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The axially symmetric deformation of a drop in a viscous fluid, under the influence of an
externally imposed flow having simultaneous rotating and compressional or extensional
components, is addressed. In the previous studies, two families of stationary drop shapes
were constructed by simulating the dynamics of drop deformation: stable singly connected
shapes with respect to axisymmetric disturbances, and unstable toroidal shapes. These two
branches coexist at the same flow conditions, but were not connected. In this study, we
obtain a new family of branches of unstable highly deformed stationary drops connecting
with the stable flattened shapes and the toroidal ones. We use a method based on classical
control theory. The controller is designed for a two-state dynamic model of the system and
is employed on a high-order nonlinear dynamic model of the drop deformation. Through
this feedback-control-centred approach, an extended collection of unstable stationary
solutions is constructed, which spans the range from the loss of stability to the dimpled
shapes almost collapsed at the centre. In the latter region, which was never obtained in
previous studies, a multiplicity of solutions is identified.

Key words: drops, instability control, boundary integral methods

1. Introduction

In recent years, interest in non-trivial forms of fluid particles was stimulated by
applications of non-spherical microparticles to have important potential as building
blocks for self-assembled materials, including clustering of cells, imaging probes for
therapy, drug carriers, and more (see e.g. Champion, Katare & Mitragotri 2007; Yan
2015; Zabarankin & Grechuk 2017). One of the advanced methods for producing
microparticles of complex shapes is the solidification of drops deformed by the flow
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in microfluidic devices. The flow affecting the deformation of a microdrop, can be
approximated by a linear one. The resulting linear flow can have shear and rotational
components. Systems that may involve such simultaneous components can be found
also in multiphase polymer processing such as injection moulding or cases where two
impinging jets collide. Further examples of industrial devices in which domains that have
a combination of such rotation and extension components are rotary pumps Dmytriv et al.
(2021) and cyclone separators Li, Huang & Li (2023).

There has been an enormous body of publications concerning the deformation of a
drop embedded in a viscous domain and subject to a linear flow field. A comprehensive
review of the early studies can be found in Stone (1994). In particular, when a viscous
drop, initially spherical at rest, is deforming in an extensional or shear flow, the works of
Taylor (1932), Rallison & Acrivos (1978) and Hinch & Acrivos (1980) suggest that with
increasing flow rate, the drop can reach a critical shape at which it loses its stable form
and beyond which its shape becomes unstable in the flow. A similar transition is found by
Acrivos & Lo (1978) for a slender body in extensional flow where more than one branch
of the solution of the equations of motion, and more than one stationary shape, stable and
unstable, are reported for given flow conditions.

The study of rotating liquid drops has been performed by several authors experimentally,
theoretically as well as numerically (see e.g. Chandrasekhar 1965; Brown & Scriven
1980; Fontelos, García-Garrido & Kindelán 2011; Lyttleton 2013; Nurse, Coriell &
McFadden 2015; Elms et al. 2017; Holgate & Coppins 2018). The computational study
of equilibrium shapes of such drops was conducted by Poincaré (1885) and Appell (1932).
According to Poincaré (1885), two families of solutions could be obtained, which consist
of axisymmetric and asymmetric shapes. A detailed classification of all rotationally
symmetric figures of equilibrium corresponding to rotating liquid masses subject to
surface tension was given in Elms et al. (2017). Fontelos et al. (2011) studied the stationary
shapes, evolution and breakup of a viscous rotating drop, making use of the Stokes model
and a boundary integral approach. Multiple axisymmetric solutions were found for a range
of governing parameters. Ellipsoidal, flat dimpled and toroidal shapes may exist for the
same flow conditions.

The multiplicity of stationary shapes of drops deforming in a linear compressional flow
was also reported in Zabarankin et al. (2013), Zabarankin, Lavrenteva & Nir (2015) and
Ee et al. (2018). There, the reported branches of solutions were either stable stationary flat
drops or unstable yet stationary toroidal drops. These predictions comprise dual branches
of stationary solutions, resulting at a given capillary number, but they appeared to be
unconnected, in contrast to the drops deforming in a rotational flow field, where the
stationary branches of flat and toroidal drops are connected by a branch of flat discs
having ever-growing dimples (Fontelos et al. 2011). Lavrenteva et al. (2021) proposed
to approximate stationary shapes of the drops in compressional flow by using generalized
Cassini ovals. The analysis reproduced the branches with shapes of stationary stable flat
drops and stationary unstable toroidal drops, available from numerical calculation, and
predicted the transition branch between oval and toroidal shapes, consisting of flat drops
with ever-growing dimples up to collapse.

Malik, Lavrenteva & Nir (2020) considered deformation of an immiscible drop in
a linear flow that is composed of two simultaneous components, rotational flow and
axisymmetric flow, either compressional or extensional. The dynamic deformation,
stationarity and stability with respect to axisymmetric perturbation were characterized
using dimensionless parameters such as the Bond number and capillary number. A domain
in the phase plane of the Bond number and the capillary number within which the

983 A5-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.128


Stationary dimpled drops under linear flow

deformed drop will be stable is obtained. Malik, Lavrenteva & Nir (2021) reported on
the branch of toroidal stationary shapes existing under the same conditions as simply
connected ones. Malik et al. (2022) used a feedback-control approach to extend the branch
of toroidal drops up to near collapse. Yet the branches of singly connected and toroidal
shapes remained unconnected in cases with and without rotation.

