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Abstract
The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete
mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been
proved mainly for product spaces, which raises the question of whether analogous results hold over non-product
domains.

We consider the symmetric group, 𝑆𝑛, one of the most basic non-product domains, and establish hypercontractive
inequalities on it. Our inequalities are most effective for the class of global functions on 𝑆𝑛, which are functions
whose 2-norm remains small when restricting 𝑂 (1) coordinates of the input, and assert that low-degree, global
functions have small q-norms, for 𝑞 > 2.
As applications, we show the following:

1. An analog of the level-d inequality on the hypercube, asserting that the mass of a global function on low degrees
is very small. We also show how to use this inequality to bound the size of global, product-free sets in the
alternating group 𝐴𝑛.

2. Isoperimetric inequalities on the transposition Cayley graph of 𝑆𝑛 for global functions that are analogous to the
KKL theorem and to the small-set expansion property in the Boolean hypercube.

3. Hypercontractive inequalities on the multi-slice and stability versions of the Kruskal–Katona Theorem in some
regimes of parameters.
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1. Introduction

The hypercontractive inequality is a fundamental result in analysis that allows one to compare various
norms of low-degree functions over a given domain. A celebrated example is the Boolean hypercube
{0, 1}𝑛 equipped with the uniform measure, in which case the inequality states that for any function
𝑓 : {0, 1}𝑛 → R of degree at most d, one has that ‖ 𝑓 ‖𝑞 �

√
𝑞 − 1

𝑑 ‖ 𝑓 ‖2 for any 𝑞 � 2. (Here and
throughout the paper, we use expectation norms, ‖ 𝑓 ‖𝑞 = E𝑥 [| 𝑓 (𝑥) |𝑞]1/𝑞 , where the input distribution
is clear from context – uniform in this case). While the inequality may appear technical and mysterious
at first sight, it has proven itself as remarkably useful and lies at the heart of numerous important results
(e.g., [15, 11, 2, 23]).

While the hypercontractive inequality holds for general product spaces, in some important cases
it is very weak quantitatively. Such cases include the p-biased cube for 𝑝 = 𝑜(1), the multi-cube
[𝑚]𝑛 for 𝑚 = 𝜔(1) and the bilinear graph (closely related to the Grassmann graph). This quantitative
deficiency causes various analytical and combinatorial problems on these domains to be considerably
more challenging, and indeed much less is known there (and what is known is considerably more difficult
to prove; see, for example, [12]).

1.1. Global hypercontractivity

Recently, initially motivated by the study of PCPs (probabilistically checkable proofs) and later by sharp-
threshold results, variants of the hypercontractive inequality have been established in such domains [20,
17, 18]. In these variants, one states an inequality that holds for all functions but is only meaningful
for a special (important) class of functions, called global functions. Informally, a function f on a given
product domain Ω = Ω1×· · ·×Ω𝑛 is called global if its 2-norm, as well as the 2-norms of its restrictions,
are all small.1 This makes these variants applicable in cases that were previously out of reach, leading
to new results, but at the same time harder to apply since one has to make sure it is applied to a global
function to get a meaningful bound (see [17, 22, 18] for example applications). It is worth noting that
these variants are in fact generalizations of the standard hypercontractive inequality since one can easily
show that in domains such as the Boolean hypercube, all low-degree functions are global.

By now, there are various proofs of the aforementioned results: (1) a proof by reduction to the
Boolean hypercube, (2) a direct proof by expanding ‖ 𝑓 ‖𝑞𝑞 (for even q’s) and (3) an inductive proof on
n.2 All of these proofs use the product structure of the domain very strongly, and therefore, it is unclear
how to adapt them beyond the realm of product spaces.

1.2. Hypercontractivity on non-product spaces

Significant challenges arise when trying to analyze non-product spaces. The simplest examples of such
spaces are the slice (all points in a Boolean hypercube with a fixed Hamming weight), the multi-slice (all

1We remark that this requirement can often be greatly relaxed: (1) it is often enough to only consider restrictions that fix 𝑂 (1)
of the coordinates of the input, and (2) it is often enough that there are ‘very few’ restrictions that have large 2-norm, for an
appropriate notion of ‘very few’.

2This inductive proof is actually much trickier than the textbook proof of the hypercontractive inequality over the Boolean
cube. The reason is that the statement of the result itself does not tensorize; thus, one has to come up with an alternative, slightly
stronger statement that does tensorize.
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points in a multi-cube with a fixed ‘histogram’) and the symmetric group. The classical hypercontractive
inequality is equivalent to another inequality, the log-Sobolev inequality. Sharp log-Sobolev inequalities
were proven for the symmetric group and the slice by Lee and Yau [21], and for the multi-slice by Salez
[26] (improving on earlier work of Filmus, O’Donnell and Wu [10]).

While such log-Sobolev inequalities are useful for balanced slices and multi-slices, their usefulness
for domains such as the symmetric group is limited due to the similarity between 𝑆𝑛 and domains
where hypercontractivity is known to be weak, such as [𝑛]𝑛 (identifying a permutation 𝜋 with the list
𝜋(1), . . . , 𝜋(𝑛)) and the 1

𝑛 -biased cube (identifying a permutation with the corresponding permutation
matrix). For this reason, Diaconis and Shahshahani [4] resorted to representation-theoretic techniques
in their analysis of the convergence of Markov chains on 𝑆𝑛. We rectify this issue in a different way by
extending global hypercontractivity to 𝑆𝑛.

1.3. Main results

The main goal of this paper is to study the symmetric group 𝑆𝑛, which is probably the most fundamental
non-product domain. Throughout this paper, we will consider 𝑆𝑛 as a probability space equipped with
the uniform measure and use expectation norms as well as the corresponding expectation inner product,
according to the uniform measure. We will think of 𝑆𝑛 as a subset of [𝑛]𝑛 and thereby for 𝜋 ∈ 𝑆𝑛 refer
to 𝜋(1) as ‘the first coordinate of the input’.

To state our main results, we begin with defining the notion of globalness on 𝑆𝑛. Given 𝑓 : 𝑆𝑛 → R
and a subset 𝑇 ⊆ [𝑛] × [𝑛] of the form {(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )}, where all of the i’s are distinct and all of
the j’s are distinct (we call such subsets consistent), we denote by 𝑆𝑇𝑛 the set of permutations 𝜋 ∈ 𝑆𝑛
respecting T (i.e., such that 𝜋(𝑖ℓ) = 𝑗ℓ for all ℓ = 1, . . . , 𝑡), sometimes known as a double coset.3 We
denote by 𝑓→𝑇 : 𝑆𝑇𝑛 → R the restriction of f to 𝑆𝑇𝑛 , and equip 𝑆𝑇𝑛 with the uniform measure.

Definition 1.1. A function 𝑓 : 𝑆𝑛 → R is called 𝜀-global with constant C if for any consistent T, it holds
that ‖ 𝑓→𝑇 ‖2 � 𝐶 |𝑇 |𝜀.

Our basic hypercontractive inequality is concerned with a certain self-adjoint Markov operator T(𝜌)

and its effect on low-degree functions. Here, the degree of a function f is the minimal d such that f can
be expressed as a linear combination of indicators of sets 𝑆𝑇𝑛 for |𝑇 | � 𝑑.4

We defer the precise definition of T(𝜌) to Section 1.5; for now, we encourage the reader to think of
it as averaging after a long random walk on the transposition graph (in which two permutations are
connected by an edge if they differ by a transposition), say of length Θ(𝑛).

Theorem 1.2. There is a collection of self-adjoint operators T(𝜌) : 𝐿2 (𝑆𝑛) → 𝐿2 (𝑆𝑛) for which the
following holds.

For any even 𝑞 ∈ N and 𝐶 > 0, there is 𝜌0 > 0 such that for all 𝜌 � 𝜌0, the operator T(𝜌) satisfies
the following:

1. If 𝑓 : 𝑆𝑛 → R is 𝜀-global with constant C, then
��T(𝜌) 𝑓

��
𝑞
� 𝜀

𝑞−2
𝑞 ‖ 𝑓 ‖2/𝑞

2 .
2. There is an absolute constant K, such for all 𝑑 ∈ N satisfying 𝑑 �

√
log 𝑛/𝐾 , if f is a degree d

function, then
��𝑇 (𝜌) 𝑓

��
2 � 𝜌−𝐾 ·𝑑 · ‖ 𝑓 ‖2.

As is often the case, once one has a hypercontractive inequality involving a noise operator whose
eigenvalues are well understood, one can state a hypercontractive inequality for low-degree functions.
For us, however, it will be important to relax the notion of globalness appropriately, and we therefore
consider the notion of bounded globalness.

3Double cosets correspond to the link of T in the permutation complex whose facets are {(𝑖, 𝜋 (𝑖)) : 𝑖 ∈ [𝑛] } for all 𝜋 ∈ 𝑆𝑛.
4We can also define degree representation theoretically. Recall that the vector space of functions on 𝑆𝑛 can be written as a

direct sum of isotypic components 𝑉 𝜆 indexed by partitions of n. The degree of f is the maximal value of 𝑛 − 𝜆1 among all 𝜆
such that the projection of f to 𝑉 𝜆 is nonzero.

https://doi.org/10.1017/fms.2023.118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.118


Forum of Mathematics, Sigma 5

Definition 1.3. A function 𝑓 : 𝑆𝑛 → R is called (𝑑, 𝜀)-global if for any consistent T of size at most d,
it holds that ‖ 𝑓→𝑇 ‖2 � 𝜀.

A natural example of (𝑑, 𝜀)-global functions is the low-degree part of f, denoted by 𝑓 �𝑑 , which is
the degree d function which is closest to f in 𝐿2-norm.

With Definition 1.3 in hand, we can now state our hypercontractive inequality for low-degree func-
tions.

Theorem 1.4. There exists 𝐾 > 0 such that the following holds. Let 𝑞 ∈ N be even and 𝑛 � 𝑞𝐾 ·𝑑2 . If f

is a (2𝑑, 𝜀)-global function of degree d, then ‖ 𝑓 ‖𝑞 � 𝑞𝑂(𝑑3)𝜀
𝑞−2
𝑞 ‖ 𝑓 ‖

2
𝑞

2 .

Remark 1.5. The focus of the current paper is the case that n is very large compared to the degree d,
and therefore, the technical conditions imposed on n in Theorems 1.2 and 1.4 will hold for us. It would
be interesting to relax or even remove these conditions altogether, and we leave further investigation to
future work.

1.4. Applications

We present some applications of Theorem 1.2 and Theorem 1.4, as outlined below.

1.4.1. The level-d inequality
Our first application is concerned with the weight a global function has on its low degrees, which is an
analog of the classical level-d inequality on the Boolean hypercube (e.g., [24, Corollary 9.25]).

Theorem 1.6. There exists an absolute constant 𝐶 > 0 such that the following holds. Let 𝑑, 𝑛 ∈ N
and 𝜀 > 0 such that 𝑛 � 2𝐶 ·𝑑3 log(1/𝜀)𝐶 ·𝑑 . If 𝑓 : 𝑆𝑛 → Z is (2𝑑, 𝜀)-global, then

�� 𝑓 �𝑑��2
2 �

2𝐶 ·𝑑4
𝜀4 log𝐶 ·𝑑 (1/𝜀).

Theorem 1.6 should be compared to the level-d inequality on the hypercube, which asserts that for

any function 𝑓 : {0, 1}𝑛 → {0, 1} with E[ 𝑓 ] = 𝛿 < 1/2 we have that
�� 𝑓 �𝑑��2

2 � 𝛿2
(

10 log(1/𝛿)
𝑑

)𝑑
, for

all 𝑑 � log(1/𝛿). (Quantitatively, the parameter 𝛿 should be compared to 𝜀2 in Theorem 1.6 due to
normalisation).

Note that it may be the case that 𝜀 in Theorem 1.6 is much larger than ‖ 𝑓 ‖1/2
2 , and then Theorem

1.6 becomes trivial.5 Fortunately, we can prove a stronger version of Theorem 1.6 for functions f whose
2-norm is not exponentially small, which actually follows relatively easily from Theorem 1.6.

Theorem 1.7. There exists an absolute constant 𝐶 > 0 such that the following holds. Let 𝑑, 𝑛 ∈ N,
𝜀 > 0 be parameters and let 𝑓 : 𝑆𝑛 → Z be a (2𝑑, 𝜀)-global function. If 𝑛 � 2𝐶 ·𝑑3 log(1/‖ 𝑓 ‖2)𝐶 ·𝑑 , then�� 𝑓 �𝑑��2

2 � 2𝐶 ·𝑑4 ‖ 𝑓 ‖2
2𝜀

2 log𝐶 ·𝑑 (1/‖ 𝑓 ‖2
2).

On the proof of the level-d inequality.

In contrast to the case of the hypercube, Theorem 1.6 does not immediately follow from Theorem 1.2
or Theorem 1.4 and requires more work, as we explain below. Recall that one proof of the level-d
inequality on the hypercube proceeds, using hypercontractivity, as follows:�� 𝑓 �𝑑��2

2 = 〈 𝑓 �𝑑 , 𝑓 〉 �
�� 𝑓 �𝑑��

𝑞
‖ 𝑓 ‖1+1/(𝑞−1) �

√
𝑞 − 1

𝑑�� 𝑓 �𝑑��2‖ 𝑓 ‖1+1/(𝑞−1) ,

choosing suitable q and rearranging. Our hypercontractive inequality does not allow us to make the final
transition and instead only tells us that

�� 𝑓 �𝑑��
𝑞
� 𝑂𝑑,𝑞 (𝜀 (𝑞−2)/𝑞)

�� 𝑓 �𝑑��2/𝑞
2 (using the fact that 𝑓 �𝑑 is

5Parseval’s identity implies that the sum of all ‖ 𝑓 =𝑑 ‖2 is ‖ 𝑓 ‖2
2, so, in particular,

�� 𝑓 �𝑑��2
2 � ‖ 𝑓 ‖2

2.
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(2𝑑, 𝜀)-global, a property inherited from f ). Executing this plan only implies, at best, the quantitatively
weaker statement that

�� 𝑓 �𝑑��2
2 � 𝜀3/2 log𝑂𝑑 (1) (1/𝜀). Here, the difference between 𝜀3/2 and 𝜀2 is often

crucial because such results are often only useful for very small 𝜀 anyway.
In reality, 𝑓 �𝑑 is a lot more global than f : for example, the level d inequality implies that 𝑓 �𝑑 itself

has 2-norm proportional to 𝜀2 rather than 𝜀. In order to show this, we use an inductive approach.
Consider the restriction of 𝑓 �𝑑 which maximizes the 2-norm. If it is the function 𝑓 �𝑑 itself, then

𝑓 �𝑑 is (2𝑑, 𝑂𝑑 (
�� 𝑓 �𝑑��2))-global, which enables us to carry out the hypercube argument. Otherwise, we

show that there is a ‘derivative’6 g of 𝑓 �𝑑 which achieves roughly the same 2-norm as that restriction of
𝑓 �𝑑 and has the further property that all of its derivatives have smaller 2-norms, which implies that g
is (2𝑑, 𝑂𝑑 (‖𝑔‖2))-global. Applying the induction hypothesis (using that g has degree lower than f ), we
get that ‖𝑔‖2 = �̃�𝑑 (𝜀2), which implies that 𝑓 �𝑑 is (2𝑑, �̃�𝑑 (𝜀2))-global. This suffices for the hypercube
argument to go through.

Since g is a derivative, it is integer-valued rather than Boolean. Accordingly, we strengthen the
induction hypothesis, proving a statement for all integer-valued functions.

1.4.2. Global product-free sets are small
We say that a family of permutations 𝐹 ⊆ 𝑆𝑛 is product-free if there are no 𝜋1, 𝜋2, 𝜋3 ∈ 𝑆𝑛 such that
𝜋3 = 𝜋2 ◦ 𝜋1. What is the size of the largest product-free family F?

With the formulation above, one can of course take F to be the set of odd permutations, which has size
|𝑆𝑛 |/2. What happens if we forbid such permutations (i.e., only consider families of even permutations)?

Questions of this sort generalise the well-studied problem of finding arithmetic sequences in dense
sets. More relevant to us is the work of Gowers [14], which studies this problem for a wide range of
groups (referred therein as ‘quasi-random groups’) and the work of Eberhard [6] which specialized this
question to 𝐴𝑛 and improves on Gowers’ result. More specifically, Gowers shows that a product-free
set 𝐹 ⊆ 𝐴𝑛 has size at most 𝑂

(
1

𝑛1/3 |𝐴𝑛 |
)
, and Eberhard improves this bound to |𝐹 | = 𝑂

(
log7/2 𝑛√

𝑛
|𝐴𝑛 |

)
.

Eberhard’s result is tight up to the polylogarithmic factor, as evidenced by the family

𝐹 =
{
𝜋 ∈ 𝐴𝑛 |𝜋(1) ∈

{
2, . . . ,

√
𝑛
}
, 𝜋(

{
2, . . . ,

√
𝑛
}
) ⊆ [𝑛] \ [

√
𝑛]

}
. (1)

In this section, we consider the problem of determining the maximal size of a global, product-free
set in 𝐴𝑛. In particular, we show the following:

Theorem 1.8. There exists 𝑁 ∈ N such that the following holds for all 𝑛 � 𝑁 . For every 𝐶 > 0, there is
𝐾 > 0 such that if 𝐹 ⊆ 𝐴𝑛 is product-free and is (6, 𝐶 ·

√
𝛿)-global, where 𝛿 = |𝐹 |/|𝐴𝑛 |, then 𝛿 � log𝐾 𝑛

𝑛 .

Remark 1.9. A few remarks are in order.

1. We note that the above result achieves a stronger bound than the family in (1). There is no contradiction
here, of course, since that family is very much not global: restricting to 𝜋(1) = 2 increases the measure
of F significantly.

2. The junta method, which can be used to study many problems in extremal combinatorics, often
considers the question for global families as a key component. The rough idea is to show that one
can approximate a family F by a union of families �̃� that satisfy an appropriate pseudo-randomness
condition, such that if F is product-free, then so are the families �̃�. Furthermore, inside any not-too-
small pseudo-random family �̃�, one may find a global family �̃� ′ by making any small restriction that
increases the size of the family considerably. Thus, in this way one may hope to reduce the general
question to the question on global families (see [18], for example).

While at the moment we do not know how to employ the junta method in the case of product-free
sets in 𝐴𝑛, one may still hope that it is possible, providing some motivation for Theorem 1.8.

6We only define the appropriate notion of derivatives we use in Section 4, and for now encourage the reader to think of it as an
analog of the discrete derivative in the Boolean hypercube.
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3. Our result is, in fact, more general and can be used to study the 3-set version of this problem; see
Corollary 7.9.

4. We suspect that much stronger quantitative bounds should hold for global families; we elaborate on
this suspicion in Section 7.2.4.

1.4.3. Isoperimetric inequalities
Using our hypercontractive inequalities, we are able to prove several isoperimetric inequalities for global
sets. Let 𝑆 ⊆ 𝑆𝑛 be a set and consider the transposition random walk T that from a permutation 𝜋 ∈ 𝑆𝑛
moves to 𝜋 ◦ 𝜏, where 𝜏 is a randomly chosen transposition. We show that if S is ‘not too sensitive along
any transposition’,7 then the probability to exit S in a random step according to T must be significant,
similarly to the classical KKL Theorem on the hypercube [15]. The formal statement of this result is
given in Theorem 7.13.

We are also able to analyse longer random walks according to T, of order n, and show that one has
small-set expansion for global sets. See Theorem 7.12 for a formal statement.

1.4.4. Deducing the results for other non-product domains
Our results for 𝑆𝑛 imply analogous results for the multi-slice. The deduction is done in a black-box
fashion, by a natural correspondence between functions over 𝑆𝑛 and functions over the multi-slice that
preserves degrees, globalness and 𝐿𝑝 norms.

