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ANALYSES of aerodynamic dissipation in ordinary 
un-ionized gases are all based upon the Navier-

Stokes equations. These equations relate the rate of 
dissipation to the local gradients in velocity and tem-
perature through the viscosity and heat conduction 
coefficients. Although it is true that in many flow 
situations the magnitude of the total dissipation in the 
gas does not depend on the magnitude of the viscosity 
coefficient, this coefficient does determine the minimum 
scale of variations observed in the gas and the form of 
the Navier-Stokes equations determines the type of 
phenomena which are observed on a small scale. In 
order to discuss dissipation in an ionized gas in the 
presence of a magnetic field, it is therefore necessary 
to re-examine the derivation of the basic flow equations. 
This paper attempts to do this for a case of a com-
pletely ionized gas and demonstrates that the basic 
microscopic dissipation mechanism is appreciably 
different. For example, it is shown that the minimum 
length in which the properties of the flow field can 
change noticeably is appreciably less than one mean 
free path. 

For un-ionized gases there are two well-known 
derivations of the Navier-Stokes equations. The first 
is a phenomenological approach based upon the 
experimentally observed fact that the shear stress is 
directly proportional to the velocity gradients. The 
second approach is based on an expansion of the 
Maxwell-Boltzmann equation which describes the 
history of the individual particle motions in the gas. 
Since at present there are no experimental data concern-
ing dissipation rates in a completely ionized gas, it is 
necessary to refer to the Boltzmann equation. The 
basic equations from which one must start in order 
to derive hydrodynamic equations are, therefore, two 
Boltzmann equations, one for the electrons and one for 
the ions, coupled with the four Maxwell equations 
which describe the electromagnetic field. 

CLASSIFICATION OF REGIONS 

In attempting to derive useful hydrodynamic 
equations, it is worthwhile first to examine the magni-
tude of various terms in the Boltzmann equation.1 In 
this way it is possible to define regions in terms of the 
gas state where one would expect different terms in the 
Boltzmann equation to be dominant and therefore 
different flow phenomena to occur. The Boltzmann 

1 A. R. Kantrowitz and H. E. Petschek, "An Introductory 
Discussion of Magnetohydrodynamics" from Magnetohydro-
dynamics, edited by R. K. M. Landshoff (Stanford University 
Press, Stanford, California, 1957). 

equation for the ions is 

« / _ V X H > 

dt 

f e/ V X H \ /df\ 
+ V v / + - ( E + ) · * . / = ( - ) > 

/ M\ c / \dt/con 
(1) 

where / is the number density of ions in six-dimensional 
phase space, V is the velocity of an ion, Ε is the electric 
field, e and M are the ionic charge and mass, c is the 
velocity of light, H is the magnetic field, / is time, V* is 
the gradient with respect to the components of the 
velocity vector and (df/dt)con is the net influx into 
six-dimensional phase space due to collisions. The 
collision term may, for order-of-magnitude purposes, 
be approximated by 2 

(-) • 
V dt/COIL 

fo-f 

where fo is the Maxwell distribution and r is the mean 
free time between collisions. This approximation is 
based upon Maxwell's conclusion that a nonequilibrium 
gas adjusts to a Maxwellian distribution in about one 
mean free time and assumes that the mean free time 
is of the same order of magnitude for particles of a 
given type but of all velocities. If I is taken as the 
characteristic length associated with variations in the 
flow field, Eq. (1) may be multiplied by l/V'f=t0/f in 
order to make it nondimensional. This gives 

d Inf V em 
to + — • / V l n / + - ^ r - F - V v l n / 

dt V MY'2 

I I (jo \ 
+—(V'XHi)-V. l n / = - ( 1 ) , (2) 

where H x is a unit vector in the magnetic field direction ; 
E' = E + ( v X H ) / c is the electric field in a coordinate 
system moving at the gas velocity ν ; V is the thermal 
velocity of an ion, the bar indicating an average value ; 
rt- is the ion Larmor radius; and λ is the mean free path. 

In conventional aerodynamics the characteristic 
length of the flow field is usually much larger than the 
mean free path. The coefficient of the collision term is 
then a very large number as compared to the gradient 
terms. Therefore (Jo/f)—l must be of order λ/1, so that 
to zero order in λ/ / the distribution function is Max-
wellian at all points in the flow field. The Navier-
Stokes equations are obtained by substituting a 
Maxwellian distribution into the terms on the left-hand 

1 Bhatnagar, Gross, and Krook, Phys. Rev. 94, 511 (1954). 
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side of the equation and evaluating a first-order 
correction to the distribution function to be used in the 
collision term. 