The main goal of this study is to construct the connecting branch in the case when the
outer linear flow consists of rotational and axisymmetric (extensional or compressional)
components. The method that was employed is based on the use of classical control theory
similar to that employed in Malik et al. (2022). Methods of control theory are employed
extensively and successfully to stabilize various types of flow, e.g. for controlling the onset
of turbulence, and turbulence suppression in channel and pipe flow. A comprehensive
review of the modern state of this subject can be found in Jovanović (2021). Fikl & Bodony
(2021) developed optimal control methods for stationary and time-dependent deformation
of a drop in viscous flow.

In the present study, a simple proportional-integral controller is used. The intensity of
the extensional component of the outer flow is chosen for a control signal. The controller
is designed using a simplified model of the system and employed for the full model,
demonstrating sufficient robustness. In § 2, we give the mathematical model used for
the analysis. The design of the controller based on a simplified model of the process
is described in § 3. Section 4 presents the implementation of the controller to the full
(boundary integral) dynamic problem. A discussion of the results concerning stationary
solutions is given in § 5, followed by concluding remarks in § 6.

2. Problem formulation and solution methodology

2.1. Drop dynamics in linear viscous flow
We consider a viscous drop of fixed volume V = 4πl3/3 embedded in an immiscible
unbounded viscous fluid, where l is the radius of the undeformed spherical drop. Let the
domain occupied by the drop be denoted by Ω1, and let the unbounded external domain be
defined by Ω2. The viscosity and density of the drop and the ambient fluid are represented
by μ1, ρ1 and μ2, ρ2, respectively. The velocity and pressure fields in Ωi, i = 1, 2, are
denoted as ui, pi, respectively. The drop and external fluid are supposed to rotate in an
axisymmetric manner around a common axis with angular velocity ω.

In this study, the external flow is considered to be extensional or compressional in
combination with rotation. In the reference frame rotating with the angular velocity ω,
the velocity of external flow, in the absence of a drop, is

u0
i = Gijxj, (2.1)

where G11 = G22 = G, G33 = −2G, and Gij = 0 whenever i /= j. Here, G denotes a
shear rate that characterizes the intensity of the flow, which may be positive or negative,
representing the compression and extension modes of the flow, respectively.

In what follows, throughout the paper, non-dimensional variables are used, where l,
U = γ /μ2, Π = γ /l and T = l/U are the length, velocity, pressure and time scales,
respectively. The governing parameters of the problem are the viscosity ratio λ =
μ1/μ2, the capillary number Ca = μ2Gl/γ , and the rotational Bond number Bo = (ρ1 −
ρ2)ω

2l3/γ . In the present study, the drop and the ambient fluid are considered to have the
same viscosity, i.e. λ = 1.

In this investigation, we explored the realm of creeping incompressible flow conditions,
where the viscosities of the drop and the ambient fluid are considered to be same.
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When inertia and sedimentation effects are ignored, the Stokes system in a rotating frame
of reference is given as

∇ · ui = 0 in Ωi(t), i = 1, 2, (2.2)

−∇Pi + �ui = 0 in Ωi(t), i = 1, 2. (2.3)

Here, Pi is the non-dimensional form of modified pressure as given in Fontelos et al.
(2011). The stress balance at the drop interface is maintained as

(σ1 − σ2) · n = − 1
Ca

(
κ − Bo

2
r2

)
n in ∂Ω(t), (2.4)

where the σi denote the interfacial stresses, n is the unit normal vector pointing outwards
from the drop interface, and κ is the surface mean curvature. The non-dimensional
parameters Ca and Bo are the capillary and Bond numbers, respectively. At the interface
of the drop (δΩ), the velocity (us) is assumed to be equal to the velocity of the ambient
fluid, i.e.

u1 = u2 = us. (2.5)

The dynamics of this surface is determined by the kinematic condition

un = us · n on ∂Ω(t), (2.6)

where un denotes the velocity of the surface in the normal direction. Far from the drop,

u2 → Ca u∞ when |x| → ∞, u∞ = (x1, x2, −2x3). (2.7)

It should be noted that the parameters Ca and Bo can assume positive as well as negative
values. Here, the positive and negative values of Ca represent the compressional and
extensional flow, respectively. When Bo is positive, the drop density exceeds the density
of the ambient fluid, which we call a heavy drop; and when Bo is negative, the density of
the ambient fluid exceeds the drop density, which we call a light drop.