This allows us to deduce analogs of our results for 𝑆𝑛 essentially for free (see Section 7.4) as well as
a stability result for the classical Kruskal–Katona Theorem (see Theorem 7.20).

1.4.5. Other applications
Our hypercontractive inequality has also been used in the study of Probabilistically Checkable Proofs
[3]. More specifically, the inequality has been applied to study a new hardness conjecture, referred
to as ‘Rich 2-to-1 Games Conjecture’ in [3], and show that if true, it implies Khot’s Unique-Games
Conjecture [19].

1.5. Our techniques

In this section, we outline the techniques used in the proofs of Theorem 1.2 and Theorem 1.4.

1.5.1. The coupling approach: Proof overview
Obtaining hypercontractive operators via coupling
Consider two finite probability spaces X and Y and suppose that C = (x, y) is a coupling between
them (we encourage the reader to think of X as 𝑆𝑛, and of Y as a product space in which we al-
ready know hypercontractivity to hold). Using the coupling C, we may define the averaging operators
T𝑋→𝑌 : 𝐿2 (𝑋) → 𝐿2 (𝑌 ) and T𝑌→𝑋 : 𝐿2 (𝑌 ) → 𝐿2 (𝑋) as

T𝑋→𝑌 𝑓 (𝑦) = E(x,y)∼C [ 𝑓 (x) | y = 𝑦], T𝑌→𝑋 𝑓 (𝑥) = E(x,y)∼C [ 𝑓 (y) | x = 𝑥] .

Jensen’s inequality implies that each one of the operators T𝑋→𝑌 and T𝑌→𝑋 is a contraction with
respect to the 𝐿𝑝-norm, for any 𝑝 � 1. The benefit of considering these operators is that given an operator
T𝑌 with desirable properties (say, it is hypercontractive; for example, it satisfies ‖T𝑌 𝑓 ‖4 � ‖ 𝑓 ‖2), we
may consider the lifted operator on X given by T𝑋

def
= T𝑌→𝑋T𝑌T𝑋→𝑌 and hope that it too satisfies

some desirable properties. Indeed, it is easy to see that if T𝑌 is hypercontractive, then T𝑋 is also
hypercontractive:

‖T𝑌→𝑋T𝑌T𝑋→𝑌 𝑓 ‖4 � ‖T𝑌T𝑋→𝑌 𝑓 ‖4 � ‖T𝑋→𝑌 𝑓 ‖2 � ‖ 𝑓 ‖2. (2)

7The formal statement of the result requires an appropriate notion of discrete derivatives which we only give in Section 4.
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We show that the same connection continues to hold for global hypercontractive inequalities (that is,
hypercontractive inequalities for global functions) such as the one given in [17, 18] (and more concretely,
Theorem 2.5 below); the proof in this case is slightly more involved.

This approach allows us to prove Theorem 1.2. In order to deduce Theorem 1.4, we show that the
effect of T𝑋 on low-degree functions is similar to the effect of standard noise operators: it decreases the
2-norm by at most a constant factor. This allows us to derive Theorem 1.4.

1.5.2. Instantiating the coupling approach for the symmetric group
The coupled space
Let 𝐿 = [𝑛]2 and let m be large, depending polynomially on n (𝑚 = 𝑛2 will do). We will couple 𝑆𝑛 and
𝐿𝑚, where the idea is to think of each element of L as local information about the coupled permutation
𝜋. That is, the element (𝑖, 𝑗) ∈ 𝐿 encodes the fact that 𝜋 maps i to j.

Our coupling
We say that a set 𝑇 = {(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )} ⊆ 𝐿 of pairs is consistentif there exists a permutation 𝜋
with 𝜋(𝑖𝑘 ) = 𝑗𝑘 for each 𝑘 ∈ [𝑡], and any such permutation 𝜋 is said to be consistent with T.

Our coupling between 𝑆𝑛 and 𝐿𝑚 is the following:

1. Choose an element x ∼ 𝐿𝑚 uniformly at random.
2. Greedily construct from x a set T of consistent pairs. That is, starting from 𝑘 = 1 to m, we consider the

k-th coordinate of x, denoted by (𝑖𝑘 , 𝑗𝑘 ), and check whether adding it to T would keep it consistent.
If so, we add (𝑖𝑘 , 𝑗𝑘 ) to T; otherwise, we do not.

3. Choose a permutation 𝝅 consistent with T uniformly at random.

The resulting operator
Finally, we can specify our hypercontractive operator on 𝑆𝑛. Let 𝑋 = 𝑆𝑛, 𝑌 = 𝐿𝑚 and 𝑇𝑋→𝑌 , 𝑇𝑌→𝑋 be
the operators corresponding to the coupling that we have just constructed. Let T𝑌 = T𝜌 be the noise
operator on the product space 𝐿𝑚, which can be defined in two equivalent ways:

1. Every element (𝑖𝑘 , 𝑗𝑘 ) is retained with probability 𝜌 and resampled (according to the uniform
distribution over L) otherwise.

2. The d’th Fourier level is multiplied by 𝜌𝑑 .8

Then T(𝜌) = T𝑌→𝑋T𝑌T𝑋→𝑌 is our desired operator on 𝑆𝑛.
We next explain how to analyse the operator T𝑌 .

Showing that T𝑌 satisfies global hypercontractivity
Recall the simplistic argument (2), showing that hypercontractivity of T𝑋 implies the hypercontractivity
of T𝑌 . We intend to show, in a similar way, that global hypercontractivity is also carried over by the
coupling. Towards this end, we must show that the notion of globalness is preserved: namely, if f is
global, then 𝑔 = T𝑆𝑛→𝐿𝑚 𝑓 is also global (the definition of globalness for functions on 𝐿𝑚 is completely
analogous to Definition 1.1).

Here we encounter a mismatch between the notion of globalness assumed by Theorem 1.4 – namely,
f is assumed to be (2𝑑, 𝜀)-global, and the notion of globalness required by the global hypercontractive
result of [17], which applies to 𝛿-global functions. We bridge this gap using the equivalence of (2𝑑, 𝜀)-
globalness and 𝛿-globalness for degree d functions, where 𝛿, 𝜀 differ by constant factors.

8Every function f on 𝐿𝑚 has an Efron–Stein decomposition 𝑓 =
∑
𝑆⊆[𝑚] 𝑓

=𝑆 , where 𝑓 =𝑆 depends only on S and is orthogonal
to all functions depending on any proper subset of S; see, for example, [24, Section 8.3]. The d’th Fourier level corresponds to
sets S of size d.
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1.5.3. The direct approach: proof overview
Our second approach to establish hypercontractive inequalities goes via a rather different route. One of
the proofs of hypercontractivity in product domains proceeds by finding a convenient, orthonormal basis
for the space of real-valued functions over Ω (which in product spaces is easy as the basis tensorizes).
This way, proving hypercontractivity amounts to studying moments of these basis functions, which is
often not very hard to do due to the simple nature of the basis.

When dealing with non-product spaces such as 𝑆𝑛, we do not know how to produce such a convenient
orthonormal basis. Nevertheless, our direct approach presented in Section 6 relies on a representation
of a function 𝑓 : 𝑆𝑛 → R in a canonical form that is almost as good as in product spaces. To construct
this representation, we start with obvious spanning sets such as{

𝑑∏
ℓ=1

1𝜋 (𝑖ℓ )= 𝑗ℓ

�����|{𝑖1, . . . , 𝑖𝑑}| = |{ 𝑗1, . . . , 𝑗𝑑}| = 𝑑

}
.

This set contains many redundancies (and thus is not a basis), and we show how to use these to enforce
a system of linear constraints on the coefficients of the representation that turn out to be very useful in
proving hypercontractive inequalities.

1.6. Organisation of the paper

In Section 2, we present some basic preliminaries. Sections 3, 4 and 5 are devoted for presenting our
approach to hypercontractivity via coupling and algebraic arguments, and in Section 6, we present
our direct approach. In Sections 7 and 8, we present several consequences of our hypercontractive
inequalities: the level-d inequality in Section 8 and the other applications in Section 7.

2. Preliminaries

We think of the product operation in 𝑆𝑛 as function composition, and so (𝜏𝜎) (𝑖) = (𝜏◦𝜎) (𝑖) = 𝜏(𝜎(𝑖)).
Throughout the paper, we consider the space of real-valued functions on 𝑆𝑛 equipped with the

expectation inner product, denoted by 𝐿2 (𝑆𝑛). Namely, for any 𝑓 , 𝑔 : 𝑆𝑛 → R, we define 〈 𝑓 , 𝑔〉 =
E𝜎∈𝑆𝑛 [ 𝑓 (𝜎)𝑔(𝜎)]. A basic property of this space is that it is an 𝑆𝑛-bimodule, as can be seen by
defining the left operation on a function f and a permutation 𝜏 as 𝜏 𝑓 (𝜎) = 𝑓 (𝜏 ◦ 𝜎) and the right
operation 𝑓 𝜏 (𝜎) = 𝑓 (𝜎 ◦ 𝜏).

2.1. The level decomposition

We will define the concept of degree d function in several equivalent ways. The most standard definition
is the one which we already mentioned in the introduction.

Definition 2.1. Let 𝑇 = {(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )} ⊆ 𝐿 be a set of t consistent pairs and recall that 𝑆𝑇𝑛 is the
set of all permutations such that 𝜋(𝑖𝑘 ) = 𝑗𝑘 for all 𝑘 ∈ [𝑡].

The space 𝑉𝑑 consists of all linear combinations of functions of the form 1𝑇 = 1𝑆𝑇𝑛 for |𝑇 | � 𝑑. We
say that a real-valued function on 𝑆𝑛 has degree (at most) d if it belongs to 𝑉𝑑 .

By construction, 𝑉𝑑−1 ⊆ 𝑉𝑑 for all 𝑑 � 1. We define the space of functions of pure degree d as

𝑉=𝑑 = 𝑉𝑑 ∩𝑉⊥
𝑑−1.

It is easy to see that 𝑉𝑛 = 𝑉𝑛−1, and so we can decompose the space of all real-valued functions on
𝑆𝑛 as follows:

R[𝑆𝑛] = 𝑉=0 ⊕ 𝑉=1 ⊕ · · · ⊕ 𝑉=𝑛−1.
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We comment that the representation theory of 𝑆𝑛 refines this decomposition into a finer one, indexed
by partitions 𝜆 of n; the space 𝑉=𝑑 corresponds to partitions in which the largest part is exactly 𝑛 − 𝑑.

We may write any function 𝑓 : 𝑆𝑛 → R in terms of our decomposition uniquely as
𝑛−1∑
𝑖=0

𝑓 =𝑖 , where

𝑓 =𝑖 ∈ 𝑉=𝑖 . It will also be convenient for us to have a notation for the projection of f onto 𝑉𝑑 , which is
nothing but 𝑓 �𝑑 = 𝑓 =0 + 𝑓 =1 + · · · + 𝑓 =𝑑 .

We will need an alternative description of 𝑉=𝑑 in terms of juntas.

Definition 2.2. Let 𝐴, 𝐵 ⊆ [𝑛]. For every 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, let 𝑒𝑎𝑏 = 1𝜋 (𝑎)=𝑏 . We say that a function
𝑓 : 𝑆𝑛 → R is an (𝐴, 𝐵)-junta if f can be written as a function of the 𝑒𝑎𝑏 . We denote the space of
(𝐴, 𝐵)-juntas by 𝑉𝐴,𝐵.

A function is a d-junta if it is an (𝐴, 𝐵)-junta for some |𝐴| = |𝐵 | = 𝑑.

Lemma 2.3. The space 𝑉𝐴,𝐵 is spanned by the functions 1𝑇 for 𝑇 ⊆ 𝐴 × 𝐵. Consequently, 𝑉𝑑 is the
span of the d-juntas.

Proof. If 𝐴 = {𝑖1, . . . , 𝑖𝑑} and 𝐵 = { 𝑗1, . . . , 𝑗𝑑}, then an (𝐴, 𝐵)-junta f can be written as a function of
𝑒𝑖𝑠 𝑗𝑡 , and in particular as a polynomial in these functions. Since 𝑒𝑖𝑠 𝑗𝑡1 𝑒𝑖𝑠 𝑗𝑡2 = 𝑒𝑖𝑠1 𝑗𝑡 𝑒𝑖𝑠2 𝑗𝑡 = 0, if 𝑡1 ≠ 𝑡2
and 𝑠1 ≠ 𝑠2, it follows that f can be written as a linear combination of functions 1𝑇 for 𝑇 ⊆ 𝐴 × 𝐵.

Conversely, if 𝑇 = {(𝑎1, 𝑏1), . . . , (𝑎𝑑 , 𝑏𝑑)}, then 1𝑇 = 𝑒𝑎1𝑏1 · · · 𝑒𝑎𝑑𝑏𝑑 .
To see the truth of the second part of the lemma, notice that if |𝐴| = |𝐵 | = 𝑑 and 𝑇 ⊆ 𝐴 × 𝐵, then

|𝑇 | � 𝑑, and conversely, if |𝑇 | � 𝑑, then 𝑇 ⊆ 𝐴 × 𝐵 for some 𝐴, 𝐵 such that |𝐴| = |𝐵 | = 𝑑. �

We will also need an alternative description of 𝑉𝐴,𝐵.

Lemma 2.4. For each 𝐴, 𝐵, the space 𝑉𝐴,𝐵 consists of all functions 𝑓 : 𝑆𝑛 → R such that 𝑓 = 𝜏 𝑓 𝜎 for
all 𝜎 fixing A pointwise and 𝜏 fixing B pointwise.

Proof. Let𝑈𝐴,𝐵 consist of all functions f satisfying the stated condition (i.e., 𝑓 (𝜋) = 𝑓 (𝜏𝜋𝜎) whenever
𝜎 fixes A pointwise and 𝜏 fixes B pointwise).

Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. If 𝜎 fixes a and 𝜏 fixes b, then 𝜋(𝑎) = 𝑏 iff 𝜏𝜋𝜎(𝑎) = 𝑏, showing that
𝑒𝑎𝑏 ∈ 𝑈𝐴,𝐵. It follows that 𝑉𝐴,𝐵 ⊆ 𝑈𝐴,𝐵.

In the other direction, let 𝑓 ∈ 𝑈𝐴,𝐵. Suppose for definiteness that 𝐴 = [𝑎] and 𝐵 = [𝑏]. Let 𝜋
be a permutation such that 𝜋(1) = 1, . . . , 𝜋(𝑡) = 𝑡, and 𝜋(𝑖) > 𝑏 for 𝑖 = 𝑡 + 1, . . . , 𝑎. Applying a
permutation fixing B pointwise on the left, we turn 𝜋 into a permutation 𝜋′ such that 𝜋′(1), . . . , 𝜋′(𝑎) =
1, . . . , 𝑡, 𝑏 + 1, . . . , 𝑏 + (𝑎 − 𝑡). Applying a permutation fixing A pointwise on the right, we turn 𝜋′

into the permutation 1, . . . , 𝑡, 𝑏 + 1, . . . , 𝑏 + (𝑎 − 𝑡), . . . , 𝑛, 𝑡 + 1, . . . , 𝑎. This shows that if 𝜋1, 𝜋2 are
two permutations satisfying 𝑒𝑎𝑏 (𝜋1) = 𝑒𝑎𝑏 (𝜋2) for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, then we can find permutations
𝜎1, 𝜎2 fixing A pointwise and permutations 𝜏1, 𝜏2 fixing B pointwise such that 𝜏1𝜋1𝜎1 = 𝜏2𝜋2𝜎2, and so
𝑓 (𝜋1) = 𝑓 (𝜋2). This shows that 𝑓 ∈ 𝑉𝐴,𝐵. �

2.2. Hypercontractivity in product spaces

We will make use of the following hypercontractive inequality, essentially due to [18]. For that, we first
remark that we consider the natural analog definitions of globalness for product spaces. Namely, for a
finite product space (Ω, 𝜇) = (Ω1 × · · · × Ω𝑚, 𝜇1 × · · · × 𝜇𝑚), we say that 𝑓 : Ω → R is 𝜀-global with
a constant C, if for any 𝑇 ⊆ [𝑚] and 𝑥 ∈

∏
𝑖∈𝑇 Ω𝑖 , it holds that ‖ 𝑓𝑇→𝑥 ‖2,𝜇𝑥 � 𝐶 |𝑇 |𝜀, where 𝜇𝑥 is the

distribution 𝜇 conditioned on coordinates of T being equal to x. Similarly, we say that f is (𝑑, 𝜀)-global
if for any |𝑇 | � 𝑑 and 𝑥 ∈

∏
𝑖∈𝑇 Ω𝑖 , it holds that ‖ 𝑓𝑇→𝑥 ‖2,𝜇𝑥 � 𝜀.

Theorem 2.5. Let 𝑞 ∈ N be even, and suppose f is 𝜀-global with constant C, and let 𝜌 � 1
(10𝑞𝐶)2 . Then

‖T𝜌 𝑓 ‖𝑞 � 𝜀
𝑞−2
𝑞 ‖ 𝑓 ‖

2
𝑞

2 .

A variant of Theorem 2.5 appears in [17, Lemma 7.9]. This version differs from Theorem 2.5 in two
regards: it is for 𝐶 = 1, and it works only when |Ω𝑖 | = 2. The version for general C follows by first
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applying 𝑇1/𝐶 . The proof of [18, Lemma 5.15] shows how to reduce the setting of general Ω to the
setting of [17].

3. Hypercontractivity: The coupling approach

3.1. Hypercontractivity from full globalness

In this section, we prove the following hypercontractive results for our operator T(𝜌) assuming f is
global. We begin by proving two simple propositions.

Proposition 3.1. Suppose 𝑓 : 𝑆𝑛 → R is 𝜀-global with constant C and let 𝑔 = T𝑆𝑛→𝐿𝑚 𝑓 . Then g is
𝜀-global with constant C.

Proof. Let S be a set of size t and let 𝑥 =
(
(𝑖𝑘 , 𝑗𝑘 )

)
𝑘∈𝑆 ∈ 𝐿𝑆 . Let 𝑦 ∼ 𝐿 [𝑚]\𝑆 be chosen uniformly and

let 𝜎 be the random permutation that our coupling process outputs given (𝑥, 𝑦). We have

‖𝑔𝑆→𝑥 ‖2
2 = E𝑦 (E𝜎 𝑓 (𝜎))2 � E𝜎

[
𝑓 (𝜎)2]

by Cauchy–Schwarz. Next, we consider the values of 𝜎(𝑖𝑘 ) for 𝑘 ∈ 𝑆, condition on them and denote
𝑇 = {(𝑖𝑘 , 𝜎(𝑖𝑘 ))}. The conditional distribution of 𝜎 given T is uniform by the symmetry of elements in
[𝑛] \ {𝑖𝑘 | 𝑘 ∈ 𝑆}, so for any permutation 𝜋 on [𝑛] \ {𝑖𝑘 | 𝑘 ∈ 𝑆}, we have that 𝜎𝜋 has the same probability
as 𝜎. Also, the collection {𝜎𝜋} consists of all permutations satisfying T, so

E

[
𝑓 (𝜎)2] = E𝑇 [

‖ 𝑓→𝑇 ‖2
2
]
� max

𝑇
‖ 𝑓→𝑇 ‖2

2 � 𝐶
2 |𝑆 |𝜀2. �

Fact 3.2. Suppose that we are given two probability spaces (𝑋, 𝜇𝑋 ), (𝑌, 𝜇𝑌 ). Suppose further that for
each 𝑥 ∈ 𝑋 , we have a distribution 𝑁 (𝑥) on Y, such that if we choose 𝑥 ∼ 𝜇𝑋 and 𝑦 ∼ 𝑁 (𝑥), then the
marginal distribution of y is 𝜇𝑌 . Define an operator T𝑌→𝑋 : 𝐿2 (𝑌 ) → 𝐿2 (𝑋) by setting

T𝑌→𝑋 𝑓 (𝑥) = E𝑦∼𝑁 (𝑥) 𝑓 (𝑦).

