associative ring R with identity
and T C R" and S c Rm.

(i) IfN(A) + T = RnthenAT = R(A).
(ii) // AT © S = Rm then

AT = R(A) if and only if R(A) DS = {0}.

PROOF, (i) From the proof of the theorem above (ii) implies (i).
(ii) Suppose that R(A) n 5 = {0}. Obviously, AT c R(A). Now we will show the

inclusion in reverse. For any x e /?(A),

x = xi +x2 e Rm = AT ®S,
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where x, e AT, x2 G S. By AT c /?04), JC, e /?(A). So

.r2 = x - xx € /?(A) n S = {0}.

Therefore, x2 = 0 and then x = j , e A7. Hence R(A) c AT.
Conversely, suppose that AT = /?(A). Since ,47 © S = /?m and AT = /?(A), we

have/?(A)nS = A 7 n S = {0}. D

We denote the maximal order of a nonvanishing minor of A over a commutative
ring /? by p(A). This is called the determinantal rank of A. Obviously p{AB) <
min{p(A), p{B)} (see [9, Theorem 2.3]). When R is the complex number field,
p(A) = rank(A).

THEOREM 3.3. Let A be an m x n matrix over an integral domain R and T C R"
and S C Rm be free submodules. If AT © 5 = R'" then the following conditions are
equivalent.

(i) N(A)DT = {0}andR(A)DS= {0},
(ii) dim(7") = p(A) anddim(S) = m - dim(7).

PROOF. Suppose that (i) holds and let the columns of U be a basis of T. From
the proof of [13, Theorem 2], we have dim(7) = dim(A7) = p(AU) < p(A)
and dim(S) = m - dim(7). By Theorem 3.2, AT = R(A). Thus there exists a
matrix X over R such that A = AUX. Thus p(A) < p(At/) = dim(A7). Therefore
p(A) = dimAr = dim(7).

Conversely, suppose that (ii) holds. We have that dim(7") = dim(AT) from the
proof of [13, Theorem 2]. Thus p(A) = dim(7) = dim(AT). By [12, Lemma 1],
the maximal number of linearly independent columns of A is dim(A7). Since
AT c R(A), R{A) + S = Rm. Over the quotient field F of R, AT = R(A)
because p{A) = d\m(AT), and /?(/4) © 5 = /?'". Therefore J: and y are linear
independent over F for any x e R(A), y e S.

On the other hand, over an integral domain R, suppose that O ^ z e R(A) fl 5.
Then there exist r, e R, i = \,..., s, such that

(3-D ; =
i=\

where {ySi, yS2, . . . , A) is a basis of S and s = dim(S). But Equation (3.1) is true
over F. This is in contradiction to the above reasoning. Hence R{A) n 5 = (0).

The remainder of the proof is obtained from [13, Theorem 2]. •

REMARK 1. A module over the field of complex numbers is a vector space. So
when R is the field of complex numbers, the above theorem ensures that Theorem 3.1
extends [2, Corollary 2.10].
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4. Explicit expressions for A^'f

We now consider some explicit expressions for A^'^\ which reduce to the group
inverse or {1} inverses. Firstly we shall prove the following lemma. In the proof, we
use the following fact.

PROPOSITION 4.1. If e is idempotent in a ring R with identity 1 and x, y € eRe
then xy — e if and only if(x + \ — e)(y + 1 — e) = 1.

LEMMA 4.2. Let A be an m x n von Neumann regular matrix over R and G an
n x m matrix over R. Then U = AGAAW + /„, — AA(l) is invertible if and only if
V = A0>AGA + /„ - AmA is invertible.

PROOF. If U is invertible then there exists an X such that UX = XU — /„,. That
is,

(AGAA0) + I,,, - AA(I)) X = /,„ and X (AGAA0) + /,„ - AAa)) = /,„.

Multiplying on the left by A0)AA(i) and the right by A and, since A — AAmA, we

have

(AWAGA)(A^AAWXA)^AWA and (AiUAA<1)XA) (Ail)AGA) = AWA.