2.2. Boundary integral formulation
For a given shape of the drop, the problem (2.2)–(2.5), (2.7) can be formulated as a system
of integral equations for the velocity at the interface ∂Ω as given by Rallison & Acrivos
(1978) and Pozrikidis (1992). In the case of equal viscosity of the phases, the velocity at
the interface is given by an explicit expression,

uj(xp) = Ca u∞
j (xp) − 1

8π

∫
∂Ω

(
κ(x) − Bo r2

2

)
ni(x) Jij(x − xp) dS(x), (2.8)

where xp denotes the position vector of any point p on the surface, and

Jij(y) = δij

|y| + yiyj

|y|3 . (2.9)

Recall that u∞(y) = ( y1, y2, −2y3), and the positive and negative signs of Ca refer to
compressional and extensional flow, respectively. Here, δij is the Kronecker delta. In
this study, y3 = z, and the z-axis is considered to be the axis of rotation. The pressure
and velocity are independent of azimuth angle φ in the cylindrical coordinates (r, z, φ).
Equation (2.8) can be integrated over the angular coordinate and reduced to expressions
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for the components of the velocity at the interface in cylindrical coordinates containing
curvilinear integrals over the cross-section of the drop interface L:

uj(rp, zp) = Ca u∞
j (rp, zp) − 1

8π

∫
L

(
κ(r, z) − Bo r2

2

)
× ni(r, z) Mij(rp, zp, r, z) dL, j = r, z. (2.10)

The resulting expressions for the kernels Mij can be found in Pozrikidis (1992). The
simulation process of dynamic deformation starts with the solution for some given shape
of a singly connected drop of volume 4π/3. At each time step, the velocity at the interface
is computed from (2.10), and the drop’s surface is updated accordingly in the normal
direction in a quasi-stationary manner with the help of the kinematic condition (2.6). The
detailed literature concerning this approach can be found in Zabarankin et al. (2013), where
it was used for simulating the dynamic deformations of a drop in a compressional flow in
the absence of rotation, Ca > 0, Bo = 0. The same approach was employed recently by
Malik et al. (2020) to study deformation of a drop under the combined action of rotation
and compressional or extensional flow. It was demonstrated that for every pair (Bo, Ca),
the drop either stabilizes to a stationary shape or eventually breaks up.

2.3. Stationary drop shapes
The drop is of stationary shape if the normal velocity at its interface vanishes, that is,

un = us · n = 0. (2.11)

In the dynamic computations (Zabarankin et al. 2013; Malik et al. 2020), the solution
was assumed to be stationary if (2.11) was established to a desired degree of accuracy.
We note that, following Malik et al. (2020, 2022), with a mesh of 100 surface elements,
the criterion for stationarity is set at max(|un|) ≤ O(10−3). The obtained singly connected
stationary shapes do not change for an indefinitely long time, and are addressed as stable
with respect to axisymmetric perturbations. The region of stable drop shapes in terms of
Bo and Ca has been presented in Malik et al. (2020).

In the special case when Ca = 0, the velocity field in the laboratory reference frame is
just that of a solid body rotation, and the shape of the interface can be found via solving a
system of ordinary differential equations (see e.g. Fontelos et al. 2011). Analysis of these
equations reveals that the solution is not unique. For a certain region of Bo, oval shapes
coexist with toroidal and flattened, dimpled ones.

An alternative method to find stationary solutions is to use an iterative procedure to
minimize a norm of the normal velocity at the interface. For a stationary shape, this
minimum should be zero. This method is not necessarily related to the actual dynamics
of the drop and can be advantageous in finding unstable shapes. In particular, the
effectiveness of such an approach is anticipated when the shape of the drop can be
approximated by a simple geometric shape defined by a small number of parameters.
Numerous such approximations are available in the literature. Zabarankin et al. (2013)
suggested several such approximations in the case Bo = 0 and λ = 1, which were shown
to provide excellent fitting to all the stable shapes obtained by the dynamic simulations.
Lavrenteva et al. (2021) used generalized Cassini ovals to approximate drop cross-sections
and find stationary shapes by minimizing a convex functional of normal velocity at the
interface. The analysis reproduced the branches with shapes of stationary stable flat drops
and stationary toroidal ones available from numerical calculation in the case Bo = 0
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and λ = 1. Furthermore, it predicts the point of loss of stability of the flat drop to exhibit
the transition branch that leads into the formation of the toroidal shapes, and shows that
this branch shows stationary, yet unstable, flat drops with ever-growing dimples up to
collapse. However, as it was shown in Malik et al. (2020) that in the presence of rotation,
the cross-sections of stationary drops did not always resemble Cassini ovals. Thus another
method is required to find the branch of unstable dimpled shapes.

In this paper, we employ a method based on the use of a classical control theory, where
the problem is reduced to a dynamical system with a low number of variables (states).
We find a stationary solution of this system, linearize the system in the vicinity of this
stationary solution, and on the basis of the linearized model, design a linear feedback
controller. This controller is then used on the original nonlinear dynamic model of the
system. For a control signal, we used the capillary number Ca that is proportional to
the intensity of the outer flow. A similar approach was used in Malik et al. (2022) to
stabilize toroidal drop shapes. Detailed descriptions of the algorithm and obtained results
are presented in the forthcoming sections.