Then ‖T𝑌→𝑋 𝑓 ‖𝑞 � ‖ 𝑓 ‖𝑞 for each 𝑞 � 1.

We can now prove one variant of our hypercontractive inequality for global functions over the
symmetric group.

Theorem 3.3. Let 𝑞 ∈ N be even, 𝐶, 𝜀 > 0, and 𝜌 � 1
(10𝑞𝐶)2 . If 𝑓 : 𝑆𝑛 → R is 𝜀-global with constant

C, then
��T(𝜌) 𝑓

��
𝑞
� 𝜀

𝑞−2
𝑞 ‖ 𝑓 ‖

2
𝑞

2 .

Proof. Let 𝑓 : 𝑆𝑛 → R be 𝜀-global with constant C. By Proposition 3.1, the function 𝑔 = T𝑆𝑛→𝐿𝑚 𝑓 is
also 𝜀-constant with constant C, and by Fact 3.2, we have���T(𝜌) 𝑓

���𝑞
𝑞
=
��T𝐿𝑚→𝑆𝑛T𝜌𝑔

��𝑞
𝑞
�

��T𝜌𝑔
��𝑞
𝑞
.

Now by Theorem 2.5 we may upper-bound the last norm by 𝜀𝑞−2‖𝑔‖2
2 , and using Fact 3.2 again, we may

bound ‖𝑔‖2
2 � ‖ 𝑓 ‖2

2. �

Remark 3.4. Once the statement has been proven for even q’s, a qualitatively similar statement can be
automatically deduced for all q’s, as follows. Fix q and take the smallest 𝑞 � 𝑞′ � 𝑞 + 2 that is an even
integer. Then for 𝜌 � 1

(10(𝑞+2)𝐶)2 �
1

(10𝑞′𝐶)2 , we may bound���T(𝜌) 𝑓
���
𝑞
�

���T(𝜌) 𝑓
���
𝑞′
� 𝜀

𝑞′−2
𝑞′ ‖ 𝑓 ‖

2
𝑞′

2 � 𝜀
𝑞
𝑞+2 ‖ 𝑓 ‖

2
𝑞+2
2 ,

where in the last inequality we used 𝑞′ � 𝑞 + 2 and ‖ 𝑓 ‖2 � 𝜀.
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3.2. Hypercontractivity for low-degree functions

Next, we use Theorem 3.3 to prove our hypercontractive inequality for low-degree functions that assumes
considerably weaker globalness properties of f – namely, Theorem 1.4. The proof of the above theorem
makes use of the following key lemmas. The first of which asserts that just like in the cube, bounded
globalness of a low-degree function implies (full) globalness.

Lemma 3.5. Suppose 𝑛 � 𝐶𝑑 log 𝑑 for a sufficiently large constant C. Let 𝑓 : 𝑆𝑛 → R be a (2𝑑, 𝜀)-
global function of degree d. Then, f is 𝜀-global with constant 48.

Thus, to deduce Theorem 1.4 from Theorem 3.3, it suffices to show that f may be approximated by
linear combinations of T(𝜌𝑖) 𝑓 for 𝑖 = 1, 2, . . . in 𝐿𝑞 , and this is the content of our second lemma. First,
let us introduce some convenient notations. For a polynomial 𝑃(𝑧) = 𝑎0 + 𝑎1𝑧 + · · · + 𝑎𝑘 𝑧𝑘 , we denote
the spectral norm of P by ‖𝑃‖ =

∑𝑘
𝑖=0 |𝑎𝑖 |. We remark that it is easily seen that ‖𝑃1𝑃2‖ � ‖𝑃1‖‖𝑃2‖

for any two polynomials 𝑃1, 𝑃2.

Lemma 3.6. Let 𝑛 � 𝐶𝑑3
𝑞−𝐶𝑑 for a sufficiently large constant C and let 𝜌 = 1/(400𝐶3𝑞2). Then there

exists a polynomial P satisfying 𝑃(0) = 0 and ‖𝑃‖ � 𝑞𝑂(𝑑3) , such that���𝑃(
T(𝜌)

)
𝑓 − 𝑓

���
𝑞
�

1
√
𝑛
‖ 𝑓 ‖2

for every function f of degree at most d.

We defer the proofs of Lemmas 3.5 and 3.6 to Sections 4 and 5, respectively. In the remainder of this
section, we derive Theorem 1.4 from them, restated below.

Theorem 1.4 (Restated). There exists𝐶 > 0 such that the following holds. Let 𝑞 ∈ N be even, 𝑛 � 𝑞𝐶 ·𝑑2 .

If f is a (2𝑑, 𝜀)-global function of degree d, then ‖ 𝑓 ‖𝑞 � 𝑞𝑂(𝑑3)𝜀
𝑞−2
𝑞 ‖ 𝑓 ‖

2
𝑞

2 .

Proof. Choose 𝜌 = 1/(400𝐶3𝑞2) and let P be as in Lemma 3.6. Then

‖ 𝑓 ‖𝑞 �
���𝑃(

T(𝜌)
)
𝑓
���
𝑞
+ 1
√
𝑛
‖ 𝑓 ‖2.

As for the first term, we have����� 𝑙∑
𝑖=1

𝑎𝑖

(
T(𝜌)

) 𝑖
𝑓

�����
𝑞

�
𝑙∑
𝑖=1

|𝑎𝑖 |
����(T(𝜌)

) 𝑖
𝑓

����
𝑞

� ‖𝑃‖
���T(𝜌) 𝑓

���
𝑞
� 𝑞𝑂(𝑑3)

���T(𝜌) 𝑓
���
𝑞
.

To estimate
��T(𝜌) 𝑓

��
𝑞

, note first that by Lemma 3.5, f is 𝜀-global for constant 48; thus, given that C

is large enough, we may apply Theorem 3.3 to deduce that
��T(𝜌) 𝑓

��
𝑞
� 𝜀

𝑞−2
𝑞 ‖ 𝑓 ‖

2
𝑞

2 . As ‖ 𝑓 ‖2 � 𝜀, we
conclude that

‖ 𝑓 ‖𝑞 � 𝑞𝑂(𝑑3)𝜀
𝑞−2
𝑞 ‖ 𝑓 ‖

2
𝑞

2 + 1
√
𝑛
‖ 𝑓 ‖2 = 𝑞𝑂(𝑑3)𝜀

𝑞−2
𝑞 ‖ 𝑓 ‖

2
𝑞

2 . �

4. Proof of Lemma 3.5

We begin by proving Lemma 3.5. A proof of the corresponding statement in product spaces proceeds
by showing that a function is (𝑑, 𝜀)-global if and only if the 2-norms of derivatives of f of order d are
small. Since then derivatives of order higher than d of f are automatically 0 (by degree considerations),
they are automatically small. Thus, if f is a (𝑑, 𝜀)-global function of degree d, then all derivatives of f
have small 2-norm, and by the reverse relation it follows that f is 𝜀-global for some constant C.
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Our proof follows a similar high-level idea. The main challenge in the proof is to find an appropriate
analog of discrete derivatives from product spaces that both reduces the degree of the function f and
can be related to restrictions of f. Towards this end, we make the following key definition.

Definition 4.1. Let 𝑖1 ≠ 𝑖2 ∈ [𝑛] and 𝑗1 ≠ 𝑗2 ∈ [𝑛].
1. The Laplacian of f along (𝑖1, 𝑖2) is defined as L(𝑖1 ,𝑖2) [ 𝑓 ] = 𝑓 − 𝑓 (𝑖1 𝑖2) , where we denote by (𝑖1 𝑖2)

the transposition of 𝑖1 and 𝑖2.
2. The derivative of f along (𝑖1, 𝑖2) → ( 𝑗1, 𝑗2) is (L(𝑖1 ,𝑖2) 𝑓 )(𝑖1 ,𝑖2)→( 𝑗1 , 𝑗2) . More explicity, it is a function

defined on 𝑆
(𝑖1 , 𝑗1) , (𝑖2 , 𝑗2)
𝑛 (that is isomorphic to 𝑆𝑛−2) whose value on 𝜋 is

𝑓 (𝜋) − 𝑓 (𝜋 ◦ (𝑖1, 𝑖2)).

3. For distinct 𝑖1, . . . , 𝑖𝑡 and distinct 𝑗1, . . . , 𝑗𝑡 , let S be the sequence (𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 ) and define the
Laplacian of f along S as 𝐿𝑆 [ 𝑓 ] = 𝐿𝑖1 , 𝑗1 ◦ · · · ◦ 𝐿𝑖𝑡 , 𝑗𝑡 ◦ 𝑓 .

For (𝑘1, ℓ1), . . . , (𝑘𝑡 , ℓ𝑡 ), the derivative of f along 𝑆 → (𝑘1, ℓ1), . . . , (𝑘𝑡 , ℓ𝑡 ) is

D𝑆→(𝑘1 ,ℓ1) ,..., (𝑘𝑡 ,ℓ𝑡 ) 𝑓 = (𝐿𝑆 [ 𝑓 ])𝑆→(𝑖1 ,𝑘1) , ( 𝑗1 ,ℓ1) ,..., (𝑖𝑡 ,𝑘𝑡 ) , ( 𝑗𝑡 ,ℓ𝑡 ) .

We call D a derivative of order t. We also include the case where 𝑡 = 0 and call the identity
operator a 0-derivative.

The following two claims show that the definition of derivatives above is good, in the sense that
2-norms of derivatives relate to globalness, and derivatives indeed reduce the degree of f.

Claim 4.2. Let 𝑡 ∈ N, and 𝜀 > 0, and 𝑓 : 𝑆𝑛 → R.

1. If f is (2𝑡, 𝜀)-global, then for each derivative D of order t, we have that ‖D 𝑓 ‖2 � 2𝑡𝜀.
2. If 𝑡 � 𝑛/2, and for all ℓ � 𝑡 and every derivative D of order ℓ, we have that ‖D 𝑓 ‖2 � 𝜀, then f is

(𝑡, 2𝑡𝜀)-global.

Proof. To prove the first item, observe that D 𝑓 is a signed sum of 2𝑡 functions of the form 𝑓 𝜎→𝑇 , where
|𝑇 | = 2𝑡. Globalness of f implies that

�� 𝑓 𝜎→𝑇

��
2 � 𝜀, and so ‖D 𝑓 ‖2 � 2𝑡𝜀 by the triangle inequality.

The rest of the proof is devoted to establishing the second item, also by induction on t.

Base case 𝒕 = 0, 1.
The case 𝑡 = 0 is trivial, and we prove the case 𝑡 = 1. Let 𝑖1, 𝑖2 ∈ [𝑛] be distinct and let 𝑗1, 𝑗2 ∈ [𝑛]

be distinct. Since ‖D(𝑖1 ,𝑖2)→( 𝑗1 , 𝑗2) 𝑓 ‖2 � 𝜀, we get from the triangle inequality that��‖ 𝑓𝑖1→ 𝑗1 ,𝑖2→ 𝑗2 ‖2 − ‖ 𝑓𝑖2→ 𝑗1 ,𝑖1→ 𝑗2 ‖2
�� � 𝜀. (3)

Multiplying (3) by ‖ 𝑓𝑖1→ 𝑗1 ,𝑖2→ 𝑗2 ‖2 + ‖ 𝑓𝑖2→ 𝑗1 ,𝑖1→ 𝑗2 ‖2, we get that��‖ 𝑓𝑖1→ 𝑗1 ,𝑖2→ 𝑗2 ‖2
2 − ‖ 𝑓𝑖2→ 𝑗1 ,𝑖1→ 𝑗2 ‖2

2
�� � 𝜀

(
‖ 𝑓𝑖1→ 𝑗1 ,𝑖2→ 𝑗2 ‖2 + ‖ 𝑓𝑖2→ 𝑗1 ,𝑖1→ 𝑗2 ‖2

)
.

Taking average over 𝑗2 and using the triangle inequality on the left-hand side, we get that��‖ 𝑓𝑖1→ 𝑗1 ‖2
2 − ‖ 𝑓𝑖2→ 𝑗1 ‖2

2
�� � 𝜀E 𝑗2

[
‖ 𝑓𝑖1→ 𝑗1 ,𝑖2→ 𝑗2 ‖2 + ‖ 𝑓𝑖2→ 𝑗1 ,𝑖1→ 𝑗2 ‖2

]
.

By Cauchy–Schwarz, E 𝑗2
[
‖ 𝑓𝑖1→ 𝑗1 ,𝑖2→ 𝑗2 ‖2

]
� E 𝑗2

[
‖ 𝑓𝑖1→ 𝑗1 ,𝑖2→ 𝑗2 ‖2

2
]1/2

= ‖ 𝑓𝑖1→ 𝑗1 ‖2, and similarly for
the other term, so we conclude��‖ 𝑓𝑖1→ 𝑗1 ‖2

2 − ‖ 𝑓𝑖2→ 𝑗1 ‖2
2
�� � 𝜀

(
‖ 𝑓𝑖1→ 𝑗1 ‖2 + ‖ 𝑓𝑖2→ 𝑗1 ‖2

)
,

and dividing both sides of the inequality by ‖ 𝑓𝑖1→ 𝑗1 ‖2 + ‖ 𝑓𝑖2→ 𝑗1 ‖2, we get��‖ 𝑓𝑖1→ 𝑗1 ‖2 − ‖ 𝑓𝑖2→ 𝑗1 ‖2
�� � 𝜀.
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Since E𝑖2∼[𝑛] ‖ 𝑓𝑖2→ 𝑗1 ‖2
2 = ‖ 𝑓 ‖2

2 � 𝜀, we get that there is 𝑖2 such that ‖ 𝑓𝑖2→ 𝑗1 ‖2 � 𝜀, and the above
inequality implies that ‖ 𝑓𝑖1→ 𝑗1 ‖2 � 2𝜀 for all 𝑖1. This completes the proof for the case 𝑡 = 1.

The inductive step.
Let 𝑡 > 1. We prove that f is (𝑡, 2𝑡𝜀)-global, or equivalently that 𝑓→𝑇 is (1, 2𝑡𝜀)-global for all

consistent sets T of size 𝑡 − 1. Indeed, fix a consistent T of size 𝑡 − 1.
By the induction hypothesis, ‖ 𝑓→𝑇 ‖2 � 2𝑡−1𝜀, and the claim would follow from the 𝑡 = 1 case once

we show that ‖D 𝑓→𝑇 ‖2 � 2𝑡−1𝜀 for all order 1 derivatives D = D(𝑖1 ,𝑖2)→( 𝑗1 , 𝑗2) , where 𝑖1, 𝑖2 do not
appear as the first coordinate of an element in T, and 𝑗1, 𝑗2 do not appear as a second coordinate of an
element of T (we are using the fact here that the case 𝑡 = 1 applies, as 𝑆𝑇𝑛 is isomorphic to 𝑆𝑛−|𝑇 | as
𝑆𝑛−|𝑇 |-bimodules). Fix such D and let 𝑔 = D(𝑖1 ,𝑖2)→( 𝑗1 , 𝑗2) 𝑓 . By hypothesis, for any order 𝑡 −1 derivative
D̃, we have that ‖D̃𝑔‖2 � 𝜀, hence by the induction hypothesis ‖𝑔→𝑇 ‖2 � 2𝑡−1𝜀. Since restrictions and
derivatives commute, we have 𝑔→𝑇 = D(𝑖1 ,𝑖2)→( 𝑗1 , 𝑗2) 𝑓→𝑇 , and we conclude that 𝑓→𝑇 is (1, 2𝑡𝜀)-global,
as desired. �

Claim 4.3. If f is of degree d, and D is a t-derivative, then D 𝑓 is of degree � 𝑑 − 𝑡.

Proof. It is sufficient to consider the case 𝑡 = 1 of the proposition, as we may apply it repeatedly. By
linearity of the derivative D, it is enough to show it in the case where 𝑓 = 𝑒𝑖1 𝑗1 · · · 𝑒𝑖𝑡 𝑗𝑡 . Now note that
the Laplacian 𝐿 (𝑘1𝑘2) annihilates f unless either 𝑘1 is equal to some 𝑖ℓ , or 𝑘2 is equal to some 𝑖ℓ , or
both, and we only have to consider these cases. Each derivative corresponding to the Laplacian 𝐿 (𝑘1 ,𝑘2)
restricts both the image of 𝑘1 and the image of 𝑘2, so after applying this restriction on 𝐿 (𝑘1 ,𝑘2) 𝑓 , we
either get the 0 function, a function of degree 𝑑 − 1 or a function of degree 𝑑 − 2. �

We are now ready to prove Lemma 3.5. To prove that f is global, we handle restrictions of size
𝑡 � 𝑛/2 and restrictions of size 𝑡 > 𝑛/2 separately in the following two claims.

Claim 4.4. Suppose 𝑓 : 𝑆𝑛 → R is a (2𝑑, 𝜀)-global function of degree d. Then f is (𝑡, 4𝑡𝜀)-global for
each 𝑡 � 𝑛

2 .

Proof. By the second item in Claim 4.2, it is enough to show that for each t-derivative D, we have
‖D 𝑓 ‖2 � 2𝑡𝜀. For 𝑡 � 𝑑, this follows from the first item in Claim 4.2, and for 𝑡 > 𝑑, it follows from
Proposition 4.3 as we have that D 𝑓 = 0 for all derivatives of order t. �

For 𝑡 � 𝑛
2 , we use the obvious fact f is always (𝑡, ‖ 𝑓 ‖∞)-global and upper-bound the infinity norm

of f using the following claim.

Claim 4.5. Let f be a (2𝑑, 𝜀)-global function of degree d. Then ‖ 𝑓 ‖∞ �
√
(6𝑑)!43𝑛𝜀.

Proof. We prove the claim by induction on n. The case 𝑛 = 1 is obvious, so let 𝑛 > 1.
If 3𝑑 � 𝑛

2 , then by Claim 4.4 we have that f is
(
3𝑑, 43𝑑𝜀

)
-global, and hence for each set S of size d,

the function 𝑓→𝑆 is
(
2𝑑, 43𝑑𝜀

)
-global. Therefore, the induction hypothesis implies that

‖ 𝑓 ‖∞ = max
𝑆: |𝑆 |=𝑑

‖ 𝑓𝑆 ‖∞ �
√
(6𝑑)!43(𝑛−𝑑) · 43𝑑𝜀 =

√
(6𝑑)!43𝑛𝜀.

Suppose now that 𝑛 � 6𝑑. Then ‖ 𝑓 ‖2
∞ � (6𝑑)!‖ 𝑓 ‖2

2 since the probability of each atom in 𝑆6𝑑 is 1
(6𝑑)! .

Hence, ‖ 𝑓 ‖∞ �
√
(6𝑑)!𝜀. �

Note that (6𝑑)! � 4𝑛 given C is sufficiently large, so for 𝑡 > 𝑛/2, Claim 4.5 implies that f is
(𝑡, 44𝑛𝜀) = (𝑡, 48𝑡𝜀)-global.
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5. Proof of Lemma 3.6

Proof overview.

Our argument first constructs, in Section 5.4, a very strong approximating polynomial in the 𝐿2-norm.
As we show in Section 5.5, the approximation will in fact be strong enough to imply, in a black-box
way, that it is also an approximating polynomial in 𝐿𝑞 .

To construct an 𝐿2 approximating polynomial, we use spectral considerations. Lemma 5.4 shows
that T(𝜌) preserves the space of degree d functions. Denote by 𝜆1, . . . , 𝜆ℓ the eigenvalues of T(𝜌) on the
space of degree d functions. Note that if P is a polynomial such that 𝑃(𝜆𝑖) = 1 for all i, then 𝑃(T𝜌) 𝑓 = 𝑓
for all f of degree d. However, as ℓ may be very large, there may not be a polynomial P with small ‖𝑃‖
satisfying 𝑃(𝜆𝑖) = 1 for all i, and to circumvent this issue, we must argue that, at least effectively, ℓ is
small. Indeed, while we do not show that ℓ is small, we do show (in Section 5.3) that there are d distinct
values, 𝜆1(𝜌), . . . , 𝜆𝑑 (𝜌), such that each 𝜆𝑖 is very close to one of the 𝜆 𝑗 (𝜌)’s. This, by interpolation,
implies that we may find a low-degree polynomial P such that 𝑃(𝜆𝑖) is very close to 1 for all 𝑖 = 1, . . . , ℓ.
Finally, to argue that ‖𝑃‖ is small, we show that each 𝜆𝑖 (𝜌) is bounded away from 0.