Since A^AGA = A0)A(GA)A0)A and A^AA^XA = Aa)A(A(l)XA)A0)A, we
know that A(l>AGA has the inverse matrix A°'AA(l)XA in An)AMn(R)AwA. Thus
V = A(1)AGA + /„ - A0)A has the inverse matrix

AWA {AmAAmXA) A0)A + /„ - A0)A in Mn(R).

The proof of the converse is analogous. •

Next we shall show the main result of this section. The following theorem not only
shows some explicit expressions for A{j'f which reduce to the group inverse or {1}
inverses, but also gives some equivalent conditions for the existence of A^'f.

THEOREM 4.3. Let A be an m x n matrix over R and G an n x m matrix over R.
Then the following conditions are equivalent.

(i) A is von Neumann regular, U — AGAA{X) + /,„ — AA(I) is invertible and
N(A)nR{G) = {0}.

(ii) A is von Neumann regular, V = AmAGA + /„ — A(l)A is invertible and
yV(A)n/?(G) = {0}.

exists-
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When these conditions are satisfied we have

(4.2) = G{GAG)WG

(4.3) = G(AG)O)A(GA)WG

(4.4) = GU~2AG =

PROOF, (i) and (ii) are equivalent by Lemma 4.2.
To show that (ii) implies (iii), set B = AV~2G. Using VA = AGA = AV, we

have B = (AG)g because

B(AG) = AV~2GAG = U~2AGAG = L'^AG = AV~lG = AGAV~2G

= (AG)B,

B(AG)B = U-lAG(AV~2G) = AV~2G = B,

(AG)B(AG) = (AG)AV-lG = AG.

Analogously, we deduce that (GA)g exists and (GA)g — GU~2A. Let X = G(AG)g.
It is obvious that

(4.5) XAX = X.

Since

AG = (AG)2(AG)g = AGAX,

we have A{G - GAX) = 0 and then

R(G - GAX) = R(G(I - AX)) c N(A) n R(G) = {0}.

Therefore

(4.6) G = GAX

= GA(G(AG)g) = G(AG)gAG

(4.7) = XAG.

Using (4.6) and (4.7), we have

(4.8) R(X) = R(G) and N(X) = N(G).

Since AV — AGA, we get

A = AGAV~{ = AG(AG)gAGAV-1 = AXA.

Using the equation above, together with (4.5) and (4.8), we deduce that A^'^ N(C)

exists and A(^)N(G) = X = G(AG)g by Theorem 3.1.
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To show that (iii) implies (i), we use Theorem 2.4 to obtain

(AGAA(l))(AGW2AAw) = AGAGW2AAm = AGWAA(1)

— A.AR(G^N(G)AGWAA = AAR(G) N(G)AA

(4.9) = AAil).

Therefore,

(AGAAm) (AGW2AAW) (AGAA(I)) = AA([) {AGAAW) = AGAAW

and then

AG({AGW2AAW) (AGAA(l)) - AA0)\ = 0.

By Theorem 3.1, R(A)DN(G) = {0} and N(A) D R(G) = {0} and so

R IG( (AGW2AAm) (AGAAW) - AAm j J C R(G) n N(A) = {0}.

G((AGW2AA{I)) (AGAAm) - AAm\ = 0.

s, we have

R((AGW2AA(1)) (AGAA(l)) - AA(A C R(A) D N(G) - {0},

and then

(4.10) (AGW2AA(l)) (AGAA(l)) = AAil\

By (4.9) and (4.10), AGA A(1> is invertible in A AwMm{R)AAw and so is U in Mm(R).
Also, obviously, A is von Neumann regular.

Now we shall prove that (4.1) ~ (4.3). Since

G(AG)g = G(AV-2G) = GU-lAV~lG = (GU~2A)G = (GA)tG,

we have Al
R\G\N(C) - (GA),G and (4.4).