3. Design of the control

3.1. Simplified model for axisymmetric drop dynamics
Consider a two-parameter family of singly-connected bodies of rotation having the same
volume as a unit sphere. Let the cross-section L of the surface of a body of this family be
described by the parametric equations

r = a1 cos θ, z = sin θ (a2 + a3P1(2 sin θ − 1)), (3.1)

where θ ∈ [0, π/2], and the coefficients ak satisfy

a2
1(a2 + 2a3) = 2 (3.2)

to ensure that the volume of the drop is equal to that of the unit sphere.
In what follows, we use the notation

Rmax = r(0) = a1, Z0 = z(π/2) = a2 + a3. (3.3)

To construct the dynamic equations for these two parameters, we use the kinematic
conditions at θ = 0 and π/2, i.e. at the points on the interface with coordinates (Rmax, 0)

and (0, Z0), and take Rmax(t) and Z0(t) for the states of the dynamic system. Due to the
symmetry of the interface, at (Rmax, 0) we have uz = 0 and nz = 0, while at (0, Z0) we
have ur = 0 and nr = 0. Thus the dynamic system takes the form

dRmax

dt
= f1(Rmax, Z0, Ca, Bo) = ur(Rmax, 0, Ca, Bo), (3.4a)

dZ0

dt
= f2(Rmax, Z0, Ca, Bo) = uz(0, Z0, Ca, Bo). (3.4b)

Here, ur and uz are computed from (2.10), with L defined by (3.1), where coefficients a1,
a2 and a3 are given by

a1 = Rmax, a2 = 2R−2
max − Z0, a3 = 2(Z0 − R−2

max). (3.5a–c)

Note that the right-hand sides of (3.4) are nonlinear functions of the model variables Rmax
and Z0, and depend also on the flow characteristics defined by Bo and Ca. The latter will
be utilized when the drop shape control is addressed in the sequel.
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3.2. Feedback control to determine stationary solutions
A linear feedback controller is designed using an approximate model of the drop
deformation presented in the previous subsection. Consequently, this controller is used
for the nonlinear dynamic model formulated in § 2. Since the controller is robust only to
limited variations in the model parameters, i.e. in the flow conditions, once the limit of
flow variations for which a stationary solution can be found is reached, a new controller is
designed for the new stationary solution that is close to that limit. The process is repeated
and covers the entire range of flow conditions of interest.

Note that the dynamic model, even the simplified one, is nonlinear. However, since our
main goal is to find stationary solutions, and not to perform advanced nonlinear regulation
and tracking control tasks, we will employ a linearization-based classical linear control
design, using the simple model and a single-input-single-output controller.

In the present study, for any fixed Bo, the control signal is chosen to be Ca. In a previous
work (Malik et al. 2021) it was found that for a fixed Bo, Rmax dictates a unique drop shape.
Therefore, the dictated control input and the feedback signal that is used by the controller
are chosen as Rmax.

The control is designed on the basis of the approximate two-state model described in
§ 3.1. The states of this model are x(t) = (Rmax(t), Z0(t)), and their nonlinear dynamics is
governed by (3.4). For the controller design, this model is linearized around a stationary
solution denoted by x0, corresponding to Ca0. The linearized model is given by

δẋ = A δx + B δCa, (3.6a)

δRmax = C δx + D δCa, (3.6b)

where ẋ denotes dx/dt, and

A =
[
∂f
∂x

]
x0

=

⎡
⎢⎢⎣

∂f1
∂Rmax

∂f1
∂Z0

∂f2
∂Rmax

∂f2
∂Z0

⎤
⎥⎥⎦ , B =

[
∂f
∂Ca

]
x0

=

⎡
⎢⎣

∂f1
∂Ca
∂f2
∂Ca

⎤
⎥⎦ =

[
R0

max

−2Z0
0

]
,

C =
[
∂Rmax

∂x

]
x0

=
[

∂Rmax

∂Rmax

∂Rmax

∂Z0

]
= [

1 0
]
, D =

[
∂Rmax

∂Ca

]
x0

= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

The partial derivatives in the expression for A are calculated numerically using a
second-order central difference scheme.

The open-loop transfer function between the control input δCa and the output δRmax,
which will be used in the controller design, is given by

Gol = C (sI − A)−1 B + D, (3.8)

where s is the complex Laplace variable, and I is a 2 × 2 identity matrix.
The uncontrolled process corresponds to Ca = Ca0, i.e. δCa = 0. If at least one

eigenvalue of A in (3.6), or equivalently, one of the poles of Gol(s), has a positive real
part, then the stationary solution of (3.4) is unstable. In the current study, we chose Rmax
to be the controlled output variable.

In order to design a controller that stabilizes the system of (3.6) and also can generate
a neighbouring solution defined by δRD

max = RD − R0
max, we introduce the error term
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between the desired and calculated outputs:

e(t) = RD − Rmax = δRD
max − δRmax. (3.9)

The control input δCa is chosen in a such a manner that the transfer function in (3.8) does
not have a pole at the origin, and to ensure type one characteristics of the closed loop
system, a proportional-integral controller is used to stabilize the system (Ogata 2010),
given by

δCa = −Kpe − KIeI, (3.10a)

where
ėI = e. (3.10b)

Here, Kp and KI are proportional and integral gains designed to stabilize the closed loop
system. The integral component of the controller is introduced for robustness and to better
account for the modelling errors caused by the simplified model. Also, this component
will allow us to move from one stationary solution to the neighbouring one.