In estimating the magnitudes of the remaining terms 
in the ionized gas case let us begin with the electric 
field term. If plasma oscillations are not set up, the role 
of the electric field is to insure equal accelerations for 
the electrons and ions in the gas. The electric field 
required will be of the order of the acceleration per 
particle of the entire gas, thus 

/dv \ /pV'2\ 

where Ni is the ion density and ρ is the mass density. 
Therefore the coefficient involving the electric field 
is of order-of-magnitude unity as compared with the 
first two terms in Eq. (2). 

If the Larmor radius is less than the mean free path, 
the coefficient of the term involving the magnetic 
field becomes larger than the coefficient of the collision 
term. If one now considers the case l/r£$>l, the mag-
netic field term exerts the controlling influence on the 
particle motions and to zero order the distribution 
function must be such that 

( V , X H 0 - V . l n / = O . (3) 

This requires / to be of the form 

/ - / ( I V ' X H ^ V ' - H L « . * « , / ) . (4) 

In other words, the particles describe circles about the 
magnetic field lines but the distribution of velocities 
are not restricted to be Maxwellian. 

In Fig. 1 an attempt is made to indicate the regions 
in which different terms in the Boltzmann equation 
will be dominant in terms of the gas state. It is assumed 
that the gas pressure is equal to the magnetic pressure. 
For other ratios of these pressures the positions of 
the bounding lines are somewhat different. At high 
temperatures and densities (S region) the mean free 
path is less than the Larmor radius for both the elec-
trons and the ions. In this case the dominant term in 
both Boltzmann equations is the collision term and the 
transport properties have a similar form to those in an 
un-ionized gas. In this region the particle paths are 
essentially straight between collisions and therefore 
the electrical conductivity is a scalar. 

At somewhat lower densities and higher tempera-
tures ( Γ region) the electron Larmor radius becomes 
less than the mean free path, resulting in a tensor 
electrical conductivity. At still lower temperatures and 
higher densities (M region) the ion Larmor radius also 
becomes less than the mean free path. In this region, 
as shown later, the basic dissipation mechanism becomes 

Logio of temperature (°K) 

FIG. 1. Magnetohydrodynamics flow regions for 
fully ionized hydrogen. 

appreciably different. If a reasonable length scale for 
astronomical phenomenon is taken as 104 km, there is a 
density below which the ion Larmor radius becomes 
larger than this length at extremely low densities. In 
this region {EM) the electron motion is controlled by 
the magnetic field, but the ion motion is controlled only 
by the electric field which insures charge neutrality. 

It is to be expected that the change in the dominant 
term in the Boltzmann equation which occurs at the 
boundaries of each of the regions in Fig. 1 will produce 
different basic phenomena in the different regions. 

In addition to defining the regions on this map 
several other lines have been drawn. The conditions 
under which the mean free path is equal to what has 
been taken as a typical length is indicated. Above this 
line one would expect some tendency for particles of 
one type to assume a Maxwellian distribution. Since 
it takes many collisions for electrons and ions to adjust 
to the same temperature, somewhat higher densities are 
required before one would expect these two tempera-
tures to be essentially equal. On the basis of these two 
lines one may subdivide the M region into two regions, 
Me and M. This is, however, only a subdivision, since 
the dominant term in both of these regions is the 
magnetic field term. The Debye length is less than the 
electron Larmor radius in all of the region covered by 
the map or as long as the electron thermal velocities 
are not relativistic. Lines of constant magnetic field 
strength have been drawn. The line along which the 
viscous and magnetic Reynolds numbers are equal for a 
given length has also been drawn. In most of the S and 
Τ regions the viscous Reynolds number is larger than 
the magnetic Reynolds number, whereas most of the 
conditions under which the magnetic Reynolds number 
would be larger than the viscous Reynolds number are 
in the M region where it is not clear that the ordinary 
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concepts of conductivity and viscosity apply. For 
reference purposes the conditions in the interior of the 
sun have also been indicated. Figure 1 shows that 
interstellar gas clouds and conditions in the solar 
corona are well within the M region. It is, therefore, 
of particular interest to attempt to obtain basic flow 
equations for this region. 

PULSE STEEPENING 

In order to illustrate some of the differences to be 
expected in the M region, let us consider the steepening 
of a pressure pulse into a shock wave. In an un-ionized 
gas the nonlinearity of the flow equations produces a 
steepening which continues until the steepening 
tendency is counteracted by the viscous effect. The 
final steady-state thickness of the shock wave is of the 
order one mean free path. 