It remains then to establish the claimed properties of the eigenvalues 𝜆1, . . . , 𝜆ℓ , and we do so in
several steps. We first identify, in Section 5.1, the eigenspaces of T(𝜌) among the space of low-degree
functions, and we show that each one of them contains a junta. Intuitively, for juntas, it is much easier to
understand the action of the T(𝜌) since when looking on very few coordinates, 𝑆𝑛 looks like a product
space. Indeed, using this logic, we are able to show in Section 5.2 that all eigenvalues of T(𝜌) on low-
degree functions are bounded away from 0. To argue that the eigenvalues are concentrated on a few
values, which we do in Section 5.3, we use the fact that taking symmetry into account, the number of
linearly independent juntas is small.

Our proof uses several notations appearing in Section 2.1, including the actions of 𝑆𝑛 on functions
from the left 𝜏 𝑓 and from the right 𝑓 𝜎 , the level decomposition 𝑉𝑑 , the spaces 𝑉𝐴,𝐵 and the concept of
d-junta.

5.1. Identifying the eigenspaces of T(𝜌)

5.1.1. T(𝜌) commutes with the action of 𝑆𝑛 as a bimodule
Lemma 5.1. The operator T(𝜌) commutes with the action of 𝑆𝑛 as a bimodule.

The proof relies on the following claims.

Claim 5.2. If T, S are operators that commute with the action of 𝑆𝑛 as a bimodule, then so is T ◦ S.

Proof. We have 𝜋1 (T𝑆 𝑓 ) 𝜋2 = T
(
𝜋1𝑆 𝑓 𝜋2

)
= TS(𝜋1 𝑓 𝜋2). �

Let X and Y be 𝑆𝑛-bimodules and consider 𝑋 ×𝑌 as an 𝑆𝑛-bimodule with the operation 𝜎1 (𝑥, 𝑦)𝜎2 =(
𝜎1𝑥𝜎2 , 𝜎1 𝑦𝜎2

)
. We say that a probability distribution 𝜇 on 𝑋 ×𝑌 is invariant under the action of 𝑆𝑛 on

both sides if 𝜇(𝜎1 (𝑥, 𝑦)𝜎2) = 𝜇(𝑥, 𝑦) for all 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 and 𝜎1, 𝜎2 ∈ 𝑆𝑛.

Claim 5.3. Let 𝑋,𝑌 be 𝑆𝑛-bimodules that are coupled by the probability measure 𝜇 and suppose that
𝜇 is invariant under the action of 𝑆𝑛 from both sides. Then the operators T𝑋→𝑌 ,T𝑌→𝑋 commute with
the action of 𝑆𝑛 from both sides.

Proof. We prove the claim for T𝑋→𝑌 (the argument for T𝑌→𝑋 is identical). Let 𝜇𝑋 , 𝜇𝑌 be the marginal
distributions of 𝜇 on X and on Y, and for each 𝑥 ∈ 𝑋 , denote by 1𝑥 the indicator function of x. Then the
set {1𝑥}𝑥∈𝑋 is a basis for 𝐿2 (𝑋), and so it is enough to show that for all x and 𝜎1, 𝜎2 ∈ 𝑆𝑛, it holds that
𝜎1 (T𝑋→𝑌 1𝑥)𝜎2 = T𝑋→𝑌

(
𝜎1 1𝑥 𝜎2

)
. Note that as these are two functions over Y, it is enough to show that〈

𝜎1 (T𝑋→𝑌 1𝑥)𝜎2 , 1𝑦
〉
=

〈
T𝑋→𝑌

(𝜎1 1𝑥 𝜎2
)
, 1𝑦

〉
for all y, since

{
1𝑦

}
𝑦∈𝑌 forms a basis for 𝐿2 (𝑌 ).
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Fix x and y. Since 𝜇 is invariant under the action of 𝑆𝑛 on both sides, it follows that 𝜇𝑌 is invariant
under the action of 𝑆𝑛, so we have〈

𝜎1 (T𝑋→𝑌 1𝑥)𝜎2 , 1𝑦
〉
=

〈
T𝑋→𝑌 1𝑥 , 𝜎

−1
1 1𝑦 𝜎

−1
2

〉
=

〈
T𝑋→𝑌 1𝑥 , 1𝜎1 𝑦𝜎2

〉
= 𝜇(𝑥, 𝜎1𝑦𝜎2),

where in the penultimate transition, we used the fact that 𝜎−1
1 1𝑦 𝜎

−1
2 = 1𝜎1 𝑦𝜎2 . However, we also have

that the last fact holds for 1𝑥 , and so〈
T𝑋→𝑌

(𝜎1 1𝑥 𝜎2
)
, 1𝑦

〉
=

〈
T𝑋→𝑌 1𝜎−1

1 𝑥
𝜎−1

2
, 1𝑦

〉
= 𝜇

(
𝜎−1

1 𝑥𝜎−1
2 , 𝑦

)
.

The claim now follows from the fact that 𝜇 is invariant under the action of 𝑆𝑛 from both sides. �

We are now ready to move on to the proof of Lemma 5.1.

Proof of Lemma 5.1. We let 𝑆𝑛 act on L from the right by setting (𝑖, 𝑗)𝜋 = (𝜋(𝑖), 𝑗) and from the left
by setting 𝜋(𝑖, 𝑗) = (𝑖, 𝜋( 𝑗)). For a function f on 𝐿𝑚, we write 𝜋1 𝑓 𝜋2 for the function

(𝑥1, . . . , 𝑥𝑚) ↦→ 𝑓 (𝜋1𝑥1𝜋2, . . . , 𝜋1𝑥𝑚𝜋2).

By Claim 5.3, the operators T𝜌,T𝑆𝑛→𝐿𝑚 ,T𝐿𝑚→𝑆𝑛 commute with the action of 𝑆𝑛 as a bimodule, and
therefore so is T(𝜌) by Claim 5.2. �

5.1.2. Showing that the spaces 𝑉𝐴,𝐵 and 𝑉𝑑 are invariant under T(𝜌)

First we show that 𝑉𝐴,𝐵 is an invariant subspace of T(𝜌) .

Lemma 5.4. Let T be an endomorphism of 𝐿2 (𝑆𝑛) as an 𝑆𝑛-bimodule. Then T𝑉𝐴,𝐵 ⊆ 𝑉𝐴,𝐵. Moreover,
𝑇𝑉𝑑 ⊆ 𝑉𝑑 .

Proof. Let 𝑓 ∈ 𝑉𝐴,𝐵. We need to show that T 𝑓 ∈ 𝑉𝐴,𝐵. Let 𝜎1 ∈ 𝑆 [𝑛]\𝐴, 𝜎2 ∈ 𝑆 [𝑛]\𝐵. Then

𝜎1 (T 𝑓 )𝜎2 = T
(𝜎1 𝑓 𝜎2

)
= T 𝑓 ,

where the first equality used the fact that T commutes with the action of 𝑆𝑛 from both sides, and the
second inequality follows from Lemma 2.4. The ‘moreover’ part follows from Lemma 2.3. �

Lemma 5.5. Let 𝜆 be an eigenvalue of T(𝜌) as an operator from 𝑉𝑑 to itself. Let 𝑉𝑑,𝜆 be the eigenspace
corresponding to 𝜆. Then 𝑉𝑑,𝜆 contains a d-junta.

Proof. Since each space𝑉𝐴,𝐵 is T(𝜌) invariant, we may decompose each𝑉𝐴,𝐵 into eigenspaces𝑉 (𝜆)
𝐴,𝐵. Let

𝑉 (𝜆)
𝑑 =

∑
|𝐴 |, |𝐵 |�𝑑

𝑉 (𝜆)
𝐴,𝐵 .

Then for each 𝜆, 𝑉 (𝜆)
𝑑 is an eigenspace of T(𝜌) with eigenvalue 𝜆, and∑

𝜆

𝑉 (𝜆)
𝑑 =

∑
|𝐴 |, |𝐵 |�𝑑

𝑉𝐴,𝐵 = 𝑉𝑑 =
∑
𝜆

𝑉𝑑,𝜆.

By uniqueness, it follows that 𝑉𝑑,𝜆 = 𝑉 (𝜆)
𝑑 for all 𝜆. Fix 𝜆; then we get that there are |𝐴|, |𝐵 | � 𝑑 such

that 𝑉𝜆
𝐴,𝐵 ⊆ 𝑉𝑑,𝜆, and since any function in 𝑉𝐴,𝐵 is a d-junta by definition, the proof is concluded. �

We comment that the representation theory of 𝑆𝑛 supplies us with explicit formulas for 2𝑑-juntas in
𝑉𝑑,𝜆 (arising in the construction of Specht modules), which can be turned into d-juntas by symmetriza-
tion. Since we will not need such explicit formulas here, we skip this description.
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5.2. Finding a basis for 𝑉𝐴,𝐵
We now move on to the study of the spaces 𝑉𝐴,𝐵. These spaces have small dimension and are therefore
easy to analyse. We first construct a set {𝑣𝑇 } of functions in 𝑉𝐴,𝐵 that form a nearly-orthonormal basis.

Definition 5.6. Let 𝑇 = {(𝑖1, 𝑗1), . . . , (𝑖𝑘 , 𝑗𝑘 )} ⊆ [𝑑]2 be consistent. Let 1𝑇 be the indicator function
of permutations 𝜋 in 𝑆𝑛 that satisfy the restrictions given by T (i.e., 𝜋(𝑖1) = 𝑗1, . . . , 𝜋

(
𝑖𝑖𝑘

)
= 𝑗𝑘 ). We

define 𝑣𝑇 = 1𝑇
‖1𝑇 ‖2

.

Since the spaces 𝑉𝐴,𝐵 are isomorphic (as 𝑆𝑛−𝑑 bimodules) for all sets 𝐴, 𝐵 of size d, we shall focus
on the case where 𝐴 = 𝐵 = [𝑑].

Lemma 5.7. Let 𝑑 � 𝑛
2 and let 𝑇 ≠ 𝑆 be sets of size d. Then 〈𝑣𝑇 , 𝑣𝑆〉 � 𝑂

(
1
𝑛

)
.

Proof. If 𝑇 ∪ 𝑆 is not consistent, then 1𝑇 1𝑆 = 0 and so 〈𝑣𝑇 , 𝑣𝑆〉 = 0. Otherwise,

〈𝑣𝑇 , 𝑣𝑆〉 =
E|1𝑇∪𝑆 |

‖1𝑇 ‖2‖1𝑆 ‖2
=

(𝑛 − |𝑇 ∪ 𝑆 |)!√
(𝑛 − |𝑇 |)!(𝑛 − |𝑆 |)!

�
(𝑛 − 𝑑 − 1)!
(𝑛 − 𝑑)! = 𝑂

(
1
𝑛

)
. �

Proposition 5.8. There exists an absolute constant 𝑐 > 0 such that for all consistent 𝑇 ⊆ 𝐿, we have〈
T(𝜌)𝑣𝑇 , 𝑣𝑇

〉
� (𝑐𝜌) |𝑇 | .

Proof. Let 𝑥 ∼ 𝐿𝑚, 𝑦 ∼ 𝑁𝜌 (𝑥) and let 𝜎𝑥 , 𝜎𝑦 ∈ 𝑆𝑛 be corresponding permutations chosen according to
the coupling. We have 〈

T(𝜌)𝑣𝑇 , 𝑣𝑇
〉
=

𝑛!
(𝑛 − |𝑇 |)!

〈
T(𝜌)1𝑇 , 1𝑇

〉
,

as ‖1𝑇 ‖2
2 = (𝑛−|𝑇 |)!

𝑛! . We now interpret
〈
T(𝜌)1𝑇 , 1𝑇

〉
as the probability that both 𝜎𝑥 and 𝜎𝑦 satisfy the

restrictions given by T. For each sequence S over [2𝑛] of size |𝑇 |, consider the event 𝐴𝑆 that 𝑥𝑆 = 𝑦𝑆 = 𝑇 ,
while all the coordinates of the vectors 𝑥 [2𝑛]\𝑆 , 𝑦 [2𝑛]\𝑆 do not contradict T nor belong to T. Then〈

T(𝜌)𝑣𝑇 , 𝑣𝑇
〉
�

∑
𝑆 a |𝑇 |-sequence of [2𝑛]

Pr[𝐴𝑆] .

Now the probability that 𝑥𝑆 = 𝑇 is
(

1
𝑛

)2 |𝑇 |
. Conditioned on 𝑥𝑆 = 𝑇 , the probability that 𝑦𝑆 = 𝑇

is at least 𝜌 |𝑇 | . When we condition on 𝑥𝑆 = 𝑦𝑆 = 𝑇 , we obtain that the probability that 𝑥 [𝑛]\𝑆 and

𝑦 [𝑛]\𝑆 do not involve any coordinate contradicting T or in T is at least
(
1 − 2 |𝑇 |

𝑛

)2𝑛
= 2−Θ( |𝑇 |) . Hence,

Pr[𝐴𝑆] �
(

1
𝑛

)2 |𝑇 |
Ω(𝜌) |𝑇 | . So wrapping everything up, we obtain that〈

T(𝜌)𝑣𝑇 , 𝑣𝑇
〉
�

(2𝑛)!
(2𝑛 − |𝑇 |)! ·

𝑛!
(𝑛 − |𝑇 |)!

1
𝑛2 |𝑇 |Ω(𝜌) |𝑇 | = Ω(𝜌) |𝑇 | . �

Lemma 5.9. Let 𝜌 ∈ (0, 1). Then for all sets 𝑇 ≠ 𝑆 of size at most 𝑛/2, we have
〈
T(𝜌)𝑣𝑇 , 𝑣𝑆

〉
= 𝑂

(
1√
𝑛

)
.

Proof. Suppose without loss of generality that ‖1𝑇 ‖2
2 � ‖1𝑆 ‖2

2 , so |𝑇 | � |𝑆 |. Choose 𝑥 ∼ 𝐿𝑚, 𝑦 ∼ 𝑁𝜌 (𝑥)
and let 𝜎𝑥 , 𝜎𝑦 by the corresponding random permutations given by the coupling. We have〈

T(𝜌)𝑣𝑇 , 𝑣𝑆
〉
=

Pr
[
1𝑇 (𝜎𝑥) = 1, 1𝑆

(
𝜎𝑦

)
= 1

]
√
E1𝑇 E1𝑆

.
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As the probability in the numerator is at most E[1𝑇 ], we have〈
𝑇 (𝜌)𝑣𝑇 , 𝑣𝑆

〉
�

√
E[1𝑇 ]
E[1𝑆]

=

√
(𝑛 − |𝑇 |)!
(𝑛 − |𝑆 |)! ,

and the proposition follows in the case that |𝑆 | < |𝑇 |.
It remains to prove the proposition provided that |𝑆 | = |𝑇 |. Let (𝑖, 𝑗) ∈ 𝑆 \ 𝑇 . Note that

Pr
[
1𝑇 (𝜎𝑥) = 1, 1𝑆

(
𝜎𝑦

)
= 1

]
�

1
𝑛

Pr
[
1𝑇 (𝜎𝑥) = 1 | 𝜎𝑦 (𝑖) = 𝑗

]
.

Let us condition further on 𝜎𝑥 (𝑖). Conditioned on 𝜎𝑥 (𝑖) = 𝑗 , we have that 𝜎𝑥 is a random permutation
sending i to j, and so Pr[1𝑇 (𝜎𝑋 ) = 1] is either 0 (if (𝑖, 𝑗) contradicts T) or (𝑛−1−|𝑇 |)!

(𝑛−1)! = 𝑂
(
‖1𝑇 ‖2

2
)

(if
(𝑖, 𝑗) is consistent with T).

Conditioned on 𝜎𝑥 (𝑖) ≠ 𝑗 (and on 𝜎𝑦 (𝑖) = 𝑗), we again obtain that 𝜎𝑥 is a random permutation that
does not send i to j, in which case,

Pr[1𝑇 (𝜎𝑥) = 1] = (𝑛 − |𝑇 |)!
𝑛! − (𝑛 − 1)! = 𝑂

(
‖1𝑇 ‖2

2

)
if (𝑖, 𝑗) contradicts T, and

Pr[1𝑇 (𝜎𝑥) = 1] = (𝑛 − |𝑇 |)! − (𝑛 − |𝑇 | − 1)!
𝑛! − (𝑛 − 1)! = 𝑂

(
‖1𝑇 ‖2

2

)
if (𝑖, 𝑗) is consistent with T. This completes the proof of the lemma. �

Proposition 5.10. Let C be a sufficiently large constant. If 𝑛 �
( 𝜌
𝐶

)−𝑑
𝐶𝑑2 and f is a d-junta, then〈

T(𝜌) 𝑓 , 𝑓
〉
� 𝜌𝑂 (𝑑) ‖ 𝑓 ‖2

2 .

Proof. Since {𝑣𝑇 }𝑇 ⊆[𝑑 ]2 span the space 𝑉[𝑑 ], [𝑑 ] of ([𝑑], [𝑑])-juntas by Lemma 2.3, we may write
𝑓 =

∑
𝑎𝑇 𝑣𝑇 . Now 〈

T(𝜌) 𝑓 , 𝑓
〉
=
∑
𝑇

𝑎2
𝑇

〈
T(𝜌)𝑣𝑇 , 𝑣𝑇

〉
+
∑
𝑇 ≠𝑆

𝑎𝑇 𝑎𝑆

〈
T(𝜌)𝑣𝑇 , 𝑣𝑆

〉
.

By Lemma 5.9, we have�����∑
𝑇 ≠𝑆

𝑎𝑇 𝑎𝑆

〈
T(𝜌)𝑣𝑇 , 𝑣𝑆

〉����� � 𝑂
(∑
𝑇 ≠𝑆

|𝑎𝑇 𝑎𝑆 |√
𝑛

)
� 𝑂

(
1
√
𝑛

) (∑
𝑇

|𝑎𝑇 |
)2

�
2𝑂(𝑑2)
√
𝑛

(∑
𝑇

|𝑎𝑇 |2
)
,

where the last inequality is by Cauchy–Schwarz. However, by Proposition 5.8, we have∑
𝑇

𝑎2
𝑇

〈
T(𝜌)𝑣𝑇 , 𝑣𝑇

〉
� 𝜌𝑂 (𝑑)

(∑
𝑇

𝑎2
𝑇

)
.

Using a similar calculation, one sees that

‖ 𝑓 ‖2
2 =

(
1 ± 2𝑂(𝑑2)

𝑛

) ∑
𝑇

𝑎2
𝑇 ,
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so we get that〈
T(𝜌) 𝑓 , 𝑓

〉
�

(
𝜌𝑂 (𝑑) − 2𝑂(𝑑2)

√
𝑛

) ∑
𝑇

𝑎2
𝑇 �

(
𝜌𝑂 (𝑑) − 2𝑂(𝑑2)

√
𝑛

)
‖ 𝑓 ‖2

2 � 𝜌𝑂 (𝑑) ‖ 𝑓 ‖2
2. �

Corollary 5.11. Let C be a sufficiently large absolute constant. If 𝑛 �
( 𝜌
𝐶

)−𝑑
𝐶𝑑2 , then all the eigenvalues

of T(𝜌) as an operator from 𝑉𝑑 to itself are at least 𝜌𝑂 (𝑑) .