In the present study, the parameters Kp and KI are designed using the classical root-locus
tuning techniques. The transfer function of the controller is given by

C(s) = δCa
e

(s) = Kp + KI

s
. (3.11)

The corresponding closed loop transfer function of the system is

Gcl(s) = δRmax

δRD
max

(s) = Gol(s) C(s)
1 + Gol(s) C(s)

. (3.12)

As discussed earlier, the above controller is used in the vicinity of the stationary solution
x0 to find neighbouring stationary shapes. This is carried out by applying this control
logic to the full nonlinear model of the system (2.10). Since the linear controller computes
only deviations in the capillary number, the value used in the simulations is given by
Ca = Ca0 + δCa, as is discussed next.

4. Control implementation to the full boundary integral formulation

For a chosen pair (Ca0, Bo), the controller gains Kp and KI are determined as described
in the previous section. Once the controller for the simplified model is established, it is
applied to the full nonlinear dynamics model of (2.8) or (2.10) to determine the stationary
solution with Rmax = RD. Namely, in (2.10), the capillary number is changed dynamically
as

Ca(t) = Ca0 − Kp (Rmax(t) − RD) − KI

∫ t

0
(Rmax(τ ) − RD) dτ, (4.1)

where
Rmax(t) = max

(r,z)∈St
(r). (4.2)

For the initial conditions, we chose the established shape S0 corresponding to particular
(Ca0, Bo), and set some RD that is relatively close to R0

max = max(r,z)∈S0(r). If the
deviation in Rmax is sufficiently small and the controller is robust enough, then simulation
will converge to a neighbouring solution of the nonlinear model. An example of the
controlled dynamics is presented in figure 1. The control was designed for Bo = 0
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Figure 1. Controlled dynamics of (a) Rmax − RD and (b) Ca, when Bo = 0.

and Ca0 = 0.1969, which is close to the critical point reported in Malik et al. (2020).
The corresponding stationary shape has Rmax � 1.70648. The gains were chosen as
Kp = 0.5473 and KI = 0.0274. Figures 1(a) and 1(b) show the dynamics of Rmax − RD
and Ca, respectively.

In figure 1(a), the dynamics of Rmax − RD is presented. In this presentation, the desired
stationary shape of the drop is assumed to be attained when |Rmax − RD| approaches
zero while the capillary number tends to some constant value. The dynamics for RD =
1.706472 (solid blue line) begins with Rmax − RD = 0, and the modification in Ca(t)
(see figure 1b) corrects the Rmax(t) value in order to approach the stationary solution
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corresponding to the desired shape. Evidently, the difference Rmax − RD increases initially,
and after a certain time it starts decreasing towards Rmax − RD = 0. In the cases described
by the dashed red, dash-dotted yellow and dotted purple lines in figure 1(a), the desired
values of Rmax are obtained successfully in a similar manner. A previously obtained
stationary shape is used as an initial shape for simulating the next desired shape. Note
that the overshoot and the settling time of Rmax − RD are increasing with increasing RD
values. The reason behind this may be the decreasing impact of a particular control on
higher values of RD. In figure 1(b), in all cases, Ca(t) settles down quickly, and eventually
stabilizes to the Ca values (i.e. CaD) that maintain Rmax = RD as depicted in figure 1(a).
Note that all cases of the dynamics illustrated in figure 1 are obtained with the same
control.

For non-zero values of the Bond number, an algorithm of receiving stationary solutions
is similar: a control designed on the basis of the two-state model for a given pair (Bo, Ca0),
corresponding to a stationary shape with R0

max, when applied to a full system with this very
stationary shape as initial condition, converges to a stationary solution with RD ∈ ⋃

(R0
max)

i.e. in some vicinity of R0
max. When the same initial stationary state fails to generate the

new desired shape, we use the last obtained stationary shape of the stabilized drop as the
initial shape for simulation, with the same controller gain values. As in the case Bo = 0,
in cases where Bo /= 0, we begin with (Bo, Ca0), close to the critical point report Malik
et al. (2020). Note that the instability in drop shape develops faster with the advance
along the unstable branch of the solution in any particular case of Bo. The stabilization of
such ‘more unstable’, i.e. faster diverging, shapes may not be attained with the previously
designed controller, KP and KI (this is a typical case for Bo /= 0), and is likely to require
higher controller gains. At this point, we design a new controller for the updated stationary
values corresponding to the new Ca and the corresponding shape. The simulation and
stabilization of drops for neighbouring flow conditions are performed considering this
new stationary shape. With the help of the procedure described above, we succeeded in
obtaining stationary shapes close to those of collapse at the centre of the drop with Z0 as
small as 0.01.