For the M region gas, let us consider a particular 
one-dimensional, time-dependent problem. We assume 
that a broad pulse has been produced in the fluid by, 
for example, the motion of a piston in the χ direction. 
The magnetic field is taken in the ζ direction. Since 
quantities vary only with this choice of magnetic 
field automatically satisfies the equation for the di-
vergence of the magnetic field. The electric field in the 
ζ direction can be chosen as a boundary condition and 
set equal to zero. An electric field exists in the χ direc-
tion in order to maintain equal acceleration of the 
electrons and the ions. An electric field is also induced 
in the y direction due to changes of the magnetic field 
with time. 

The procedure adopted in order to determine hydro-
dynamic flow equations is similar to that which is used 
in the Chapman-Enskog method of deriving flow 
equations from the Boltzmann equation. We first take 
moments of the Boltzmann equation corresponding to 
conservation of mass, momentum, and energy. These 
moment equations involve particular moments of the 
distribution function. The latter moments are evaluated 
by going back to the Maxwellian-Boltzmann equation. 
In doing this we assume that the typical scale length 
of the pulse is much larger than both the Debye length 
and the electron Larmor radius. We keep terms con-
taining the Larmor radius of the ions. These terms are 
dropped for the calculation of the steepening of the 
pulse; however, they are of use in the next section 
where an attempt is made to derive the final structure 
of a shock wave. 

Integrating the Maxwell-Boltzmann equation over 
the velocity coordinates at a fixed position in time 
results in a continuity equation for each species 

dNe dNeUe 
+—-=o, 

dt dx 

dNi dNiUi 
— + = 0 , 
dt dx 

where Ne and N% are the electron and ion densities, 
and Ue and £/ t are the electron and ion mean flow 
velocities in the χ direction. Since the Debye length is 
taken as very small, the gas to a good approximation 
has essentially equal densities of electrons and ions 
at all points. In other words, the Poisson equation may 
be replaced by 

Substitution of this condition in the above continuity 
equations show that d[Ne(ue—Ui)~\/dx=0, or that the 
χ component of the current eNe(ui—ue)/c must be 
independent of position. Therefore if we exclude a 
uniform current in the χ direction by the choice of 
suitable boundary conditions at plus and minus 
infinity, the two velocities must be equal. The con-
tinuity equations may then be combined to give 

(dp/dt)+(dpu/dx) = 0, (5) 

where the subscript on the velocity has been dropped. 
The assumption that the electron Larmor radius is 

much less than the characteristic scale of the pulse 
implies that to a good approximation the magnetic 
field term in the electron Boltzmann equation must be 
equal to zero or that the electron distribution function 
satisfies Eq. (4). Since the electrons are closely coupled 
to the magnetic field and since there are no gradients 
in the y direction, their mean velocity in the χ direction 
is at all points equal to the so-called velocity of the 
magnetic field, cEy/H. The equation for the curl of the 
electric field may then be written as 

dEy dH duH dH 
c + — = + — = 0 . 

dx dt dx dt 

Combining this with the continuity Eq. (5) implies 

Η 
—=const . (6) 
Ρ 

Equation (6) is a result of the fact that the gas is in 
the M region and that the pulse is large compared to 
the electron Larmor radius. The infinite conductivity 
assumption has not been made directly. 

Multiplying each of the Boltzmann equations by the 
momentum in the χ direction of each particle, inte-
grating over all velocities, adding the two equations, 
and making use of the equation for the curl of the 
magnetic field 

dH Ne 
— = - 4 τ τ / = -4TT— (Vi-Ve) , 
dx c 

where y is the current density and fl» and ve are the mean 
velocities in the y direction for the ions and electrons, 
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one obtains 

Du dlpixx+peXX+{H*/%Tr)-] 
P — + = 0 , 

where 
Dt dx 

(7) 

D d d r 
—=—Yu— ; piXx=nii\ U'2fidy'; 
Dt dt dx J 

pexx is a similar integral over the electron distribution 
function; and V is the χ component of the velocity 
relative to the mean flow velocity. The equation for 
conservation of momentum in the y direction can be 
obtained by multiplying by the y component of velocity. 
The equation expressing conservation of energy may be 
obtained similarly by multiplying the two Boltzmann 
equations by the total kinetic energy per particle : 

D / pixx+piyy+pizz+Pexx+peyy+pezz+H2/4T\ 

Dt\ 2p 

( IP\du dv, 
pixx+pexx+— )- Vpexy 

) 

S T / ô x dx 

dVi dq 
+pixv—+—=0, (8) 

dx dx 

where the pressures are defined as above, and 

q = h™if υ'(υ'2+ν'2+Ψ'2)/4Ψ 

+hnief U'(U'2+ V,2+W2) f<4Y. 