Proof. By Lemma 5.5, each eigenspace 𝑉𝑑,𝜆 contains a d-junta. Let 𝑓 ∈ 𝑉𝑑,𝜆 be a nonzero d-junta.
Then by Proposition 5.10,

𝜆 =

〈
T(𝜌) 𝑓 , 𝑓

〉
‖ 𝑓 ‖2

2
� 𝜌𝑂 (𝑑) . �

5.3. Showing that the eigenvalues of T(𝜌) on 𝑉𝑑 are concentrated on at most d values

Let 𝜆𝑖 (𝜌) =
〈
T(𝜌)𝑣𝑇 , 𝑣𝑇

〉
, where T is a set of size i. Then symmetry implies that 𝜆𝑖 (𝜌) does not depend

on the choice of T.

Lemma 5.12. Suppose that 𝑛 �
( 𝜌
𝐶

)𝑂 (𝑑)
𝐶𝑑2 . Then each eigenvalue of T(𝜌) as an operator on 𝑉𝑑 is

equal to 𝜆𝑖 (𝜌)
(
1 ± 𝑛−

1
3

)
for some 𝑖 � 𝑑.

Proof. Let 𝜆 be an eigenvalue of T(𝜌) and let f be a corresponding eigenfunction in 𝑉[𝑑 ], [𝑑 ] . Write

𝑓 =
∑

𝑎𝑆𝑣𝑆 ,

where the sum is over all 𝑆 = {(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )} ⊆ [𝑑]. Then 0 = T(𝜌) 𝑓 −𝜆 𝑓 , but, however, for each
set S, we have〈

T(𝜌) 𝑓 − 𝜆 𝑓 , 𝑣𝑆

〉
= 𝑎𝑆

(〈
T(𝜌)𝑣𝑆 , 𝑣𝑆

〉
− 𝜆

)
±

∑
|𝑆 |≠ |𝑇 |

|𝑎𝑇 |
(���〈T(𝜌)𝑣𝑇 , 𝑣𝑆

〉��� + |𝜆 | |〈𝑣𝑇 , 𝑣𝑆〉|
)

= 𝑎𝑆
(
𝜆 |𝑆 | (𝜌) − 𝜆

)
±𝑂

(∑
𝑇 ≠𝑆 |𝑎𝑇 |√

𝑛

)
.

Thus, for all S, we have that

|𝑎𝑆 |
��𝜆 |𝑆 | (𝜌) − 𝜆

�� � 𝑂 (∑
𝑇 ≠𝑆 |𝑎𝑇 |√

𝑛

)
.

However, choosing S that maximizes |𝑎𝑆 |, we find that |𝑎𝑆 | �
∑
𝑇≠𝑆 |𝑎𝑇 |

2𝑑2 , and plugging that into the

previous inequality yields that
��𝜆 |𝑆 | (𝜌) − 𝜆

�� � 𝑂
(
2𝑑2 )
√
𝑛
� 𝑛−0.4𝜌−𝑑 � 𝑛−1/3𝜆 |𝑆 | (𝜌), provided that C is

sufficiently large. �

5.4. An 𝐿2 variant of Lemma 3.6

Lemma 5.13. Let 𝑛 � 𝜌−𝐶𝑑3 for a sufficiently large constant C. There exists a polynomial 𝑃(𝑧) =∑𝑘
𝑖=1 𝑎𝑖𝑧

𝑖 , such that ‖𝑃‖ � 𝜌−𝑂(𝑑3) and ‖𝑃
(
T(𝜌)

)
𝑓 − 𝑓 ‖2 � 𝑛−2𝑑 ‖ 𝑓 ‖2.

Proof. Choose 𝑃(𝑧) = 1 −
∏𝑑

𝑖=1
(
𝜆−1
𝑖 𝑧 − 1

)9𝑑 , where 𝜆𝑖 = 𝜆𝑖 (𝜌). Orthogonally decompose T(𝜌) to
write 𝑓 =

∑
𝜆 𝑓 =𝜆 for nonzero orthogonal functions 𝑓 =𝜆 ∈ 𝑉𝑑 satisfying T(𝜌) 𝑓 =𝜆 = 𝜆 𝑓 =𝜆, and let

𝑔 = 𝑃
(
T(𝜌)

)
𝑓 − 𝑓 . Then 𝑔 =

∑
𝜆 (𝑃(𝜆) − 1) 𝑓 =𝜆. Therefore,
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‖𝑔‖2
2 =

∑
𝜆

(𝑃(𝜆) − 1)2‖ 𝑓 =𝜆‖2
2 � max

𝜆
(𝑃(𝜆) − 1)2‖ 𝑓 ‖2

2 .

Suppose the maximum is attained at 𝜆★. By Lemma 5.12, there is 𝑖 � 𝑑 such that 𝜆★ = 𝜆𝑖 (1± 𝑛−
1
3 ), and

so ����(𝜆−1
𝑖 𝜆★ − 1

)9𝑑
���� � 𝑛−3𝑑 .

For any 𝑗 ≠ 𝑖, we have by Proposition 5.10 that 𝜆 𝑗 � 𝜌𝑂 (𝑑) , and so����(𝜆−1
𝑖 𝜆★ − 1

)9𝑑
���� � 𝜌−𝑂 (𝑑2) .

Combining the two inequalities, we get that

(1 − 𝑃(𝜆★))2 � 𝜌−𝑂 (𝑑3)𝑛−6𝑑 � 𝑛−2𝑑 ,

where the last inequality follows from the lower bound on n. To finish up the proof then, we must
upper-bound ‖𝑃‖, and this is relatively straightforward:

‖𝑃‖ � 1 +

����� 𝑑∏
𝑖=1

(
𝜆−1
𝑖 𝑧 − 1

)9𝑑
����� � 1 +

𝑑∏
𝑖=1

��𝜆−1
𝑖 𝑧 − 1

��9𝑑
= 1 +

𝑑∏
𝑖=1

(1 + 𝜆−1)9𝑑 � 1 +
𝑑∏
𝑖=1

(1 + 𝜌−𝑂 (𝑑) )9𝑑 ,

which is at most 𝜌−𝑂 (𝑑3) . In the second inequality, we used the fact that ‖𝑃1𝑃2‖ � ‖𝑃1‖‖𝑃2‖. �

5.5. Deducing the 𝐿𝑞 approximation

To deduce the 𝐿𝑞 approximation of the polynomial P from Lemma 5.13, we use the following basic type
of hypercontractive inequality (this bound is often times too weak quantitatively, but it is good enough
for us since we have a very strong 𝐿2 approximation).

Lemma 5.14. Let C be sufficiently large and let 𝑛 � 𝐶𝑑2
𝑞2𝑑 . Let 𝑓 : 𝑆𝑛 → R be a function of degree d.

Then ‖ 𝑓 ‖𝑞 � 𝑞𝑂 (𝑑)𝑛𝑑 ‖ 𝑓 ‖2.

Proof. Let 𝜌 = 1
(10·48 ·𝑞)2 . Decomposing f into the

∑
𝜆
𝑓=𝜆 where 𝑇 (𝜌) 𝑓=𝜆 = 𝜆 𝑓=𝜆, we may find g of

degree d, such that 𝑓 = T(𝜌)𝑔 – namely, 𝑔 =
∑
𝜆
𝜆−1 𝑓=𝜆. By Parseval and Corollary 5.11, we get that

‖𝑔‖2 � 𝜌−𝑂 (𝑑) ‖ 𝑓 ‖2. Thus, we have that ‖ 𝑓 ‖𝑞 =
��𝑇 (𝜌)𝑔

��
𝑞

, and to upper-bound this norm, we intend to
use Theorem 3.3, and for that, we show that g is global with fairly weak parameters.

Let 𝑇 ⊆ 𝐿 be consistent of size at most 2𝑑. Then

‖𝑔→𝑇 ‖2
2 =
E𝑥 𝑔(𝑥)1𝑇 (𝑥)
E𝑥 [1𝑇 (𝑥)]

�

√
E𝑥 𝑔(𝑥)2

E𝑥 [1𝑇 (𝑥)]
� 𝑛

|𝑇 |
2 ‖𝑔‖2

2 � 𝑛
|𝑇 |
2 𝜌−𝑂 (𝑑) ‖ 𝑓 ‖2

2 ,

and so g is (2𝑑, 𝜀) global for 𝜀 = 𝑛𝑑/2𝜌−𝑂 (𝑑) ‖ 𝑓 ‖2. Lemma 3.5 now implies that g is 𝜀-global with
constant 48. By the choice of 𝜌, we may now use Theorem 3.3 to deduce that���𝑇 (𝜌)𝑔

���
𝑞
� 𝜀 (𝑞−2)/𝑞 ‖𝑔‖2/𝑞

2 � 𝑛𝑑/2𝜌−𝑂 (𝑑) ‖ 𝑓 ‖2 � 𝑛𝑑𝑞𝑂 (𝑑) ‖ 𝑓 ‖2. �

Finally, we combine Lemma 5.13 and Lemma 5.14 to deduce the 𝐿𝑞 approximating polynomial.
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Proof of Lemma 3.6. Let f be a function of degree d. By Lemma 5.13, there exists a P with ‖𝑃‖ �
𝜌−𝑂(𝑑3) and 𝑃(0) = 0 such that the function 𝑔 = 𝑃

(
T(𝜌)

)
𝑓 − 𝑓 satisfies ‖𝑔‖2 � 𝑛−2𝑑 ‖ 𝑓 ‖2. By Lemma

5.14, ‖𝑔‖𝑞 � 𝑞4𝑑𝑛−𝑑 ‖ 𝑓 ‖2 � 1√
𝑛
‖ 𝑓 ‖2, provided that C is sufficiently large, completing the proof. �

6. Hypercontractivity: The direct approach

In this section, we give an alternative proof of a variant of Theorem 1.4. This approach starts by
identifying a trivial spanning set of the space 𝑉𝑡 of degree t functions from Definition 2.1.

Notations. For technical reasons, it will be convenient for us to work with ordered sets. We denote by
[𝑛]𝑡 the collection of ordered sets of size t, which are simply t-tuples of distinct elements from [𝑛], but
we also allow set operations (such as \) on them. We also denote 𝑛𝑡 = | [𝑛]𝑡 | = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑡 + 1).
For ordered sets 𝐼 = {𝑖1, . . . , 𝑖𝑡 }, 𝐽 = { 𝑗1, . . . , 𝑗𝑡 }, we denote by 1𝐼→𝐽 (𝜋) the indicator of 𝜋(𝑖𝑘 ) = 𝑗𝑘
for all 𝑘 = 1, . . . , 𝑡; for convenience, we also denote this by 𝜋(𝐼) = 𝐽.

With the above notations, the following set clearly spans 𝑉𝑡 , by definition:

{1𝐼→𝐽 | |𝐼 | = |𝐽 | � 𝑡}. (4)

We remark that this set is not a basis, since these functions are linearly dependent. For example,
for 𝑡 = 1 we, have

∑𝑛
𝑖=1 1𝜋 (1)=𝑖 − 1 = 0. This implies that a function 𝑓 ∈ 𝑉1 has several different

representations as a linear combination of functions from the spanning set (4). The key to our approach
is to show that there is a way to canonically choose such a linear combination, which is both unique and
works well with computations of high moments.

Definition 6.1. Let 𝑓 ∈ 𝑉=𝑡 and suppose that 𝑓 =
∑

𝐼 ,𝐽 ∈[𝑛]𝑡
𝑎(𝐼, 𝐽)1𝐼→𝐽 . We say that this representation

is normalised if

1. For any 1 � 𝑟 � 𝑡, 𝐽 = { 𝑗1, . . . , 𝑗𝑡 } and 𝐼 = {𝑖1, . . . , 𝑖𝑟−1, 𝑖𝑟+1, . . . , 𝑖𝑡 } we have that∑
𝑖𝑟∉𝐼

𝑎({𝑖1, . . . , 𝑖𝑡 }, 𝐽) = 0.

2. Analogously, for any 1 � 𝑟 � 𝑡, 𝐼 = {𝑖1, . . . , 𝑖𝑡 } and 𝐽 = { 𝑗1, . . . , 𝑗𝑟−1, 𝑗𝑟+1, . . . , 𝑗𝑡 }, we have that∑
𝑗𝑟∉𝐽

𝑎(𝐼, { 𝑗1, . . . , 𝑗𝑡 }) = 0.

3. Symmetry: for all ordered sets 𝐼, 𝐽 of size t and 𝜋 ∈ 𝑆𝑡 , we have 𝑎(𝐼, 𝐽) = 𝑎(𝜋(𝐼), 𝜋(𝐽)).

More loosely, we say that a representation according to the spanning set (4) is normalised if averaging
the coefficients according to a single coordinate results in 0. We also refer to the equalities in Definition 4
as ‘normalising relations’. In this section, we show that a normalised representation always exists and
then show how it is useful in establishing hypercontractive statements similar to Theorem 1.4.

Normalised representations first appear in the context of the slice by Dunkl [5], who called normalised
representations harmonic functions. See also the monograph of Bannai and Ito [1, III.3] and the papers
[8, 9]. Ryan O’Donnell (personal communication) has proposed calling them zero-flux representations.

6.1. Finding a normalised representation

Lemma 6.2. Let 0 � 𝑡 � 𝑡 and let 𝑓 ∈ 𝑉𝑡 . Then we may write 𝑓 = ℎ + 𝑔, where ℎ ∈ 𝑉𝑡−1 and g is given
by a set of coefficients satisfying the normalising relations 𝑔 =

∑
𝐼 ,𝐽 ∈[𝑛]𝑡

𝑎(𝐼, 𝐽)1𝐼→𝐽 (𝜋).
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Proof. The proof is by induction on t.
Fix 𝑡 � 1 and 𝑓 ∈ 𝑉𝑡 . Then we may write 𝑓 (𝜋) =

∑
𝐼 ,𝐽 ∈[𝑛]𝑡

𝑎(𝐼, 𝐽)1𝐼→𝐽 (𝜋), where the coefficients

satisfy the symmetry property from Definition 6.1.
Throughout the proof, we will change the coefficients in a sequential process and always maintain

the form 𝑓 = ℎ +
∑

|𝐼 |= |𝐽 |=𝑡
𝑏(𝐼, 𝐽)1𝐼→𝐽 (𝜋) for ℎ ∈ 𝑉𝑡−1.

Take 𝑟 ∈ [𝑡], and for each 𝐼 = {𝑖1, . . . , 𝑖𝑡 }, 𝐽 = { 𝑗1, . . . , 𝑗𝑡 }, define the coefficients

𝑏(𝐼, 𝐽) = 𝑎(𝐼, 𝐽) − 1
𝑛 − 𝑡 + 1

∑
𝑖∉𝐼 \{𝑖𝑟 }

𝑎({𝑖1, . . . , 𝑖𝑟−1, 𝑖, 𝑖𝑟+1, . . . , 𝑖𝑡 }, 𝐽). (5)

In Claim 6.3 below, we prove that after making this change of coefficients, we may write 𝑓 = ℎ +∑
|𝐼 |= |𝐽 |=𝑡

𝑏(𝐼, 𝐽)1𝐼→𝐽 (𝜋) and that the coefficients 𝑏(𝐼, 𝐽) satisfy all normalising relations that the 𝑎(𝐼, 𝐽)

do, as well as the normalising relations from the first collection in Definition 6.1 for r. We repeat this
process for all 𝑟 ∈ [𝑡].

After this process is done, we have 𝑓 = ℎ +
∑

𝐼 ,𝐽 ∈[𝑛]𝑡
𝑏(𝐼, 𝐽)1𝐼→𝐽 (𝜋), where the coefficients 𝑎(𝐼, 𝐽)

satisfy the first collection of normalising relations from Definition 6.1. We can now perform the
analogous process on the J part, and by symmetry obtain that after this process, the second collection
of normalising relations in Definition 6.1 hold. One only has to check that this does not destroy the first
collection of normalising relations, which we also prove in Claim 6.3.

Finally, we symmetrize f to ensure that it satisfies the symmetry condition. To do so, we replace
𝑏(𝐼, 𝐽) with the average of 𝑏(𝜋(𝐼), 𝜋(𝐽)) over all 𝜋 ∈ 𝑆𝑡 , which does not change the function since
1𝐼→𝐽 = 1𝜋 (𝐼 )→𝜋 (𝐽 ) . �

Claim 6.3. The change of coefficients (5) has the following properties:

1. The coefficients 𝑏(𝐼, 𝐽) satisfy the normalising relation in the first item for r in Definition 6.1.
2. If the coefficients 𝑎(𝐼, 𝐽) satisfy the normalising relation in the first item in Definition 6.1 for 𝑟 ′ ≠ 𝑟 ,

then so do 𝑏(𝐼, 𝐽).
3. If the coefficients 𝑎(𝐼, 𝐽) satisfy the normalising relation in the second item in Definition 6.1 for 𝑟 ′,

then so do 𝑏(𝐼, 𝐽).
4. We may write 𝑓 = ℎ +

∑
|𝐼 |= |𝐽 |=𝑡

𝑏(𝐼, 𝐽)1𝐼→𝐽 (𝜋), where ℎ ∈ 𝑉𝑡−1.

Proof. We prove each one of the items separately.

Proof of the first item.
Fix 𝐼 = {𝑖1, . . . , 𝑖𝑟−1, 𝑖𝑟+1 . . . , 𝑖𝑡 }, 𝐽 = { 𝑗1, . . . , 𝑗𝑡 } and calculate:∑
𝑖𝑟∉𝐼

𝑏({𝑖1, . . . , 𝑖𝑡 }, 𝐽) =
∑
𝑖𝑟∉𝐼

(
𝑎({𝑖1, . . . , 𝑖𝑡 }, 𝐽) −

1
𝑛 − 𝑡 + 1

∑
𝑖∉𝐼

𝑎({𝑖1, . . . , 𝑖𝑟−1, 𝑖, 𝑖𝑟+1, . . . , 𝑖𝑡 }, 𝐽)
)

=
∑
𝑖𝑟∉𝐼

𝑎({𝑖1, . . . , 𝑖𝑡 }, 𝐽) −
1

𝑛 − 𝑡 + 1

∑
𝑖𝑟∉𝐼
𝑖∉𝐼

𝑎({𝑖1, . . . , 𝑖𝑟−1, 𝑖, 𝑖𝑟+1, . . . , 𝑖𝑡 }, 𝐽). (6)

As in the second double sum, for each 𝑖𝑟 the coefficient 𝑎({𝑖1, . . . , 𝑖𝑟−1, 𝑖𝑟 , 𝑖𝑟+1, . . . , 𝑖𝑡 }, 𝐽) is counted
𝑛 − |𝐼 | = 𝑛 − 𝑡 + 1 times, we get that the above expression is equal to 0.

Proof of the second item.
Fix 𝑟 ′ ≠ 𝑟 and suppose 𝑎(·, ·) satisfy the first set of normalising relations for 𝑟 ′. Without loss

of generality, assume 𝑟 ′ < 𝑟 . Let 𝐼 = {𝑖1, . . . , 𝑖𝑟 ′−1, 𝑖𝑟 ′+1, . . . , 𝑖𝑡 }, 𝐽 = { 𝑗1, . . . , 𝑗𝑡 }. Below, we
let 𝑖, 𝑖𝑟 ′ be summation indices and we denote 𝐼 ′ = {𝑖1, . . . , 𝑖𝑟 ′−1, 𝑖𝑟 ′ , 𝑖𝑟 ′+1, . . . , 𝑖𝑟−1, 𝑖, 𝑖𝑟 , . . . , , 𝑖𝑡 }.
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Calculating as in (6):∑
𝑖𝑟′∉𝐼

𝑏({𝑖1, . . . , 𝑖𝑡 }, 𝐽) =
∑
𝑖𝑟′∉𝐼

𝑎({𝑖1, . . . , 𝑖𝑡 }, 𝐽) −
1

𝑛 − 𝑡 + 1

∑
𝑖∉𝐼\{𝑖𝑟 }

𝑎(𝐼 ′, 𝐽)

=
∑
𝑖𝑟′∉𝐼

𝑎({𝑖1, . . . , 𝑖𝑡 }, 𝐽) −
1

𝑛 − 𝑡 + 1

∑
𝑖𝑟′∉𝐼

∑
𝑖∉𝐼\{𝑖𝑟 }

𝑎(𝐼 ′, 𝐽). (7)

The first sum is 0 by the assumption of the second item. For the second sum, we interchange the order
of summation to see that it is equal to

∑
𝑖∉𝐼\{𝑖𝑟 }

∑
𝑖𝑟′∉𝐼

𝑎(𝐼 ′, 𝐽), and note that for each i, the inner sum is 0

again by the assumption of the second item.