Examples of such controlled dynamics for Bo = −5 are presented in figure 2. The
dynamics for RD = 1.72 (dashed red lines) begins with the shape given in Malik et al.
(2020) with R0

max just a little lower than RD. Then the modification in Ca(t) (see figure 2b)
corrects the Rmax(t) value in order to get the stationary solution corresponding to the
desired shape. Evidently, after a short time, Rmax approaches RD. In the cases described
by the dotted yellow lines, dash-dotted purple lines and solid magenta lines (figure 2a),
the differences between the initial and desired values of Rmax are relatively high. For
example, in the case described by the dotted yellow line (RD = 2.4), the control designed
for R0

max = 1.72 was employed. In this case, it took much longer time to achieve the
stationary state, and one can see oscillations of Rmax(t) and Ca(t) at the initial period of
time reflecting complex eigenvalues of the controlled system. Consequently, in the cases
corresponding to the dash-dotted purple and solid magenta lines, new controllers were
designed based on the updated stationary states and capillary numbers. This results in
faster convergence and less noticeable oscillations.

The calculations described below were run up to t = 100, then the normal velocity at
the interface was checked. The observed max(|un|) at t = 100 was typically O(10−5) or
less, while in more complex geometry, such as deep dimples or in the vicinity of the
region of transition from simply connected to toroidal branches, it was O(10−3) or less.
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Figure 2. Dynamics of Rmax(= Rz=0) and Ca. (a) Dynamics of Rz=0 when Bo = −5. (b) Dynamics of Ca
when Bo = −5.
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Figure 3. Shapes corresponding to Bo = 0: (a) Ca = 0.196843, Rmax = 1.706473, zr=0 = 0.231444;
(b) Ca = 0.195015, Rmax = 1.8, zr=0 = 0.163002; (c) Ca = 0.189963, Rmax = 1.9, zr=0 = 0.088505;
(d) Ca = 0.183298, Rmax = 1.985231, zr=0 = 0.009633. The dashed red curves correspond to the Cassini
approximation (Lavrenteva et al. 2021).

The particular levels of accuracy are indicated in the discussions following the results
displayed below in § 5.

5. Results and discussion

5.1. Stationary axisymmetrically rotating drops
Malik et al. (2020) reported on dynamic deformation of an immiscible singly connected
drop in a linear flow that is composed of two simultaneous components, rotational flow and
axisymmetric flow. It was demonstrated that if the Bond number and the capillary number
lie within a certain domain in the phase plane, then the drops stabilize to stationary shapes.
It has been claimed that outside these bounds, instabilities dominate the drop shapes; hence
no stable stationary shapes were obtained. In the present work, we focus on finding new
stationary unstable drop shapes. These are attained and stabilized with the help of a control
algorithm as described in §§ 3 and 4.

Recall that the control approach starts with an approximation of drop shape close to the
desired one that is deforming in the dynamically modified flow field to obtain the shape
with a desired characteristic (Rmax = RD in our case). In other words, the control method
aims to attain a desired drop shape, defined in terms of length of radial axis (RD), by
modifying the ambient flow field, represented by capillary number Ca.

The obtained stationary drop shapes of the cases depicted in figure 1(a) are shown in
figure 3. Drop shapes in these cases of the outer flow corresponding to capillary numbers
Ca = 0.196843, 0.195015, 0.189963, 0.183298 are shown as solid lines. Approximate
solutions of similar cases obtained by Lavrenteva et al. (2021), using generalized
Cassini ovals, are shown by dashed lines with Ca = 0.196, 0.195, 0.19, and 0.1831 for
figures 3(a,b,c,d), respectively. The shapes are almost indistinguishable. However, the
normal velocities at the interface approximated by the generalized Cassini ovals are
of the order 10−3 (see Lavrenteva et al. 2021), being several orders of magnitude
higher than those associated with the shapes of the present paper in figure 3, i.e.
max |un| = 8.5 × 10−6, 1.5 × 10−5, 2.0 × 10−5, 3.3 × 10−5, respectively.

The computations of Malik et al. (2020) revealed that the heavy drops (Bo ≥ 0) lose
stability with the appearance of a slight dimple at the central part of the drop. In
figures 4(a,b,c,d), we present the controlled stationary dimpled shapes of heavy drops
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Figure 4. Shapes corresponding to Bo = 4: (a) Ca = 0.021656, Rmax = 1.5, zr=0 = 0.230345;
(b) Ca = 0.012215, Rmax = 1.6, zr=0 = 0.098454; (c) Ca = 0.001943, Rmax = 1.66, zr=0 = 0.015117;
(d) Ca = 0.000003, Rmax = 1.67, zr=0 = 0.002214 (solid line). The dashed line in (d) corresponds to solid
body rotation, Ca = 0, Bo = 4.0004 (Malik et al. 2020).
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–1

0

1

z

Figure 5. Shapes corresponding to Bo = −4: green dashed lines, Ca = 0.35132, Rmax = 1.8, zr=0 = 0.36835;
black dotted lines, Ca = 0.32679, Rmax = 2.2, zr=0 = 0.29488; red dash-dotted line, Ca = 0.30294, Rmax =
2.8, zr=0 = 0.07098; blue solid lines Ca = 0.30184, Rmax = 2.85, zr=0 = 0.01527.

for Bo = 4, and Ca = 0.021656, 0.012215, 0.001945 and 0.000003, respectively, with
|un|max ≤ O(10−4). Note that the case presented by figure 4(d) resembles the shape of
the drop for Bo = 4.0004 with Ca = 0 as presented in figure 3(d) of Malik et al. (2020).
This regenerated result is represented by a dashed line overlapping the present result.