Formally, the collision terms appear to have dropped 
out of these equations since mass, momentum, and 
energy are all conserved on collision. In ordinary gas 
dynamics the effect of collisions comes in the expres-
sions which define the moments of the distribution func-
tion such as q. However, if the magnetic field terms are 
dominant in the Boltzmann equation (r»<<CX) and if we 
assume for the time being that the scale of the pulse 
is still very large compared to the ion Larmor radius, 
one may to a good approximation write the ion and the 
electron distribution functions in the form given by 
Eq. (4) . 3 In this case the symmetry of the distribution 
functions reduces Eqs. (7) and (8) to the form, 

Du d [ / > + ( # V 8 7 r ) ] 

P — + = 0 

and 
Dt dx 

P ~ ( cv-+— )+(p+— )-=o, 
Dt\ ρ δ τ τ ρ / V Sw/dx 

(9) 

(10) 

3 This type of approach was suggested for the case where there 
are no collisions by Chew, Goldberger, and Low, Proc. Roy. Soc. 
(London) A236, 112 (1956); Κ. M. Watson, Phys. Rev. 102, 12 
(1956) ; and Κ. M. Watson and K. A. Brueckner, Phys. Rev. 102, 
19 (1956). 

where 

and 
P — pexx~\~pixx— Peyy~\~piyy 

Pezz+Pizz 

Pexx~\~pixz 

Equations (5), (6), (9), and (10) form a set of hydro-
dynamic equations which are very similar in form to 
the ordinary equations for inviscid flow. The set is not 
quite complete as yet, since the magnitude of Cv has 
not been specified. This quantity can be determined 
easily in two limiting cases. If the scale of the pulse 
is large compared to the mean free path, collisions will 
insure that the distribution function is isotropic in 
three directions, so that C „ = § . If the scale of the pulse 
is smaller than the mean free path there will not be 
enough collisions to affect the particle motion in the ζ 
direction; and since the electric and magnetic fields do 
not accelerate particles in this direction, the kinetic 
energy per particle due to motion in the ζ direction will 
be a constant; that is, D/Dt(Cv—l)p/p=0. In this 
case one may effectively take Cv=l in Eq. (10). The 
only effect of the collision term in these equations is 
therefore to change the ratio of the internal energy of 
the gas to the pressure, or the effective specific heat 
of the gas, by a small factor. 

Assuming that the pulse started with a scale large 
compared to the mean free path, the equations are 
initially identical with the inviscid flow equations and 
the pulse will tend to steepen towards a shock wave. 
When the pulse width becomes comparable with the 
mean free path, the flow equations change very slightly 
because of the change in specific heat, but the essential 
basis for the steepening process is still present. This 
steepening then continues until the assumption that the 
pulse width is much larger than the ion Larmor radius 
breaks down. We conclude that a shock wave will 
steepen until its thickness is comparable with an ion 
Larmor radius or possibly even less. 

There is one minor exception to the above conclusion. 
The speed of sound in the gas with the assumed 
geometry of the magnetic field is 

4wp/ 

/Cv-^-lp 

V C, ρ 
( H ) 

This speed increases slightly as Cv decreases. It is 
therefore possible to have a very weak wave whose 
velocity would be supersonic when collisions adjust 
the three degrees of freedom of particle motion, but 
whose velocity is subsonic if the pulse width becomes so 
small that collisions are unimportant. Such a wave 
would therefore steepen if its width is longer than a 
mean free path, but the steepening would not continue 
beyond the point where its local velocity becomes sonic. 
With the exception of this very small range of shock 
velocities, the shock thickness is limited by the ion 
Larmor radius and possibly even by a smaller dimension. 
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This conclusion is in contradiction with calculations 
of the shock structure which had been made by 
Marshall4 and Sen,6 who both conclude that the mean 
free path is the important dimension. Both of these 
calculations made use of a viscosity coefficient quoted 
in Chapman and Cowling. 6 Their coefficient differs 
only by a numerical factor between the cases where the 
ratio of Larmor radius to mean free path is extremely 
small and where it is extremely large. The source of 
the error in the Chapman and Cowling result has not 
been located, since the detailed calculations are not 
presented. It is, however, clear from the above argu-
ments that the viscosity is effectively reduced in the 
presence of a strong magnetic field. Physically one 
may explain this reduction in viscosity by the fact that 
in the presence of a magnetic field the mean velocity 
of an ion is adjusted continuously between collisions 
by the electric and magnetic fields, whereas in the 
absence of the magnetic field the particle velocity 
remains constant between collisions. The calculations 
of Marshall and Sen are therefore only valid in the S 

and Τ regions where the magnetic terms do not domi-
nate the Boltzmann equation. 