Proof of the third item.
Fix 𝑟 ′ and suppose 𝑎(·, ·) satisfy the second set of normalising relations for 𝑟 ′. Fix 𝐼 = {𝑖1, . . . , 𝑖𝑡 },

𝐽 = { 𝑗1, . . . , 𝑗𝑟 ′−1, 𝑗𝑟 ′+1, . . . , 𝑗𝑡 }, 𝐼 ′ = {𝑖1, . . . , 𝑖𝑟−1, 𝑖, 𝑖𝑟+1, . . . , 𝑖𝑡 }, 𝐽 ′ = { 𝑗1, . . . , 𝑗𝑡 } and calculate

∑
𝑗𝑟∉𝐽

𝑏(𝐼, 𝐽 ′) =
∑
𝑗𝑟∉𝐽

�� 𝑎(𝐼, 𝐽 ′) − 1
𝑛 − 𝑡 + 1

∑
𝑖∉𝐼\{𝑖𝑟 }

𝑎(𝐼 ′, 𝐽 ′)!"#
=

∑
𝑗𝑟∉𝐽

𝑎(𝐼, 𝐽 ′) − 1
𝑛 − 𝑡 + 1

∑
𝑖∉𝐼\{𝑖𝑟 }

∑
𝑗𝑟∉𝐽

𝑎(𝐼 ′, 𝐽 ′). (8)

Once again, both sums vanish due to the assumption.

Proof of the fourth item.
For 𝐼 = {𝑖1, . . . , 𝑖𝑡 }, 𝐽 = { 𝑗1, . . . , 𝑗𝑡 }, denote

𝑐(𝐼, 𝐽) = 1
𝑛 − 𝑡 + 1

∑
𝑖∉𝐼\{𝑖𝑟 }

𝑎({𝑖1, . . . , 𝑖𝑟−1, 𝑖, 𝑖𝑟+1, . . . , 𝑖𝑡 }, 𝐽),

so that 𝑎(𝐼, 𝐽) = 𝑏(𝐼, 𝐽) + 𝑐(𝐼, 𝐽). Plugging this into the representation of f, we see that it is enough to
prove that ℎ(𝜋) =

∑
𝐼 ,𝐽

𝑐(𝐼, 𝐽)1𝐼→𝐽 (𝜋) is in 𝑉𝑡−1. Writing 𝐼 ′ = 𝐼 \ {𝑖𝑟 }, 𝐽 ′ = 𝐽 \ { 𝑗𝑟 } and expanding, we

see that

ℎ(𝜋) = 1
𝑛 − 𝑡 + 1

∑
𝐼 ,𝐽

1𝐼→𝐽 (𝜋)
∑

𝑖∉𝐼\{𝑖𝑟 }
𝑎({𝑖1, . . . , 𝑖𝑟−1, 𝑖, 𝑖𝑟+1, . . . , 𝑖𝑡 }, 𝐽)

=
1

𝑛 − 𝑡 + 1

∑
𝐼 ′,𝐽 ′

∑
𝑖∉𝐼 ′, 𝑗𝑟∉𝐽 ′

𝑎({𝑖1, . . . , 𝑖𝑟−1, 𝑖, 𝑖𝑟+1, . . . , 𝑖𝑡 }, 𝐽)
∑
𝑖𝑟∉𝐼 ′

1𝐼→𝐽 (𝜋).

Noting that
∑
𝑖𝑟∉𝐼 ′

1𝐼→𝐽 (𝜋) = 1𝐼 ′→𝐽 ′ (𝜋) is in the spanning set (4) for 𝑡 − 1, the proof is concluded. �

Applying Lemma 6.2 iteratively, we may write each 𝑓 : 𝑆𝑛 → R of degree at most t as 𝑓 = 𝑓0+. . .+ 𝑓𝑑 ,
where for each 𝑘 = 0, 1, . . . , 𝑑, the function 𝑓𝑘 is in 𝑉𝑘 and is given by a list of coefficients satisfying
the normalising relations.

6.2. Usefulness of normalised representations

In this section, we establish a claim that demonstrates the usefulness of the normalising relations.
Informally, this claim often serves as a replacement for the orthogonality property that is so useful in
product spaces. Formally, it allows us to turn long sums into short sums and is very helpful in various
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computations arising in computations in norms of functions on 𝑆𝑛 that are given in a normalised
representation.

Claim 6.4. Let 𝑟 ∈ {1, . . . , 𝑑}, 0 � 𝑡 < 𝑟 . Let J be of size r, I be of size at least r, and 𝑅 ⊆ 𝐼 of size 𝑟 − 𝑡.
Then ∑

𝑇 ∈( [𝑛]\𝐼 )𝑡

𝑎(𝑅 ◦ 𝑇, 𝐽) = (−1)𝑡
∑

𝑇 ∈(𝐼 \𝑅)𝑡

𝑎(𝑅 ◦ 𝑇, 𝐽).

Here, 𝑅 ◦ 𝑇 denotes the element in [𝑛]𝑟 resulting from appending T at the end of R.

Proof. By symmetry, it suffices to prove the statement for R that are prefixes of I. We prove the claim
by induction on t. The case 𝑡 = 0 is trivial, so assume the claim holds for 𝑡 − 1, where 𝑡 � 1, and prove
for t. The left-hand side is equal to ∑

𝑖1 ,...,𝑖𝑡∉𝐼
distinct

𝑎(𝑅 ◦ (𝑖1, . . . , 𝑖𝑡 ), 𝐽).

For fixed 𝑖1, . . . , 𝑖𝑡−1 ∉ 𝐼, by the normalising relations, we have that∑
𝑖𝑡∉𝐼∪{𝑖1 ,...,𝑖𝑡−1 }

𝑎(𝑅 ◦ (𝑖1, . . . , 𝑖𝑡−1) ◦ (𝑖𝑡 ), 𝐽) = −
∑

𝑖𝑡 ∈𝐼\𝑅
𝑎(𝑅 ◦ (𝑖1, 𝑖2, . . . , 𝑖𝑡−1) ◦ (𝑖𝑡 ), 𝐽).

Hence, ∑
𝑖1 ,...,𝑖𝑡∉𝐼

distinct

𝑎(𝑅 ◦ (𝑖1, . . . , 𝑖𝑡 ), 𝐽) = −
∑

𝑖𝑡 ∈𝐼\𝑅

∑
𝑖1 ,...,𝑖𝑡−1∉𝐼∪{𝑖𝑡 }

distinct

𝑎(𝑅 ◦ (𝑖1, 𝑖2, . . . , 𝑖𝑡−1) ◦ 𝑖𝑡 , 𝐽).

For fixed 𝑖𝑡 ∈ 𝐼 \ 𝑅, using the induction hypothesis, the inner sum is equal to

(−1)𝑡−1
∑

𝑇 ∈(𝐼\(𝑅∪{𝑖𝑡 }))𝑡−1

𝑎(𝑅 ◦ 𝑇 ◦ (𝑖𝑡 ), 𝐽).

Plugging that in,∑
𝑖1 ,...,𝑖𝑡∉𝐼

distinct

𝑎(𝑅 ◦ (𝑖1, . . . , 𝑖𝑡 ), 𝐽) = (−1)𝑡−1
∑

𝑖𝑡 ∈𝐼 \𝑅
−

∑
𝑇 ∈(𝐼\(𝑅∪{𝑖𝑡 }))𝑡−1

𝑎(𝑅 ◦ 𝑇 ◦ (𝑖𝑡 ), 𝐽)

= (−1)𝑡
∑

𝑇 ′ ∈(𝐼\𝑅)𝑡

𝑎(𝑅 ◦ 𝑇 ′, 𝐽). �

6.3. Analytic influences and the hypercontractive statement

Key to the hypercontractive statement proved in this section is an analytic notion of influence. Given a
fixed representation of f as

𝑛∑
𝑘=0

∑
𝐼 ,𝐽 ∈[𝑛]𝑘

𝑎(𝐼, 𝐽)1𝐼→𝐽 where for each k the coefficients 𝑎(𝐼, 𝐽) satisfy the

normalising relations, we define the analytic notion of influences as follows.

Definition 6.5. For 𝑆, 𝑇 ⊆ [𝑛] of the same size s, define

𝐼𝑆,𝑇 [ 𝑓 ] =
∑
𝑟�0

∑
𝐼 ∈( [𝑛]\𝑆)𝑟
𝐽 ∈( [𝑛]\𝑇 )𝑟

(𝑟 + 𝑠)!2 1
𝑛𝑟+𝑠

𝑎(𝑆 ◦ 𝐼, 𝑇 ◦ 𝐽)2.

Definition 6.6. A function f is called 𝜀-analytically-global if for all 𝑆, 𝑇 , 𝐼𝑆,𝑇 [ 𝑓 ] � 𝜀.
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Remark 6.7. With some work, it can be shown that for 𝑑 � 𝑛, a degree d function being 𝜀-analytically
global is equivalent to f being (2𝑑, 𝛿)-global in the sense of Definition 1.3, where 𝛿 = 𝑂𝑑 (𝜀). Thus, at
least qualitatively, the hypercontractive statement below is in fact equivalent to Theorem 1.4.

We can now state our variant of the hypercontractive inequality that uses analytic influences.

Theorem 6.8. There exists an absolute constant𝐶 > 0 such that for all 𝑑, 𝑛 ∈ N for which 𝑛 � 2𝐶 ·𝑑 log 𝑑 ,
the following holds. If 𝑓 ∈ 𝑉𝑑 is given by a list of coefficients satisfying the normalising relations, say
𝑓 =

∑
𝐼 ,𝐽 ∈[𝑛]𝑑

𝑎(𝐼, 𝐽)1𝐼→𝐽 , then

E
𝜋

[
𝑓 (𝜋)4] � ∑

|𝑆 |= |𝑇 |

(
4
𝑛

) |𝑆 |
𝐼𝑆,𝑇 [ 𝑓 ]2.

p-biased hypercontractivity.
The last ingredient we use in our proof is a hypercontractive inequality on the p-biased cube from

[17]. Let 𝑔 : {0, 1}𝑚 → R be a degree d function, where we think of {0, 1}𝑚 as equipped with the p-
biased product measure. Then we may write g in the basis of characters (i.e., as a linear combination of
{𝜒𝑆}𝑆⊆[𝑚] , where 𝜒𝑆 (𝑥) =

∏
𝑖∈𝑆

𝑥𝑖−𝑝√
𝑝 (1−𝑝)

). This is the p-biased Fourier transform of f :

𝑔(𝑥) =
∑
𝑆

�̂�(𝑆)𝜒𝑆 (𝑥).

Next, we define the generalised influences of sets (which are very close in spirit to the analytic notion
of influences considered herein). For 𝑇 ⊆ [𝑛], we denote

𝐼𝑇 [𝑔] =
∑
𝑆⊇𝑇

�̂�(𝑆)2.

The following result is an easy consequence of [17, Theorem 3.4] (the deduction of it from this result
is done in the same way as the proof of [17, Lemma 3.6]).

Theorem 6.9. Suppose 𝑔 : {0, 1}𝑚 → R. Then ‖𝑔‖4
4 �

∑
𝑇 ⊆[𝑛]

(3𝑝) |𝑇 | 𝐼𝑇 [𝑔]2.

6.4. Proof of Theorem 6.8

Write f according to its normalised representation as 𝑓 (𝜋) =
∑

𝐼 ,𝐽 ∈[𝑛]𝑑
𝑎(𝐼, 𝐽)1𝐼→𝐽 . We intend to define a

function 𝑔 : {0, 1}𝑛×𝑛 → R that will behave similarly to f, as follows. We think of {0, 1}𝑛×𝑛 as equipped
with the p-biased measure for 𝑝 = 1/𝑛 and think of an input 𝑥 ∈ {0, 1}𝑛×𝑛 as a matrix. The rationale is
that the bit 𝑥𝑖, 𝑗 being 1 will encode the fact that 𝜋(𝑖) = 𝑗 , but we will never actually think about it this
way. Thus, we define g as

𝑔(𝑥) =
∑

𝐼 ,𝐽 ∈[𝑛]𝑑

𝑎(𝐼, 𝐽)
𝑑∏
ℓ=1

(
𝑥𝐼ℓ ,𝐽ℓ −

1
𝑛

)
.

For 𝐼, 𝐽, we denote by 𝑆𝐼 ,𝐽 ⊆ [𝑛 × 𝑛] the set of coordinates { (𝐼ℓ , 𝐽ℓ) |ℓ = 1, . . . , 𝑑} and note that with
this notation,

𝑔(𝑥) =
∑

𝐼 ,𝐽 ∈[𝑛]𝑑

√
𝑝(1 − 𝑝)

𝑑
𝑎(𝐼, 𝐽)𝜒𝑆𝐼 ,𝐽 (𝑥).
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To complete the proof, we first show (Claim 6.10) that ‖ 𝑓 ‖4
4 � (1+𝑜(1))‖𝑔‖4

4 and then prove the desired
upper bound on the 4-norm of g using Theorem 6.9.

Claim 6.10. ‖ 𝑓 ‖4
4 � (1 + 𝑜(1))‖𝑔‖4

4

Proof. Deferred to Section 6.4.1. �

We now upper-bound ‖𝑔‖4
4. Using Theorem 6.9,

‖𝑔‖4
4 �

∑
𝑇 ⊆[𝑛×𝑛]

(3𝑝) |𝑇 | 𝐼𝑇 [𝑔]2, (9)

and the next claim bounds the generalised influences of g by the analytic influences of f.
For two sets 𝐼 = {𝑖1, . . . , 𝑖𝑡 }, 𝐽 = { 𝑗1, . . . , 𝑗𝑡 } of the same size, let 𝑆(𝐼, 𝐽) = {(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )} ⊆

[𝑛] × [𝑛].

Claim 6.11. Let 𝑇 = 𝑆(𝐼 ′, 𝐽 ′) be such that 𝐼𝑇 [𝑔] ≠ 0. Then 𝐼𝑇 [𝑔] � 𝐼𝐼 ′,𝐽 ′ [ 𝑓 ].

Proof. Take T in this sum for which 𝐼𝑇 [𝑔] ≠ 0 and denote 𝑡 = |𝑇 |. Then 𝑇 = {(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )} =
𝑆(𝐼 ′, 𝐽 ′) for 𝐼 ′ = {𝑖1, . . . , 𝑖𝑡 }, 𝐽 ′ = { 𝑗1, . . . , 𝑗𝑡 } that are consistent. For 𝑄 ⊆ [𝑛] × [𝑛] of size d such
that 𝑇 ⊆ 𝑄, let 𝑆𝑄,𝑇 = { (𝐼, 𝐽) |𝑇 ⊆ 𝑆(𝐼, 𝐽) = 𝑄} and note that by the symmetry normalising relation,
𝑎(𝐼, 𝐽) is constant on (𝐼, 𝐽) ∈ 𝑆𝑄,𝑇 . We thus get

𝐼𝑇 [𝑔] =
∑
𝑄

�� 
∑

(𝐼 ,𝐽 ) ∈𝑆𝑄,𝑇

√
𝑝(1 − 𝑝)

𝑑
𝑎(𝐼, 𝐽)!"#

2

� 𝑑!𝑝𝑑
∑
𝑄

∑
(𝐼 ,𝐽 ) ∈𝑆𝑄,𝑇

𝑎(𝐼, 𝐽)2,

where we used the fact that the size of 𝑆𝑄,𝑇 is 𝑑!. Rewriting the sum by first choosing the locations of
T in (𝐼, 𝐽), we get that the last sum is at most

𝑑𝑡
∑

𝐼 ∈( [𝑛]\𝐼 ′)𝑑−𝑡
𝐽 ∈( [𝑛]\𝐽 ′)𝑑−𝑡

𝑎(𝐼 ′ ◦ 𝐼, 𝐽 ′ ◦ 𝐽)2.

Combining all, we get that 𝐼𝑇 [𝑔] �
∑

𝐼 ∈( [𝑛]\𝐼 ′)𝑑−𝑡
𝐽 ∈( [𝑛]\𝐽 ′)𝑑−𝑡

𝑑!2 1
𝑛𝑑
𝑎(𝐼 ′ ◦ 𝐼, 𝐽 ′ ◦ 𝐽)2 = 𝐼𝐼 ′,𝐽 ′ [𝑔]. �

Plugging in Claim 6.11 into (9) and using Claim 6.10 finishes the proof of Theorem 6.8.

6.4.1. Proof of Claim 6.10
Let 𝐼𝑟 and 𝐽𝑟 be d-tuples of distinct indices from [𝑛]. Then

E
𝜋

[
𝑓 (𝜋)4] = ∑

𝐼1 ,...,𝐼4
𝐽1 ,...,𝐽4

𝑎(𝐼1, 𝐽1) · · · 𝑎(𝐼4, 𝐽4)E
𝜋

[
1𝜋 (𝐼1)=𝐽1 · · · 1𝜋 (𝐼4)=𝐽4

]
.

Consider the collection of constraints on 𝜋 in the product of the indicators. To be nonzero, the constraints
should be consistent, so we only consider such tuples. Let M be the number of different elements that
appear in 𝐼1, . . . , 𝐼4 (which is at least d and at most 4𝑑). We partition the outer sum according to M and
upper-bound the contribution from each M separately. Fix M; then the contribution from it is

1
𝑛𝑀

∑
𝐼1 ,...,𝐼4
𝐽1 ,...,𝐽4
type 𝑀

𝑎(𝐼1, 𝐽1) · · · 𝑎(𝐼4, 𝐽4).
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We would like to further partition this sum according to the pattern in which the M different elements
of 𝐼1, . . . , 𝐼4 are divided between them (and by consistency, this determines the way the M different
elements of 𝐽1, . . . , 𝐽4 are divided between them). There are at most (24 − 1)𝑀 � 216𝑑 different such
configurations; thus, we fix one such configuration and upper-bound it (at the end multiplying the bound
by 216𝑑). Thus, we have distinct 𝑖1, . . . , 𝑖𝑀 ranging over [𝑛], and the coordinate of each 𝐼𝑟 is composed
of the 𝑖1, . . . , 𝑖𝑀 (and similarly 𝑗1, . . . , 𝑗𝑀 and the 𝐽𝑟 ’s), and our sum is

1
𝑛𝑀

∑
𝑖1 ,...,𝑖𝑀 distinct
𝑗1 ,..., 𝑗𝑀 distinct

𝑎(𝐼1, 𝐽1) · · · 𝑎(𝐼4, 𝐽4). (10)

We partition the 𝑖𝑡 ’s into the number of times they occur: let 𝐴1, . . . , 𝐴4 be the sets of 𝑖𝑡 that
appear in 1, 2, 3 or 4 of the 𝐼𝑟 ’s. We note that 𝑖𝑡 and 𝑗𝑡 appear in the same 𝐼𝑟 ’s and always together
(otherwise the constraints would be contradictory), and in particular, 𝑖𝑡 ∈ 𝐴 𝑗 iff 𝑗𝑡 ∈ 𝐴 𝑗 . Also,
𝑀 = |𝐴1 | + |𝐴2 | + |𝐴3 | + |𝐴4 |.

We consider contributions from configurations where 𝐴1 = ∅ and 𝐴1 ≠ ∅ separately, and to control
the latter group, we show that the above sum may be upper-bounded by 𝑀2𝑀 sums in which 𝐴1 = ∅.
To do that, we show how to reduce the size of 𝐴1 by allowing more sums and then apply it iteratively.