Next we will prove (4.2). Since

GAG = GAG ((AG)g)
2 AGAG,

GAG is von Neumann regular and then

AG = U~lUAG = U~lAGAG = (U'"' A)G AG(G AG)(1]'G AG

= AG{GAG)mGAG.
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Therefore

A(G-G{GAG)mGAG) = 0.

Thus

R (G - G{GAG)mGAG) C N{A) n R(G) = {0}.

So we obtain

(4.11) G = G(GAG)mGAG

Since A^'^ N(C) exists, using (2.4) and (4.11), it follows that

G = GAGW = GAG(GAG)mGAGW

(4.12) = GAG(G,4C)(1)G.

Let Z = G(G/1G)(1)G. Using (4.11) and (4.12), it easily follows that ZAZ = Z,
AZA = A, R(Z) = R{G) and N(Z) = N(G). By Theorem 3.1 we have that
Aw.NiO =Z = G(GAG)">G.

Finally, we will verify (4.3). It is obvious that AG and GA are von Neumann
regular. By Proposition 4.1 and the invertibility of V there exists a matrix P e
A0)AMn(R)AwA such that P{AWAGA) = AiUA. Thus

(4.13) A = A (PA{])AGA) - APA(l)A (GA(GA)0)GA) = A(GA)(1)GA.

Using (4.13), we deduce that (AG)<1)A(GA)(]) is a {1} inverse of GAG. Therefore,
using (4.2), we obtain (4.3). •

REMARK 2. By (4.4), we can compute A^'^ N(C) using U or V.

REMARK 3. If G = A where A is such that V = A(I)A2 + /„ - AmA is invertible,
then N(A) D R(A) = {0}. Indeed, let JC e N(A) n /?(>4). Then there exists a >• e R"
such that x '— Ay and so A2y = 0. Since V is invertible, there exists a matrix P such
that PV = /„. Thus PA(IM3 = AWA and then

0 = P^(l)A3y = A(UAy.

Hence Ay — AAmAy = 0. Consequently, x — Ay — 0.
Similarly, if we take G = /4*, where * is an involution on the matrices over R such

that U = AA'AA^ + /„, - AAm is invertible, then N(A) D R(A*) = {0}. Indeed, let
x e N(A)f)R(A*). Then there exists a y e Rm such that x — 4*y andso AA*y — 0.
Since U is invertible, there exists a matrix Q such that /M*AA(I)Q = AAm and thus

0 = Q*{AmYA*AA*y = 04(l))M*y.

Sox = >\*y = A"(Aii))*A*y = 0.
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When G takes the value A (respectively A*) in the theorem above, we find that
AR\G\,N(G)

 i s A* (respectively A7).

THEOREM 4.4. Let A be an m x n matrix over R. Then

(0 AR\A\,N(A) exists if and only if Ag exists. Moreover, A^y N{A) — Ag.
(ii) / /* is an involution on the matrices over R then AR

l'iA,y N^A.) exists if and only
if A7 exists. Moreover, AR\^.y N(A,y = A7.

PROOF. To show the existence of AR
U2

A) Nw implies existence of Ag in (i), take G =
A in (4.1) Then AR\2

A[N{A) = A(A2)g = (A2)gA and then AA{
R\%N(A) = AR\2

A\N(A)A.

Hence /ll1;?., .,,,,. is the group inverse of A.
To show that existence of A^'2^ N{A.y implies existence of A7 in (ii), take G = A*

in (4.1). Then A1^.^^ = A*(AA*)g = (A*A)gA* and then

(AA(L2) V-AA(I-2) anH (A(U2) A)* - 4 ( l ' 2 ) A
{""RiA^.NfA")) — nnR(A'),N(A') a l l u \ n R(A').N(A')n) — " R(A*),l\l(A')n-

Hence A'^.y N{Ar) is the Moore-Penrose inverse of A.
The converses follow from Theorem 2.5. •

By Theorems 4.3 and 4.4 and Remark 3, we can obtain the following two corollaries,
in which the first is equivalent to [8, Corollary 2] and the second is almost the same
as [6, Theorem 1]:

COROLLARY 4.5. Let A e R"xn. The following conditions are equivalent.