MAGNETIC STORMS 

One example of an astrophysical phenomenon which 
seems to indicate the existence of a shock wave which 
is much thinner than a mean free path is the sudden 
commencement of magnetic storms on the earth. It 
was suggested by Gold 7 that this sudden commence-
ment was due to a shock wave arising from a dis-
turbance on the sun. The objection which has been 
raised to this suggestion was that a temperature 
corresponding to the velocity at which these waves 
travel, ~ 2 X 1 0 8 cm/sec, and assuming an inter-
planetary gas density of about 10 3 particles per cubic 
centimeter, the mean free path is much greater 
than one astronomical unit. Therefore, a shock wave 
one mean free path thick could not be formed between 
the earth and the sun. However, if one now assumes 
that the shock thickness is comparable with the ion 
Larmor radius, then for an interplanetary magnetic 
field of 1 0 - 6 gauss, the time required for a shock wave 
at this velocity to pass a particular point will be only 
of the order of 10 sec. Since this time is less than the 
observed two-minute time associated with the com-
mencement of magnetic storms, it seems very likely that 
these storms may indeed indicate the arrival of a shock 
wave from the sun. The fact that the observed signal 
has a slower rise time than the incident shock wave is 

4 W. Marshall, Proc. Roy. Soc. (London) A233,367 (1955). 
6 Η. K. Sen, Phys. Rev. 102, 5 (1956). 
6 S. Chapman and T. G. Cowling, The Mathematical Theory of 

Non-Uniform Gases (Cambridge University Press, New York, 
1953), p. 337. 

7 T . Gold, "Discussion on shock waves and rarefied gases," 
from Gas Dynamics of Cosmic Clouds, edited by H. C. van de Hülst 
and J. M. Burgers (North Holland Publishing Company, Amster-
dam, The Netherlands, 1955). 

probably caused by delays in the transmission of the 
signal through the ionosphere. 

STEADY-STATE SHOCK STRUCTURE 

An attempt to compute the final steady-state shock 
structure utilizing a method similar to the Chapman-
Enskog expansion has been attempted. This method 
consists basically of computing corrections to the 
zero-order distribution function given by Eq. (4) from 
the Boltzmann equation and using the corrected 
distribution function to evaluate the moments required 
in Eqs. (9) and (10). This procedure assumes that the 
distribution function differs only slightly from the 
zero-order distribution function. One therefore, expects 
it to be valid only for the case of fairly weak shock 
waves where one might expect, by analogy with the 
structure of a shock wave in an un-ionized gas, that the 
thickness of a shock wave would be at least several 
Larmor radii. 

Assuming that the ion Larmor radius is very much 
shorter than the mean free path, there will be virtually 
no collisions in the shock front and, therefore, the 
collision terms may be neglected. On this basis the 
first-order correction to the distribution function is 
given by 

e eW 
— ( V ' X H J V , / ! - - V'V/o V,/o, 
WliC Ifli 

where the subscripts 0 and 1 represent the order in the 
expansion. The corresponding correction to the electron 
distribution function is much smaller because the 
electron Larmor radius is so much smaller, and has 
therefore been neglected. Substituting the distribution 
function to first order into the momentum and energy 
equations (7) and (8) reduces them again to the form 
given in Eqs. (9) and (10). It is therefore necessary to 
continue the expansion to second order, before one 
obtains a pressure tensor which contains terms 
analogous to the viscous stresses and before one 
obtains a heat flux vector. Making use of the second-
order terms and making the approximation of weak 
shock waves, one obtains a second-order differential 
equation for the variation of the density in a steady-
state pulse. The analogous equation for an un-ionized 
gas is a first-order differential equation which permits 
a smooth variation of gas density from the conditions 
in the supersonic stream to those in the subsonic 
stream. The second-order equation obtained in this 
case does not permit such a solution. The solution 
obtained from this equation describes a pulse in which 
the gas density increases, goes beyond the density 
required to satisfy the Rankine-Hugionot equations in 
the subsonic stream and increases to a maximum, and 
finally decreases again returning to the initial density 
in the supersonic stream. The width of this pulse is 
ir/4[r</(Jlf — 1)*], where rt- is the Larmor radius based 
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on the flow velocity and M is the ratio of the flow 
velocity to the sound speed in Eq. (11). This pulse is 
not a shock wave, since it returns to the initial condition. 
If the collision term had not been dropped completely, 
the final state behind the pulse would have been 
slightly different from the initial condition and a 
series of pulses would follow. These pulses would 
eventually damp in a distance of the order of a mean 
free path and leave the gas in the appropriate condition 
for the subsonic stream. However, if the mean free 
path is very much longer than the ion Larmor radius, 
there would be very many pulses in this series and it is 
questionable that such a long train of pulses would be 
stable. 