Without loss of generality, assume 𝑖1 ∈ 𝐴1; then it is in exactly one of the 𝐼𝑟 ’s – without loss of
generality, the last coordinate of 𝐼4. We rewrite the sum as

1
𝑛𝑀

∑
𝑖1 ,...,𝑖𝑀

𝑎(𝐼1, 𝐽1)𝑎(𝐼2, 𝐽2)𝑎(𝐼3, 𝐽3)
∑

𝑖1∈[𝑛]\{𝑖2 ,...,𝑖𝑀 }
𝑗1∈[𝑛]\{ 𝑗2 ,..., 𝑗𝑀 }

𝑎(𝐼4, 𝐽4). (11)

Consider the innermost sum. Applying Claim 6.4 twice, we have∑
𝑖1∈[𝑛]\{𝑖2 ,...,𝑖𝑀 }
𝑗1∈[𝑛]\{ 𝑗2 ,..., 𝑗𝑀 }

𝑎(𝐼4, 𝐽4) =
∑

𝑖1∈{𝑖2 ,...,𝑖𝑀 }\𝐼4
𝑗1∈{ 𝑗2 ,..., 𝑗𝑀 }\𝐽4

𝑎(𝐼4, 𝐽4).

Plugging that into (11), we are able to write the sum therein using (𝑀 − 𝑟)2 sums (one for each choice
of 𝑖1 ∈ {𝑖2, . . . , 𝑖𝑀 } \ 𝐼4 and 𝑗1 ∈ { 𝑗2, . . . , 𝑗𝑀 } \ 𝐽4) on 𝑖2, . . . , 𝑖𝑀 , 𝑗2, . . . , 𝑗𝑀 , and thus, we have
reduced the size of 𝐴1 by at least 1 and have decreased M by at least 1. The last bit implies that the
original normalising factor is smaller by a factor of at least 1/𝑛 than the new one. Iteratively applying
this procedure, we end up with 𝐴1 = ∅, and we assume that henceforth. Thus, letting H be the set of
consistent (𝐼1, . . . , 𝐼4, 𝐽1, . . . , 𝐽4) in which each element in 𝐼1 ∪ · · · ∪ 𝐼4 appears in at least two of the
𝐼𝑖’s, we get that

E
𝜋

[
𝑓 (𝜋)4] � (

1 + 𝑑𝑂 (𝑑)

𝑛

) ∑
𝐼1 ,...,𝐼4
𝐽1 ,...,𝐽4
from H

|𝑎(𝐼1, 𝐽1) | · · · |𝑎(𝐼4, 𝐽4) |E
𝜋

[
1𝜋 (𝐼1)=𝐽1 · · · 1𝜋 (𝐼4)=𝐽4

]
� (1 + 𝑜(1))

∑
𝐼1 ,...,𝐼4
𝐽1 ,...,𝐽4
from H

1
𝑛 |𝐼1∪···∪𝐼4 |

|𝑎(𝐼1, 𝐽1) | · · · |𝑎(𝐼4, 𝐽4) |, (12)

where in the last inequality we used

E
𝜋

[
1𝜋 (𝐼1)=𝐽1 · · · 1𝜋 (𝐼4)=𝐽4

]
=

1
𝑛 · (𝑛 − 1) · · · (𝑛 − |𝐼1 ∪ . . . ∪ 𝐼4 | + 1) � (1 + 𝑜(1)) 1

𝑛 |𝐼1∪...∪𝐼4 |
.
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Next, we lower-bound ‖𝑔‖4
4. Expanding as before,

E
𝑥

[
𝑔(𝜋)4] = ∑

𝐼1 ,...,𝐼4
𝐽1 ,...,𝐽4

√
𝑝(1 − 𝑝)

4𝑑
|𝑎(𝐼1, 𝐽1) | · · · |𝑎(𝐼4, 𝐽4) |E

𝑥

[
𝜒𝑆 (𝐼1 ,𝐽1) (𝑥) · · · 𝜒𝑆 (𝐼4 ,𝐽4) (𝑥)

]
.

A direct computation shows that the expectation of a normalised p-biased bit (i.e., 𝑥𝑖, 𝑗−𝑝√
𝑝 (1−𝑝)

) is 0, the

expectation of its square is 1, the expectation of its third power is 1+𝑜 (1)√
𝑝 (1−𝑝)

, and the expectation of

its fourth power is 1+𝑜 (1)
𝑝 (1−𝑝) . This tells us that all summands in the above formula are nonnegative, and

therefore, we can omit all those that correspond to (𝐼1, . . . , 𝐼4) and (𝐽1, . . . , 𝐽4) not from H and only
decrease the quantity. For 𝑗 = 2, 3, 4, denote by ℎ 𝑗 the number of elements that appear in j of the
𝐼1, . . . , 𝐼4. Then we get that the inner term is at least

(1 − 𝑜(1))
√
𝑝(1 − 𝑝)

4𝑑−ℎ3−2ℎ4 |𝑎(𝐼1, 𝐽1) | · · · |𝑎(𝐼4, 𝐽4) |.

Note that 2ℎ2+3ℎ3+4ℎ4 = 4𝑑; we get that 4𝑑−ℎ3−2ℎ4 = 2(ℎ2+ℎ3+ℎ4) = 2|𝐼1 ∪ · · · ∪ 𝐼4 |. Combining
everything, we get that

E
𝑥

[
𝑔(𝜋)4] � (1 − 𝑜(1))

∑
𝐼1 ,...,𝐼4
𝐽1 ,...,𝐽4
from H

(𝑝(1 − 𝑝)) |𝐼1∪···∪𝐼4 | |𝑎(𝐼1, 𝐽1) | · · · |𝑎(𝐼4, 𝐽4) |

� (1 − 𝑜(1))
∑

𝐼1 ,...,𝐼4
𝐽1 ,...,𝐽4
from H

1
𝑛 |𝐼1∪···∪𝐼4 |

|𝑎(𝐼1, 𝐽1) | · · · |𝑎(𝐼4, 𝐽4) |. (13)

Combining (12) and (13) shows that ‖ 𝑓 ‖4
4 � (1 + 𝑜(1))‖𝑔‖4

4.

6.5. Deducing hypercontractivity for low-degree functions

With Theorem 6.8 in hand, one may deduce the following inequality as an easy corollary.
Corollary 6.12. There exists an absolute constant 𝐶 > 0 such that for all 𝑑, 𝑛 ∈ N for which 𝑛 �
2𝐶 ·𝑑 log 𝑑 , the following holds. If 𝑓 ∈ 𝑉𝑑 (𝑆𝑛) is 𝜀-analytically-global, then ‖ 𝑓 ‖4

4 � 2𝐶 ·𝑑 log 𝑑𝜀2.
Proof. Since the proof is straightforward, we only outline its steps. Writing 𝑓 = 𝑓0 + · · · + 𝑓𝑑 for 𝑓𝑘 ∈ 𝑉𝑘
given by normalising relations, one bounds ‖ 𝑓 ‖4

4 � (𝑑 + 1)3
𝑑∑
𝑘=0

‖ 𝑓𝑘 ‖4
4 and uses Theorem 6.8 on each

𝑓𝑘 . Finally, 𝐼𝐼 ′,𝐽 ′ [ 𝑓𝑘 ] � 𝐼𝐼 ′,𝐽 ′ [ 𝑓 ] � 𝜀. �

Remark 6.13. Using the same techniques, one may prove statements analogous to Theorem 6.8 and
Corollary 6.12 for all even 𝑞 ∈ N.

7. Applications

7.1. Global functions are concentrated on the high degrees

The first application of our hypercontractive is the following level-d inequality.
Theorem 1.6 (Restated). There exists an absolute constant 𝐶 > 0 such that the following holds. Let
𝑑, 𝑛 ∈ N and 𝜀 > 0 such that 𝑛 � 2𝐶𝑑3 log(1/𝜀)𝐶𝑑 . If 𝑓 : 𝑆𝑛 → {0, 1} is (2𝑑, 𝜀)-global, then
‖ 𝑓 �𝑑 ‖2

2 � 2𝐶 ·𝑑4
𝜀4 log𝐶 ·𝑑 (1/𝜀).

Proof. Deferred to Section 8. �
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This result is analogous to the level d inequality on the Boolean hypercube [24, Corollary 9.25], but
it is quantitatively weaker because our dependence on d is poorer; for instance, it remains meaningful
only for 𝑑 � log(1/𝜀)1/4, while the original statement on the Boolean hypercube remains effective up
to 𝑑 ∼ log(1/𝜀). Still, we show in Section 7.2 that this statement suffices to recover results regarding
the size of the largest product-free sets in 𝑆𝑛.

It would be interesting to prove a quantitatively better version of Theorem 1.6 in terms of d. In
particular, is it the case that for 𝑑 = 𝑐 log(1/𝜀), it holds that ‖ 𝑓 =𝑑 ‖2 = 𝜀2+Ω(1) for sufficiently small (but
constant) 𝑐 > 0?

We remark that once Theorem 1.6 has been established (or more precisely, the slightly stronger
statement in Proposition 8.11), one can strengthen it at the expense of assuming that n is larger –
namely, establish Theorem 1.7 from the introduction. We defer its proof to Section 8.8.

7.2. Global product-free sets are small

In this section, we prove a strengthening of Theorem 1.8. Conceptually, the proof is very simple. Starting
from Gowers’ approach, we convert this problem into one about independent sets in a Cayley graph
associated with F and use a Hoffman-type bound to solve that problem.

Fix a global product-free set 𝐹 ⊆ 𝐴𝑛 and construct the (directed) graph 𝐺𝐹 as follows. Its vertex set
is 𝑆𝑛, and (𝜋, 𝜎) is an edge if 𝜋−1𝜎 ∈ 𝐹. Note that 𝐺𝐹 is a Cayley graph, and that if F is product-free,
then F is an independent set in 𝐺𝐹 . Our plan is thus to (1) study the eigenvalues of 𝐺𝐹 and prove good
upper bounds on them and then (2) bound the size of F using a Hoffman-type bound.

Let 𝑇𝐹 be the adjacency operator of 𝐺𝐹 (i.e., the random walk that from a vertex 𝜋 transitions to a
random neighbour 𝜎 in 𝐺𝐹 ). We may consider the action of 𝑇𝐹 on functions 𝑓 : 𝑆𝑛 → R as

(𝑇𝐹 𝑓 ) (𝜋) = E
𝜎:(𝜋,𝜎) is an edge

[ 𝑓 (𝜎)] = E
𝑎∈𝐹

[ 𝑓 (𝜋𝑎)] .

We will next study the eigenspaces and eigenvalues of 𝑇𝐹 , and for that we need some basic facts
regarding the representation theory of 𝑆𝑛. We will then study the fraction of edges between any two
global functions A,B, and Theorem 1.8 will just be the special case that A = B = 𝐹.

Throughout this section, we set 𝛿 = |𝐹 |
|𝑆𝑛 | .

7.2.1. Basic facts about representation theory of 𝑆𝑛
We will need some basic facts about the representation theory of 𝑆𝑛, and our exposition will follow
standard textbooks (e.g., [13]).

A partition of [𝑛], denoted by 𝜆 � 𝑛, is a sequence of integers 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) where 𝜆1 � 𝜆2 �
· · · � 𝜆𝑘 � 1 sum up to n. It is well known that partitions index equivalence classes of representations
of 𝑆𝑛; thus, we may associate with each partition 𝜆 a character 𝜒𝜆 : 𝑆𝑛 → C, which in the case of
the symmetric group is real-valued. The dimension of 𝜆 is dim(𝜆) = 𝜒𝜆 (𝑒), where e is the identity
permutation.

Given a partition𝜆, a𝜆-tabloid is a partition of [𝑛] into sets 𝐴1, . . . , 𝐴𝑘 such that |𝐴𝑖 | = 𝜆𝑖 . Thus, for𝜆-
tabloids 𝐴 = (𝐴1, . . . , 𝐴𝑘 ) and 𝐵 = (𝐵1, . . . , 𝐵𝑘 ), we define𝑇𝐴,𝐵 = { 𝜋 ∈ 𝑆𝑛 |𝜋(𝐴𝑖) = 𝐵𝑖 ∀𝑖 = 1, . . . , 𝑘}
and refer to any such 𝑇𝐴,𝐵 as a 𝜆-coset.

With these notations, we may define the space 𝑉𝜆(𝑆𝑛), which is the linear span of the indicator
functions of all 𝜆-cosets. We note that 𝑉𝜆(𝑆𝑛) is clearly a left 𝑆𝑛-module, where the action of 𝑆𝑛 is
given as 𝜋 𝑓 : 𝑆𝑛 → R defined by 𝜋 𝑓 (𝜎) = 𝑓 (𝜋𝜎).

Next, we need to define an ordering on partitions that will let us further refine the spaces 𝑉𝜆.

Definition 7.1. Let 𝜆 = (𝜆1, . . . , 𝜆𝑘 ), 𝜇 = (𝜇1, . . . , 𝜇𝑠) be partitions of [𝑛]. We say that 𝜆 dominates 𝜇

and denote 𝜆 � 𝜇, if for all 𝑗 = 1, . . . , 𝑘 , it holds that
𝑗∑

𝑖=1
𝜆𝑖 �

𝑗∑
𝑖=1

𝜇𝑖 .
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With this definition, one may easily show that 𝑉𝜇 ⊆ 𝑉𝜆 whenever 𝜇 � 𝜆, and furthermore that
𝑉𝜇 = 𝑉𝜆 if and only if 𝜇 = 𝜆. It thus makes sense to define the spaces

𝑉=𝜆 = 𝑉𝜆 ∩
⋂
𝜇�𝜆

𝑉⊥
𝜇 .

The spaces 𝑉=𝜆 are orthogonal, and their direct sum is { 𝑓 : 𝑆𝑛 → R}, so we may write any function
𝑓 : 𝑆𝑛 → R as 𝑓 =

∑
𝜆�𝑛

𝑓 =𝜆 in a unique way.

Definition 7.2. Let 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) be a partition of n. The transpose partition, 𝜆𝑡 , is (𝜇1, . . . , 𝜇𝑘′ ),
where 𝑘 ′ = 𝜆1 and 𝜇 𝑗 = |{ 𝑖 |𝜆𝑖 � 𝑗}|.

Alternatively, if we think of a partition as represented by top-left justified rows, then the transpose of a
partition is obtained by reflecting the diagram across the main diagonal. For example, (3, 1)𝑡 = (2, 1, 1):

(3, 1) = (2, 1, 1) =

There are two partitions that are very easy to understand: 𝜆 = (𝑛) and its transpose, 𝜆 = (1𝑡 ). For
𝜆 = (𝑛), the space𝑉=𝜆 consists of constant functions, and one has 𝜒𝜆 = 1. Thus, 𝑓 =(𝑛) is just the average
of f (i.e., 𝜇( 𝑓 ) def

= E𝜋 [ 𝑓 (𝜋)]). For 𝜆 = (1𝑛), the space 𝑉=𝜆 consists of multiples of the sign function of
permutations, sign : 𝑆𝑛 → {−1, 1} and 𝜒𝜆 = sign. One therefore has 𝑓 =𝜆 = 〈 𝑓 , sign〉sign.

For general partitions 𝜆, it is well known that the dimensions of 𝜆 and 𝜆𝑡 are equal, and one has that
𝜒𝜆𝑡 = sign · 𝜒𝜆. We will need the following statement that generalises this correspondence to 𝑓 =𝜆 and
𝑓 =𝜆

𝑡 .
Lemma 7.3. Let 𝑓 : 𝑆𝑛 → R and let 𝜆 � 𝑛. Then ( 𝑓 · sign)=𝜆 = 𝑓 =𝜆

𝑡 sign.
Proof. The statement follows directly from the inversion formula for 𝑓 =𝜆, which states that 𝑓 =𝜆(𝜋) =
dim(𝜆)E𝜎∈𝑆𝑛

[
𝑓 (𝜎)𝜒𝜆(𝜋𝜎−1)

]
. By change of variables, we see that

( 𝑓 · sign)=𝜆(𝜋)
= dim(𝜆) E

𝜎∈𝑆𝑛

[
𝑓 (𝜎−1𝜋)sign(𝜎−1𝜋)𝜒𝜆(𝜎)

]
= sign(𝜋)dim(𝜆) E

𝜎∈𝑆𝑛

[
𝑓 (𝜎−1𝜋)sign(𝜎)𝜒𝜆(𝜎)

]
,

where we used the fact that sign is multiplicative and sign(𝜎−1) = sign(𝜎). Now, as sign(𝜎)𝜒𝜆(𝜎) =
𝜒𝜆𝑡 (𝜎), we get by changing variables again that

( 𝑓 · sign)=𝜆(𝜋) = sign(𝜋)dim(𝜆) E
𝜎∈𝑆𝑛

[
𝑓 (𝜎)𝜒𝜆𝑡 (𝜋𝜎−1)

]
= sign(𝜋)dim(𝜆𝑡 ) E

𝜎∈𝑆𝑛

[
𝑓 (𝜎)𝜒𝜆𝑡 (𝜋𝜎−1)

]
,

which is equal to sign(𝜋) 𝑓 =𝜆𝑡 (𝜋) by the inversion formula. �

Lastly, we remark that if 𝜆 is a partition such that 𝜆 = 𝑛− 𝑘 , then𝑉=𝜆 ⊆ 𝑉𝑘 . It follows by Parseval that∑
𝜆�𝑛

𝜆1=𝑛−𝑘

�� 𝑓 =𝜆��2
2 �

�� 𝑓 �𝑘��2
2. (14)

7.2.2. The eigenvalues of 𝑇∗
𝐹𝑇𝐹

Claim 7.4. For all 𝜆 � 𝑛, we have that 𝑇𝐹𝑉=𝜆 ⊆ 𝑉=𝜆; the same holds for 𝑇∗
𝐹 .

Proof. First, we show that 𝑇𝐹𝑉𝜆 ⊆ 𝑉𝜆, and for that, it is enough to show that 𝑇𝐹1𝑇𝐴,𝐵 ∈ 𝑉𝜆 for all
𝜆-tabloids 𝐴 = (𝐴1, . . . , 𝐴𝑘 ) and 𝐵 = (𝐵1, . . . , 𝐵𝑘 ). Fix 𝑎 ∈ 𝐹 and note that 1𝑇𝐴,𝐵 (𝜎𝑎) = 1𝑇𝑎 (𝐴) ,𝐵 (𝜎),
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where 𝑎(𝐴) = (𝑎(𝐴1), . . . , 𝑎(𝐴𝑘 )), so 1𝑇𝐴,𝐵 (𝜎𝑎), as a function of 𝜎, is also an indicator of a 𝜆-coset.
Since𝑇𝐹1𝑇𝐴,𝐵 is a linear combination of such functions, it follows that𝑇𝐹1𝑇𝐴,𝐵 ∈ 𝑉𝜆. A similar argument
shows that the same holds for the adjoint operator of 𝑇∗

𝐹 = 𝑇𝐹−1 , where 𝐹−1 =
{
𝑎−1

��𝑎 ∈ 𝐹
}
.

Thus, for 𝑓 ∈ 𝑉=𝜆, we automatically have that 𝑓 ∈ 𝑉𝜆, and we next show orthogonality to 𝑉𝜇
for all 𝜇 ⊲ 𝜆. Indeed, let 𝜇 be such partition and let 𝑔 ∈ 𝑉𝜇; then by the above, 𝑇∗

𝐹𝑔 ∈ 𝑉𝜇 and so
〈𝑇𝐹 𝑓 , 𝑔〉 = 〈 𝑓 , 𝑇∗

𝐹𝑔〉 = 0, and the proof is complete. The argument for 𝑇∗
𝐹 is analogous. �

Thus, we may find a basis of each𝑉=𝜆 consisting of eigenvectors of𝑇∗
𝐹𝑇𝐹 . The following claim shows

that the multiplicity of each corresponding eigenvalue is at least dim(𝜆).