Figures 3 and 4 suggest that shapes of rotating heavy drops are less extended in the r
direction than those deformed by compressional flow without rotation. In both cases, with
the decrease of Ca, an ever-growing dimple in the middle is evident, and at some critical
Ca, when the thickness at r = 0 is totally collapsed, the drop may transform to a toroidal
shape.

Unlike heavy drops, light drops (Bo < 0) lose stability at shapes without dimples
(see Malik et al. 2020). Figure 5 presents the case Bo = −4, where this effect is
demonstrated. Shapes depicted by dashed, dotted, dash-dotted and solid shapes correspond
to (Ca, Rmax) = (0.351324, 1.8), (0.326788, 2.2), (0.302938, 2.8) and (0.301842, 2.85),
respectively. The stationary shape at Rmax = 1.8 is thick in the mid-section and is relatively
thin at the radial endpoints. At lower Ca and higher radial extension, i.e. Rmax = 2.2, the
sides of the drop rather than the mid-section are compressed and extended. This is due to
the opposite effects of rotation and compressional flow. The thickness of the mid-portion
decreases at Rmax = 2.8. In this case, most of the internal fluid is transferred to the radial
endpoints of the drop. The drop achieved an almost collapsed shape when Ca = 0.301842
with Rmax = 2.85.
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Figure 6. Shapes corresponding to Bo = −5: green dashed lines, Ca = 0.3831, Rmax = 1.72, zr=0 = 0.42943;
black dotted lines, Ca = 0.32815, Rmax = 2.4, zr=0 = 0.36528; red dash-dotted line, Ca = 0.32147, Rmax =
2.8, zr=0 = 0.23023; blue solid lines, Ca = 0.31423, Rmax = 3.19, zr=0 = 0.01139.

This transformation described in the previous paragraph is typical for light drops
that emerged in the fluids with a higher rate of rotation. A further example, at
Bo = −5, is depicted in figure 6, where dashed, dotted, dash-dotted and solid
shapes correspond to (Ca, Rmax) = (0.3831, 1.72), (0.32815, 2.4), (0.32417, 2.8) and
(0.31423, 3.19), respectively. The stationary shape at Rmax = 1.72 is thick in the
mid-section and is relatively thin at the radial endpoints. At lower Ca and higher radial
extension, the sides of the drop are more compressed than the mid-section, and a dimple
in the centre appears only for highly compressed shape Rmax = 3.19, close to collapse. In
the cases described in figures 5 and 6, |un|max ≤ O(10−3), slightly higher than those in
figures 3 and 4.

5.2. Branching into unstable stationary flat drops
The obtained results on the stationary drop shapes are collected in figure 7, where the
Taylor deformation factor D = (Rmax − Zmax)/(Rmax + Zmax) is plotted versus capillary
number for various values of the Bond number. There, the newly obtained controlled
stationary shapes, beyond those obtained numerically by Malik et al. (2020), are
represented by different coloured circles.

An interesting phenomenon, which is evident in figure 7 for all cases of Bo, is that
there is a maximal value of the capillary number, Camax(Bo), beyond which no stationary
shapes were observed. These are marked by full diamonds. A further increase in Rmax
is associated with a decrease in the capillary number toward the point of centre collapse
at Ca = Cacollapse, and is expressed in the monotonous increase in D. The points next to
collapse are marked by solid blue dots. Note that in the region Cacollapse < Ca < Camax,
there exist two different stationary solutions associated with different shapes, Rmax and
D values, for a given Ca and Bo. The shapes with lower D are stable, while those with
higher D are unstable and are stabilized by control. Note also that the extreme transition
in shape of lighter drops, shown in figures 5 and 6, results in non-monotonous change of
the curvature of deformation curves in figure 7.

A summary of this phenomenon is presented in figure 8(a), where Camax (the critical
region) and Cacollapse (the transition phase) are shown for varying Bo in the region −5 <

Bo < 4. The upper curve corresponds to critical Ca where drops lose their axisymmetric
stability. The lower curve corresponds to the total collapse of the centre region in the
drop shape where transition to toroidal shapes is expected. The region between these two
curves provides a subdomain of the (Bo, Ca) plane, where the singly connected stationary
unstable shapes coexist with the stable stationary drops. Hence no solution exists above
the upper curve, while only stable solutions prevail below the lower curve, as reported
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Figure 7. Deformation curves for singly connected drops: Taylor deformation factor versus capillary number
at various values of the Bond number. Critical points are marked by full diamonds. Parts of the curves below
and above these points correspond to stable and unstable shapes, respectively.

by Malik et al. (2020). It is worth noting that the span of this region of dual solutions in
the Ca direction is almost unchanged for heavy drops (when Bo > 0), but that it increases
with decreasing drop density (when Bo < 0). In a similar manner, the deformation factor
at transition phase and at critical region with respect to Bo is presented in figure 8(b).
Here, the deformation near the transition phase with increasing Bo values is monotonically
decreasing for all Bo values. However, the deformation at the loss of stability of the drops
at Ca = Camax increases monotonically for −5 < Bo < −1, and decreases for −1 < Bo <

4. Note again the non-monotonic change of the deformation at critical point at high Bond
number. It is associated with the observed dramatic changes in the drop interfaces from
convex shapes near Ca = Camax to dimpled ones before the breakup at Ca = Cacollapse.