(i) A is von Neumann regular and U = A1 Am + /„ — AAW is invertible.
(ii) A is von Neumann regular and V = /4(1M3 + /„ — AWA is invertible.

(iii) Ag exists.

Moreover,

(4.14) Ag = A(A2)g = (A2)gA

(4.15) = A043)(l)A

(4.16) = A(A2)wA(A2)(l)A.

(4.17) = AU'2A2 = AU~IAV-]A = A2V'2A.

REMARK 4. The above corollary is unlike [8, Corollary 2], but they are equivalent.
This is because V is invertible if and only if T = AmA2 + /„ - AmA is invertible.
Indeed, if V is invertible, then there exists a matrix P e Mn(R) such that PV =
VP = /„. From this and V = T2, we get (PT)T = T(TP) = /„• Hence T is
invertible in Mn(R). The converse is obvious from V = T2.
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COROLLARY 4.6. Let A be an m x n matrix over R and let * be an involution on
the matrices over R. The following conditions are equivalent.

(i) A is von Neumann regular and U = A A* A A(l) + In - AA0) is invertible.
(ii) A is von Neumann regular and V = A{])AA* A + /„ — A(1) A is invertible.

(iii) A7 exists.

Moreover,

A7 = A*(AA*)g = (A*A)gA* = A*{A*AA*)WA* = A*{AA*)(" A(A* A)m A*

= A*U~2AA* = A*U~lAV-lA* = A*AV~2A*.

Acknowledgements

We would like to thank the referee for valuable suggestions.

References

[1] F. W. Anderson and K. R. Full, Rings and Categories of Modules (Springer-Verlag, New York
Heidelberg Berlin. 1973).

[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications. 2nd edition
(Springer Verlag, New York, 2003).

[3] M. P. Drazin, 'Pseudo-inverses in associative rings and semigroups', Amer. Math. Monthly 65
(1958), 506-514.

[4] M. C. Gouveia and R. Puystjens. 'About the group inverse and Moore-Penrose inverse of a product'.
Linear Algebra Appl. 150 (1991), 361-369.

[5] M. Z. Nashed (ed.), Generalized Inverses and Applications (Academic Press, New York. 1976).
[6] P. Patrfcio, 'The Moore-Penrose inverse of von Neumann regular matrices over a ring', Linear

Algebra Appl. 332-334 (2001), 469^83.
[7] R. Puystjens and M. C.Gouveia, 'Drazin invertiblity for matrices over an arbitrary ring', Linear

Algebra Appl. 385 (2004), 105-116.
[8] R. Puystjens and R. E. Hartwig, 'The group inverse of a companion matrix', Linear Multilinear

Algebra 43 (1997), 137-150.
[9] K. P. S. Bhaskara Rao, The Theory of Generalized Inverses over Commutative Rings, volume 17

of Algebra, logic and Applications Series (Taylor and Francis. London and New York. 2002).
[10] G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computations (Science Press,

Beijing/New York, 2004).
[11] Y. Wei, 'A characterization and representation of the generalized inverse A^s and its applications',

Linear Algebra Appl. 280 (1998), 87-96.
[12] Y. Yu and G.Wang, "The existence of Drazin inverses over integral domains',/ Shanghai Normal

University(NS) 32 (2003), 12-15.
[13] , 'The generalized inverse A'-f^ over commutative rings', Linear Multilinear Algebra 53

(2005), 293-302.

https://doi.org/10.1017/S1446788700038015 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038015


[15] The generalized inverse <4(
r
2)

s 437

College of Education College of Mathematics Science
Shanghai Normal University Shanghai Normal University
Shanghai 200234 Shanghai 200234
People's Republic of China People's Republic of China
e-mail: yuyaoming@online.sh.cn e-mail: grwang@shnu.edu.cn

https://doi.org/10.1017/S1446788700038015 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038015


J. Aust. Math. Soc. 83 (2007) 438

https://doi.org/10.1017/S1446788700038015 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038015