Longmire and Rosenbluth and Colgate8 suggested that 
a shock wave of this type should not have a steady-state 
structure, but would oscillate in time even in a co-
ordinate system moving with the shock wave. Colgate 
has assumed without justification that the important 
length associated with this oscillation is the electron 
Larmor radius. However, the above calculation indi-
cates that some effects begin to occur with a scale 
comparable to the ion Larmor radius. One might there-
fore be more justified in assuming that the ion Larmor 
radius is the important length. 

At present it is not clear what is the final structure of 
such a shock wave. This leaves open the question of 
whether the dissipation associated with a shock wave 
produces a high ion temperature or a high electron 
temperature immediately behind the shock wave. It is 
interesting to speculate on the possibility that such a 
shock wave is in fact unsteady in time and may there-
fore lead to the emission of radio waves. Also, it is 
conceivable that the form of the dissipation mechanism 
is such that a few particles are accelerated to very high 
energies and thus a shock wave might be a source of 
cosmic rays. This acceleration would seem plausible 
if it is true that the shock structure is time dependent 
and if the frequency associated with oscillation is the 
cyclotron frequency of the ions. 

FIG. 2. Schematic diagram of gas accelerator to produce 
cylindrically converging shock waves. 

8 S. A. Colgate, University of California Radiation Laboratory 
Report, UCRL 4 8 2 9 (1957) . 

* This experimental program is being carried out primarily by 
G. Sargent Janes. 

Shock velocity 
(a) 

Shock velocity 
(b) 

FIG. 3 . Mirror camera pictures of cylindrically converging 
shock waves in hydrogen. Horizontal axis indicates distance along 
the diameter of the chamber (see slit indicated in Fig. 2 ) and 
vertical axis indicates time. The initial pressure was (a) 0 .2 mm 
Hg and (b) 0.3 mm Hg. In (a) the gas was preionized so that there 
was no magnetic field in the center. In (b) it was not preionized. 

EXPERIMENTAL* 

Before concluding, I will briefly mention experiments 
which are being performed at the AVCO Research 
Laboratory with an aim of studying gas dynamics in 
the M region. In order to produce a laboratory sample 
of gas in the M region with a magnetic pressure of the 
order of the gas pressure one requires a sample of gas 
at about 106 °K and a density of the order of 10 1 6 

particles per cubic centimeter. At the present time, 
temperatures of the order of 3 X 1 0 6 °K have been 
achieved. 

A schematic diagram of the experimental setup is 
shown in Fig. 2. A condenser bank is discharged 
suddenly into the drive coil. This produces an axial 
magnetic field inside the coil. The gas inside the chamber 
which has been preionized by a low-energy discharge 
excludes the magnetic field from the center of the 
chamber by a current on the surface. The magnetic 
field then acts as a piston pushing on the outer radius 
of the gas and produces a cylindrically converging 
shock wave. Shock velocities as high as 1 2 X 1 0 6 cm/sec 
in deuterium have been obtained. Using the Rankine-
Hugoniot conditions across the shock wave, this 
velocity corresponds to a temperature of 3 X 1 0 5 °K. 
The experimentally observed shock velocities are in 
agreement with a theoretical prediction based upon 
setting the magnetic pressure equal to the gas pressure 
behind the shock wave. 
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Figure 3 shows mirror camera pictures of shock 
waves produced in this manner. In Fig. 3(a) the shock 
wave starts from the outside of the chamber and 
continues to the center where it is reflected. In this 
case there was no magnetic field in the center of the 
chamber before the shock wave was initiated. In Fig. 
3(b) the shock wave does not proceed to the center of 
the chamber but the gas appears to be reflected before 
it reaches the center. In this case no preionization was 
used so that some of the magnetic field leaked through 
the gas to the center of the chamber before breakdown 

actually occurred. The gas is then presumably reflected 

by the compression of the magnetic field in the center. 

In this picture the gas has been slowed down gradually 

by the magnetic field and that because of the small 

extent of the gas sample no reflected shock has been 

formed. This is to be contrasted with Fig. 3(a) where 

the gas is decelerated rapidly at the center and a 

reflected shock wave is formed. These pictures are an 

example of one way in which dissipation in a gas can be 

reduced by the presence of a magnetic field. 

DISCUSSION 

H . K . SEN, GRD, AFCRC, Hanscom Field, Bedford, 
Massachusetts: In my paper [Phys. Rev. 102 , 5 (1956)] 
on magnetohydrodynamic shock structure, I found that 
the pressure tensor as derived by Chapman and 
Cowling (Mathematical Theory of Non-uniform Gases) 
reduces to the usual magnetohydrodynamic extension 
of the Navier-Stokes equation for two asymptotic 
cases : ω / j><3Cl and ω/ν^>1, where ω is the gyrof requency 
(in deference to Laporte, I would not call it the Larmor 
frequency) and ν is the collisional frequency. The first 
case is the hydrodynamic analysis with the magnetic 
field as a perturbation. The second case, curiously 
enough, turns out to be similar to the first, with a 
pseudo-viscosity~J times the ordinary viscosity. The 
Chapman-Cowling treatment, probably, is no longer 
valid in this case. 