We now proceed to link together the branches of deformed axisymmetric drops
discussed above and the toroidal shapes observed in our previous works, i.e. Malik
et al. (2020, 2021), with the various deformations obtained under the combined action
of rotation and extensional or compressional flow. Malik et al. (2021) reported on the
branches of stable and unstable toroidal drops obtained by direct dynamic simulations.
Stable with respect to axisymmetric disturbances tori were found in the case of extensional
flow, Ca < 0. That report was short of displaying the entire span of the capillary numbers
for these solutions due to the increasing instability level that was encountered with shapes
in the region near the inner collapse of the tori. The latter obstacle was overcome by Malik
et al. (2022), where the range of Ca was extended by employing a control algorithm to
stabilize those branches of deformed tori and complete the missing regions of Ca for the
various Bond numbers. It is evident and quite remarkable that the points of near collapsed
tori reported in Malik et al. (2022) practically coincide with those obtain as Cacollapse in
this work and reported in figure 8.
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Figure 8. Lines marked by diamonds and circles correspond to the critical (loss of stability) and transition
(collapse to toroidal shapes) points.
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Figure 9. Full and close-up shapes of the singly connected (solid lines) and toroidal (dashed) drops near the
transition region, for (a) Bo = 4, (b) Bo = 0, (c) Bo = −4.

Also, in Malik et al. (2022) it was observed that there exists a thin domain on the phase
plane (Bo, Ca) where two unstable toroidal shapes are possible. Now one can see that this
domain lies inside the domain of double singly connected shapes. Thus under certain outer
flow, up to four stationary shapes of the submerged drop coexist. This effect was observed
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Figure 10. Deformation curves for various Bond numbers. Solid lines indicate singly connected shapes by
Malik et al. (2020) and the present work; dashed lines indicate toroidal shapes by Malik et al. (2021, 2022).
Parts of the curves, above full circles, correspond to toroidal shapes that are stable with respect to axisymmetric
disturbances.

previously for a rotation fluid mass (Fontelos et al. 2011). Also, approximate solutions of
Lavrenteva et al. (2021) suggested that this is the case for the drop in compressional flow
without rotation.

The shapes near collapse of the torus and near breakup of the singly connected drop
at Cacollapse for the cases Bo = 4, 0 and −4 are depicted in figures 9(a), 9(b) and
9(c), respectively. The overlap of most of the corresponding surfaces is evident. Thus
in figure 10, we combine the deformation plots of all four branches of stationarity: a
stable branch of singly connected flat drops in the range Ca < Camax, an unstable branch
(stabilized by control) of highly deformed flat drops in the range Cacollapse < Ca < Camax,
and two unstable (stabilized by control) branches of toroidal drops in the range Ca <

Cacollapse. We consider this figure as a major integral result of our efforts in Malik et al.
(2020, 2021, 2022) and the current paper.

6. Concluding remarks

In this paper, we have addressed stable and unstable stationary branches of axisymmetric
deformed flat drops. The unstable branches were rendered stable with the aid of a control
scheme used by us in Malik et al. (2022) to stabilize unstable stationary toroidal drops.
The linked description of branches given in figure 10 reveals a complex combination of
possible deformation patterns of drops subject to rotation and compression or extension
fields. It is noted that for any discussed Bond number, there appear to exist up to four
stationary deformed shapes, with only one with the lowest deformation being naturally
stable. The four branches are separated by Camax and Cacollapse, being the bifurcation
points, having values associated with the particular Bond number. We note here that this
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effect was observed previously by Fontelos et al. (2011) in the particular case of rotation,
where Ca = 0, and was also suggested by Lavrenteva et al. (2021) using approximate
solutions in the case of bi-extensional flow without rotation, Bo = 0.

The work described here does not claim that these four stationary branches are the only
ones possible for the problem formulated in § 2. Recall that the transition to toroidal shapes
at the centre contact of the flat drops is assumed, as its prediction may involve more than
macroscopic continuum mechanics consideration that is outside the scope of this work.
Indeed, it is shown in Fontelos et al. (2011) in the case Ca = 0 that the evolution to an
unstable pizza shape, with a zero thickness yet singly connected centre region, may evolve.
The authors also do not rule out the possibility of finding stationary solutions in cases of
Ca � 1 and other values of the viscosity ratio different to 1, as presented by Acrivos &
Lo (1978) for slender drops in extensional flow. Moreover, non-axisymmetric stationary
shapes can be anticipated as in the case Ca = 0 (see Elms et al. 2017).
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