A comprehensive analysis should, however, be based 
on the nondimensional ratio ω/ν as a parameter, so that 
it could yield the two asymptotic limits mentioned 
above and at the same time be valid for the physically 
interesting transition region where ω/vc^l. This 
remark is not trivial, inasmuch as uncritical neglect of 
parameters has not infrequently led to singularities 
with no physical basis whatsoever. The implication is 
that there is no a priori reason to expect that the results 
obtained from a treatment with complete neglect of 
collisions would closely approximate or even be similar 
to those that obtain for weak collisions (ω/ν«Χ). 

Η . Ε . PETSCHEK, AVCO Research Laboratory, Everett, 
Massachusetts: The results that are quoted in Chapman 
and Cowling do give the result that the viscosity is 
essentially the same in the two limits of small and large 
ω/ν. However, I believe that this is incorrect. It is 
difficult to follow exactly where the error is in Chapman 
and Cowling, since they do not give a detailed discussion 
for this particular case but only quote the results. 
Physically, I think it is quite clear that for the case 
where the cyclotron frequency is much larger than the 
collision frequency, the viscosity will be appreciably 
reduced and shock waves will steepen. 

H . W . L lEPMANN, Daniel Guggenheim Aeronautical 
Laboratory, California Institute of Technology, Pasadena, 
California: I did not see any dissipation in your model, 
so I do not see how you can get a thickness of a shock 
wave at all. 

Η . E . PETSCHEK : This is exactly the problem—that 
for the steady-state situation there appears to be no 
dissipation. If one looks at higher orders in this expan-
sion, they also indicate no dissipation. Now the type 
of dissipation one may get is if the flow becomes un-
stable, and makes a general mess, which will be a 
dissipation. 

H . W . LlEPMANN : I do not even see that. How do 
you get dissipation from instability? You must some-
how have a mechanism like viscosity or some sort of 
randomization. You have to increase the entropy, and 
the rate of increase of entropy determines the shock 
thickness. 

Η . E . PETSCHEK : The randomness introduced by 
the instability is already an increase in entropy. 

H . W . LlEPMANN : I think we are getting into in-
formation theory. 

L. SPITZER, JR., Princeton University Observatory, 
Princeton, New Jersey: Several mechanisms can be 
invoked. In the first place, we may refer to the quantity : 
square of the velocity perpendicular to the magnetic 
field divided by the magnetic field. This quantity is an 
adiabatic invariant, which is constant for slow changes. 
In a shock this quantity changes, and I believe this 
change may lead to a change of entropy of the system. 
In the second place, a change of entropy may occur 
through fine-scale mixing. Let us suppose that behind 
a shock there are oscillations which involve wiggles in 
the velocity distribution function. With increasing 
distance behind the shock, these wiggles or irregularities 
would have shorter and shorter wavelengths, and must 
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ultimately be damped out even by very weak collisions. 
I believe these two mechanisms may be the ones that 
must be invoked for the dissipation in a shock. 

E. C. BULLARD, Department of Geodesy and Geo-
physics, Cambridge University, Cambridge, England: 
Dees dissipation mean getting the energy into heat, 
and, therefore, that you must have collisions sooner or 
later? Or can the field be irregular enough to randomize 
the motions without collisions? 

L. SPITZER, JR. : Finally, of course, collisions are 
required to yield a situation where the entropy can be 
computed by classical means. 

H . E. PETSCHEK : It is not clear that the change in 
magnetic moment when there is a sharp change in the 
field is an entropy change. For the case where 7 = 2 , 
this is the usual isentropic relation. And, as Spitzer has 
pointed out, this is not necessarily valid if the gradient 
becomes steep compared to a Larmor radius. One can 
show, for example, that if one has a sudden change in 
magnetic field which will produce a change in this 
quantity for a particle going across, and if this change 
is reversed, at the distance which is precisely the 
distance the guiding center has moved in one Larmor 
orbit, the gas particles will all come out in the condition 
in which they started. Therefore, this is not an ir-
reversible process. 

A. SCHLÜTER, Max Planck Institut Für Physik, 
BöüingerStrasse 4, Göttingen, Germany: The fact that the 
magnetic moment of the spiraling motion of the particles 
is not constant does not in itself determine the shock 
width, because one really needs a mechanism which 
produces entropy, and this mechanism does not produce 
entropy even if the magnetic moment changes. So the 
only process which generates entropy is collisions, and 
if the rate of collisions is small, then the deviations from 
thermodynamic equilibrium must be so large that the 
few collisions can do the job. 

L. SPITZER, JR. : That is certainly entirely true. 
However, we have been wondering whether one should 
perhaps define a more generalized entropy, to discuss 
conditions with fine scale mixing, which on the macro-
scopic scale produces without collisions, essentially the 
same effect that collisions would produce. 

A. SCHLÜTER : D o I understand you correctly in 
saying that the rate of change of the magnetic moment 
depends upon the relative phase of the particle in its 
spiraling motion relative to the phase of the shock 
wave traveling through the gas and that, therefore, you 
get something which corresponds to the effect of 
collisions? If so, I see the point [cf. F. Hertweck and 
A. Schlüter, Ζ. Naturforsch, (to be published)]. 

R . LANDSHOFF, Missile Systems Division, Lockheed 
Aircraft Corporation, Sunnyvale, California: The com-
ment I want to make is quite similar to what Spitzer 
has said. Actually, the charged particles certainly 
interact with each other all the time. But artificially, 
in order to treat the interaction so as to fit the mathe-
matical formation of the Boltzmann equation, we 
divide it into two parts. A smooth part we treat as 
field, invoking the Maxwell equations; the rest whose 
cross sections go down at high velocities as ( e 2 /mv 2 ) 2 

we call collisions. But nevertheless, interactions are 
there, and that we divide them up in this fashion does 
not mean that they cannot provide a transfer of energy. 
I also wanted to ask a question. The equation describing 
the sharpening of the pulse given by the method of 
characteristics, 

drdlnpl / d l n p \ 2 n+1 

dtL dx J V dx / η 

{a = small disturbance velocity; n=number of degrees 
of freedom), seems to indicate that no matter what, 
there will be an increase in the density or the pressure. 
This looks as if we do not have to worry about dissi-
pation at all. 

Η . E. PETSCHEK : This equation comes from the 
equations where the length has been taken large 
compared to the Larmor radius and one does not have 
any of the terms corresponding to viscous stresses. 
Eventually the gradient becomes steep enough so that 
these terms have an effect. Also, as to the first comment 
you made, one has separated the collision of gas 
particles with other particles into two regions, the more 
or less uniform field and the collision field due to a 
particle. The question, I think, is how complicated does 
the nonparticle field with which a particle interacts 
have to become before one gets an entropy increase? 

S. I. PAI, Institute for Fluid Dynamics and Applied 
Mathematics, University of Maryland, College Park, 
Maryland: I am not familiar with Petschek's analysis, 
but I am quite familiar with studying shock waves from 
ordinary Navier-Stokes equations. For instance, if we 
neglect the viscosity and just consider the Euler 
equations, we may analyze the ordinary steepening of 
the compression waves into a shock, and will get 
exactly the same equation as was given by Landshoff, 
but instead of ordinary sound speed, you get the 
expression with effective sound speed. So as far as this 
equation is concerned, you really don't consider 
dissipation. You just calculate how the waves steepen. 
If we really go into details of the shock structure we 
have to put in the viscosity, etc., which produce 
dissipation. 

Η . E. PETSCHEK : The equation for the rate of 
steepening is a standard result. The point is that the 
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nonviscous equation is valid up through the region 
where the mean thickness becomes comparable with the 
mean free path, and the steepening continues to this 
limit. This approach does not say anything about the 
steady-state structure. 

H . W . L lEPMANN : A consideration of the basic 
thermodynamics of the model should clarify the 
problem of the dissipation. For example, you can make 
one of your shock waves in a type of a Gay-Lussac 
experiment by breaking a diaphragm between two 
gaseous regions at different pressure in a container. 
In this way you can make a strong shock in a magnetic 
field, and in the beginning and the end you can apply 
thermodynamic reasoning. Then you either have 
dissipation or you do not. The entropy goes up or it 
does not. So I see how you can get a steep front, but I 

cannot possibly see how you can get the whole shock 
disturbance without getting some form of collision. I 
think Schlüter agrees with me. 

A. R . K A N T R O W I T Z , AVCO Research Laboratories, 
Everett, Massachusetts: I would like to emphasize 
another form of dissipation that can appear in this 
problem: concentration of energy in particles on the 
tail of the distribution function would be a very nice 
way to do it. We have looked hard for this effect and we 
haven't been able to find it theoretically. Experi-
mentally, as Petschek pointed out, it has been observed. 
For example, it is observed in the astronomical situation 
in the relationship of cosmic rays to solar disturbances. 
It is also observed in the laboratory. And this, it seems 
to me, is the most likely place to look for a powerful 
dissipation mechanism. 
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