Claim 7.5. Let 𝑓 ∈ 𝑉=𝜆 (𝑆𝑛) be nonzero. Then dim(Span({𝜋 𝑓 }𝜋∈𝑆𝑛 )) � dim(𝜆).

Proof. Let 𝜌𝜆 : 𝑆𝑛 → 𝑉=𝜆 be a representation and denote by W the span of
{
𝜋 𝑓

}
𝜋∈𝑆𝑛 . Note that W

is a subspace of 𝑉=𝜆, and it holds that (𝜌 |𝑊 ,𝑊) is a sub-representation of 𝜌. Since each irreducible
representation 𝑉 ⊆ 𝑉=𝜆 of 𝑆𝑛 has dimension dim(𝜆), it follows that dim(𝑊) � dim(𝜆), and we are
done. �

We can thus use the trace method to bound the magnitude of each eigenvalue.

Lemma 7.6. Let 𝑓 ∈ 𝑉=𝜆 be an eigenvector of 𝑇∗
𝐹𝑇𝐹 with eigenvalue 𝛼𝜆. Then

𝛼𝜆 �
1

dim(𝜆)𝛿 .

Proof. By Claim 7.5, we may find a collection of dim(𝜆) permutations and call it Π, such that
{
𝜋 𝑓

}
𝜋∈Π

is linearly independent. Since f is an eigenvector of𝑇∗
𝐹𝑇𝐹 , it follows that each one of 𝜋 𝑓 is an eigenvector

with eigenvalue 𝛼𝜆. It follows that Tr(𝑇∗
𝐹𝑇𝐹 ) � |Π |𝛼𝜆 = dim(𝜆)𝛼𝜆.

However, interpreting Tr(𝑇∗
𝐹𝑇𝐹 ) probabilistically as the probability to return to the starting vertex in

2-steps,

Tr(𝑇∗
𝐹𝑇𝐹 ) =

∑
𝜋

Pr
𝑎1∈𝐹−1 ,𝑎2∈𝐹

[𝜋 = 𝜋𝑎1𝑎2] = 𝑛! Pr
𝑎1∈𝐹−1 ,𝑎2∈𝐹

[
𝑎2 = 𝑎−1

1
]
= 𝑛!

1
|𝐹 | =

1
𝛿
.

Combining the two bounds on Tr(𝑇∗
𝐹𝑇𝐹 ) completes the proof. �

To use this lemma effectively, we have the following bound on dim(𝜆) that follows from the hook
length formula.

Lemma 7.7 (Claim 1, Theorem 19 in [7]). Let 𝜆 � 𝑛 be given as 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) and denote
𝑑 = min(𝑛 − 𝜆1, 𝑘).

1. If 𝑑 = 0, then dim(𝜆) = 1.
2. If 𝑑 > 0, then dim(𝜆) �

(
𝑛
𝑑 ·𝑒

)𝑑 .
3. If 𝑑 > 𝑛/10, then dim(𝜆) � 1.05𝑛.

7.2.3. Applying Hoffman’s bound
With the information we have gathered regarding the representation theory of 𝑆𝑛 and the eigenvalues of
𝑇𝐹 , we can use the spectral method to prove lower bounds on 〈𝑇𝐹𝑔, ℎ〉 for Boolean functions 𝑔, ℎ that
are global, as in the following lemma.

Lemma 7.8. There exists 𝐶 > 0 such that the following holds. Let 𝑛 ∈ N and 𝜀 > 0 be such that
𝑛 � log(1/𝜀)𝐶 and suppose that 𝑔, ℎ : 𝐴𝑛 → {0, 1} are (6, 𝜀)-global. Then

〈𝑇𝐹𝑔, ℎ〉 �
E[𝑔] E[ℎ]

2
− 𝐶

𝜀4 log𝐶 (1/𝜀)
√
𝑛𝛿

− 𝐶
√
𝑛4𝛿

√
E[𝑔] E[ℎ] .
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Proof. Extend 𝑔, ℎ to 𝑆𝑛 by defining them to be 0 outside 𝐴𝑛.
Recall that 𝑇𝐹 preserves each 𝑉=𝜆. Decomposing 𝑔 =

∑
𝜆�𝑛 𝑔

=𝜆 where 𝑔=𝜆 ∈ 𝑉=𝜆 and h similarly,
we have by Plancherel that 〈𝑇𝐹𝑔, ℎ〉 =

∑
𝜆,𝜃

〈𝑇𝐹𝑔=𝜆, ℎ=𝜆〉. For the trivial partition 𝜆 = (𝑛), we have that

𝑔=𝜆 ≡ 𝜇(𝑔) = E[𝑔]/2, ℎ=𝜆 ≡ 𝜇(ℎ) = E[ℎ]/2. For 𝜆 = (1𝑛), since 𝐹 ⊆ 𝐴𝑛, it follows that𝑇𝐹sign = sign,
and so 𝑇𝐹𝑔=𝜆 = 𝜇( 𝑓 )sign, ℎ=𝜆 = 𝜇(𝑔)sign. Thus, denoting 𝜆 = (𝜆1, . . . , 𝜆𝑘 ), we have that

〈𝑇𝐹𝑔, ℎ〉 � 2𝜇(𝑔)𝜇(ℎ) −
∑
𝜆�𝑛

𝜆≠(𝑛) , (1𝑛)
𝜆1�𝑛−3 or 𝑘�𝑛−3

��𝑇𝐹𝑔=𝜆��2

��ℎ=𝜆��2 −
∑

𝜆≠(𝑛) , (1𝑛)
𝜆1�𝑛−4 and 𝑘�𝑛−4

��𝑇𝐹𝑔=𝜆��2

��ℎ=𝜆��2. (15)

We upper-bound the second and third terms on the right-hand side, from which the lemma follows. We
begin with the second term and handle separately 𝜆’s such that 𝜆1 � 𝑛 − 3 and 𝜆’s such that 𝑘 � 𝑛 − 3.

𝜆’s such that 𝜆 ≠ (𝑛), (1𝑛) and 𝜆1 � 𝑛 − 3.
We first upper-bound

��𝑇𝐹𝑔=𝜆��2. As 𝑇∗
𝐹𝑇𝐹 preserves each space 𝑉=𝜆 and is symmetric, we may write

this space as a sum of eigenspaces of 𝑇∗
𝐹𝑇𝐹 , say

⊕
𝜃 𝑉

𝜃
=𝜆. Writing 𝑔=𝜆 =

∑
𝜃 𝑔

=𝜆,𝜃 where 𝑔=𝜆,𝜃 ∈ 𝑉 𝜃
=𝜆,

we have that ��𝑇𝐹𝑔=𝜆��2
2 = 〈𝑔=𝜆, 𝑇∗

𝐹𝑇𝐹𝑔
=𝜆〉 =

∑
𝜃

〈𝑔=𝜆,𝜃 , 𝑇∗
𝐹𝑇𝐹𝑔

=𝜆,𝜃 〉 =
∑
𝜃

𝜃
��𝑔=𝜆,𝜃��2

2.

By Lemma 7.6, we have 𝜃 � 1
dim(𝜆) 𝛿 , which by Fact 7.7 is at most 𝑂

(
1
𝑛𝛿

)
. We thus get that

��𝑇𝐹𝑔=𝜆��2
2 � 𝑂

(
1
𝑛𝛿

) ∑
𝜃

��𝑔=𝜆,𝜃��2
2 � 𝑂

(
1
𝑛𝛿

)��𝑔=𝜆��2
2.

Plugging this into the second sum in (15), we get that the contribution from 𝜆 such that 𝜆1 � 𝑛 − 3 is at
most

𝑂

(
1

√
𝑛𝛿

) ∑
𝜆�𝑛

𝜆≠(𝑛) , (1𝑛)
𝜆1�𝑛−3

��𝑔=𝜆��2

��ℎ=𝜆��2 � 𝑂
(

1
√
𝑛𝛿

)��𝑔�3��
2

��ℎ�3��
2,

where we used Cauchy-Schwarz and (14). By Theorem 1.6,
��𝑔�3

��2
2,
��ℎ�3

��2
2 � 𝐶 ·𝜀4 log𝐶 (1/𝜀) for some

absolute constant C. We thus get that∑
𝜆�𝑛

𝜆≠(𝑛) , (1𝑛)
𝜆1�𝑛−3

��𝑇𝐹𝑔=𝜆��2

��ℎ=𝜆��2 �
1

√
𝑛𝛿

𝐶 ′ · 𝜀4 log𝐶 (1/𝜀).

𝜆’s such that 𝑘 � 𝑛 − 3.
The treatment here is pretty much identical to the previous case, except that we look at the functions

�̃� = 𝑔 · sign and ℎ̃ = ℎ · sign. That is, first note that the globalness of 𝑔, ℎ implies that �̃�, ℎ̃ are also global
with the same parameters, and since 𝑔, ℎ are Boolean, �̃�, ℎ̃ are integer valued. Moreover, by Lemma 7.3,
we have that∑

𝜆�𝑛
𝜆≠(𝑛) , (1𝑛)
𝑘�𝑛−3

��𝑇𝐹𝑔=𝜆��2

��ℎ=𝜆��2 =
∑
𝜆�𝑛

𝜆≠(𝑛) , (1𝑛)
𝑘�𝑛−3

���𝑇𝐹 �̃�=𝜆𝑡 ���
2

���ℎ̃=𝜆𝑡 ���
2
=

∑
𝜆�𝑛

𝜆≠(𝑛) , (1𝑛)
𝜆1�𝑛−3

��𝑇𝐹 �̃�𝜆��2

��ℎ̃𝜆��2,

and from here, the argument is identical.
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Bounding the third term in (15).
Repeating the eigenspace argument from above, for all 𝜆 � 𝑛 such that 𝜆1 � 𝑛 − 4 and 𝑘 � 𝑛 − 4, we

have ��𝑇𝐹𝑔=𝜆��2 � 𝑂
(

1
√
𝑛4𝛿

)��𝑔=𝜆��2.

Thus, the third sum in (15) is at most

𝑂

(
1

√
𝑛4𝛿

) ∑
𝜆�𝑛

��𝑔=𝜆��2

��ℎ=𝜆��2 � 𝑂
(

1
√
𝑛4𝛿

)
‖𝑔‖2‖ℎ‖2,

where we used Cauchy–Schwarz and Parseval. �

We can now prove the strengthening of Theorem 1.8, stated below.

Corollary 7.9. There exists 𝐾 ∈ N such that the following holds for all 𝜀 > 0 and 𝑛 � log𝐾 (1/𝜀). If
A,B ⊆ 𝐴𝑛 are (6, 𝜀)-global, and 𝜇(A)𝜇(B) � 𝐾 max(𝑛−4𝛿−1, (𝑛𝛿)−1/2𝜀4 log𝐾 (1/𝜀)), then

〈𝑇𝐹𝑔, ℎ〉 �
1
3
𝜇(A)𝜇(B).

Proof. Taking 𝑔 = 1A, ℎ = 1B, by Lemma 7.8, we have

〈𝑇𝐹𝑔, ℎ〉 �
1
2
𝜇(A)𝜇(B) − 𝐶 ′ 𝜀

4 log𝐶
′ (1/𝜀)

√
𝑛𝛿

− 𝐶 ′

𝑛2
√
𝛿

√
𝜇(A)𝜇(B),

where 𝐶 ′ is an absolute constants. Now the conditions on the parameters implies that the first term
dominates the other two. �

We note that Theorem 1.8 immediately follows since there one has 𝑔 = ℎ = 1𝐹 and 〈𝑇𝐹𝑔, ℎ〉 = 0, so
one gets that the condition on the parameters fail, and therefore, the lower bound on 𝜇(A)𝜇(B) (which
in this case is just 𝛿2) fails; plugging in 𝜀 = 𝐶 ·

√
𝛿 and rearranging finishes the proof.

7.2.4. Improving on Theorem 1.8?
We remark that it is within reason to expect that global, product-free families in 𝐴𝑛 must in fact be much
smaller. To be more precise, one may expect that for all 𝑡 ∈ N, there is 𝑗 ∈ N such that for 𝑛 � 𝑛0 (𝑡), if
F is ( 𝑗 , 𝑂 (

√
𝛿))-global (where 𝛿 = |𝐹 |/|𝑆𝑛 |), then 𝛿 � 𝑂𝑡 (𝑛−𝑡 ). The bottleneck in our approach comes

from the use of the trace method (which does not use the globalness of F at all) and the bounds it gives
on the eigenvalues of 𝑇∗

𝐹𝑇𝐹 corresponding to low-degree functions: they become meaningless as soon
as 𝛿 � 1/𝑛.

Inspecting the above proof, our approach only requires a super-logarithmic upper bound on the
eigenvalues to go through. More precisely, we need that the first few nontrivial eigenvalues of 𝑇∗

𝐹𝑇𝐹 are
at most (log 𝑛)−𝐾 (𝑡) , for sufficiently large 𝐾 (𝑡). We feel that something like that should follow in greater
generality from the fact that the set of generators in the Cayley graph (namely, F) is global. To support
that, note that if we were dealing with Abelian groups, then the eigenvalue 𝛼 of 𝑇𝐹 corresponding to a
character 𝜒 could be computed as 𝜆 = 1

|𝐹 |
∑
𝑎∈𝐹

𝜒(𝑎), which by rewriting is nothing but a (normalised)

Fourier coefficient of F (i.e., 1
𝛿 1̂𝐹 (𝜒)), which we expect to be small by the globalness of F.

7.3. Isoperimetric inequalities in the transpositions Cayley graph

In this section, we consider T, which is the adjacency operator of the transpositions graph. That is, it
is the transition matrix of the (left) Cayley graph (𝑆𝑛, 𝐴), where A is the set of transpositions (and the
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multiplication happens from the left). We show that for a global set S, starting a walk from a vertex in S
and performing ≈ 𝑐𝑛 steps according to T escapes S with probability close to 1.

Poisson process random walk.
To be more precise, we consider the following random walk: from a permutation 𝜋 ∈ 𝑆, choose a

number 𝑘 ∼ Poisson(𝑡), take 𝜏 which is a product of k random transpositions, and go to 𝜎 = 𝜏 ◦ 𝜋. We
show that starting with a random 𝜋 ∈ 𝑆, the probability that we escape S (i.e., that 𝑆𝜎 ∉ 𝑆) is close to 1.

To prove this result, we first note that the distribution of an outgoing neighbour from 𝜋 is exactly
𝑒−𝑡 (𝐼−T)1𝜋 , where 1𝜋 is the indicator vector of 𝜋. Therefore, the distribution of 𝜎 where 𝜋 ∈ 𝑆 is
random is 𝑒−𝑡 (𝐼−T) 1𝑆

|𝑆 | , where 1𝑆 is the indicator vector of S. Thus, the probability that 𝜎 is in S (i.e., of
the complementary event) is

1
𝜇(𝑆) 〈1𝑆 , 𝑒

−𝑡 (𝐼−T)1𝑆〉,

where 𝜇(𝑆) is the measure of S. We upper-bound this quantity using spectral considerations. We will
only need our hypercontractive inequality and basic knowledge of the eigenvalues of T, which can be
found, for example, in [10, Corollary 21]. This is the content of the first three items in the lemma below
(we also prove a fourth item, which will be useful for us later on).
Lemma 7.10. Let 𝜆 ∈ R be an eigenvalue of T and 𝑓 ∈ 𝑉𝑑 (𝑆𝑛) be a corresponding eigenvector.
1. T𝑉=𝑑 (𝑆𝑛) ⊆ 𝑉=𝑑 (𝑆𝑛).
2. 1 − 2𝑑

𝑛−1 � 𝜆 � 1 − 𝑑
𝑛−1 .

3. If 𝑑 � 𝑛/2, then we have the stronger bound 1 − 2𝑑
𝑛−1 � 𝜆 � 1 −

(
1 − 𝑑−1

𝑛

)
2𝑑
𝑛−1 .

4. If L is a Laplacian of order 1, then L and T commute. Thus, T commutes with all Laplacians.
Proof. For the first item, we first note that T commutes with the right action of 𝑆𝑛 on functions:

(T( 𝑓 𝜋)) (𝜎) = E
𝜋′ a transposition

[ 𝑓 𝜋 (𝜋′ ◦ 𝜎)] = E
𝜋′ a transposition

[ 𝑓 (𝜋′ ◦ 𝜎 ◦ 𝜋)] = T 𝑓 (𝜎 ◦ 𝜋) = (T 𝑓 ) 𝜋 (𝜎).

Also, T is self adjoint, so T∗ also commutes with the action of 𝑆𝑛. The first item now follows as in the
proof of Claim 7.4.

The second and third items are exactly [10, Corollary 21]. For the last item, for any function f and
an order 1 Laplacian L = L(𝑖, 𝑗) ,

TL 𝑓 = T
(
𝑓 − 𝑓 (𝑖, 𝑗)

)
= T 𝑓 − T

(
𝑓 (𝑖, 𝑗)

)
= T 𝑓 − (T 𝑓 ) (𝑖, 𝑗) = L(T 𝑓 ),

where in the third transition we used the fact that T commutes with the right action of 𝑆𝑛. �

We remark that the first item above implies that we may find a basis of the space of real-valued
functions consisting of eigenvectors of T, where each function is from 𝑉=𝑑 (𝑆𝑛) for some d. Lastly, we
need the following (straightforward) fact.
Fact 7.11. If 𝑓 ∈ 𝑉𝑑 (𝑆𝑛) is an eigenvector of T with eigenvalue 𝜆, then f is an eigenvector of 𝑒−𝑡 (𝐼−T)

with eigenvalue 𝑒−𝑡 (1−𝜆) .
Theorem 7.12. There exists 𝐶 > 0 such that the following holds for all 𝑑 ∈ N, 𝑡, 𝜀 > 0 and 𝑛 ∈ N such
that 𝑛 � 2𝐶 ·𝑑3 log𝐶 ·𝑑 (1/𝜀). If 𝑆 ⊆ 𝑆𝑛 is a set of vertices such that 1𝑆 is (2𝑑, 𝜀)-global, then

Pr
𝜋∈𝑆

𝜎∼𝑒−𝑡 (𝐼−𝑇 ) 𝜋

[𝜎 ∉ 𝑆] � 1 −
(
2𝐶 ·𝑑4

𝜀 log𝐶 ·𝑑 (1/𝜀) + 𝑒−
(𝑑+1)𝑡
𝑛−1

)
.

Proof. Consider the complementary event that 𝜎 ∈ 𝑆 and note that the desired probability can be
written analytically as 1

𝜇 (𝑆) 〈1𝑆 , 𝑒
−𝑡 (𝐼−T)1𝑆〉, where 𝜇(𝑆) is the measure of S. Now, writing 𝑓 = 1𝑆
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and expanding 𝑓 = 𝑓=0 + 𝑓=1 + · · · , we consider each one of 𝑒−𝑡 (𝐼−T) 𝑓 = 𝑗 separately. We claim
that ���𝑒−𝑡 (𝐼−T) 𝑓 = 𝑗

���
2
� 𝑒−

𝑗𝑡
𝑛−1

�� 𝑓 = 𝑗��2. (16)

Indeed, note that we may write 𝑓 = 𝑗 =
∑
𝑎𝑟 𝑓 𝑗 ,𝑟 , where 𝑓 𝑗 ,𝑟 ∈ 𝑉= 𝑗 (𝑆𝑛) are orthogonal and eigenvectors

of T with eigenvalue 𝜆 𝑗 ,𝑟 , and so by Fact 7.11, 𝑒−𝑡 (𝐼−T) 𝑓 = 𝑗 =
∑
𝑟
𝑒−𝑡 (1−𝜆 𝑗,𝑟 ) 𝑓 𝑗 ,𝑟 . By Parseval, we deduce

that ���𝑒−𝑡 (𝐼−T) 𝑓 = 𝑗
���2

2
�

∑
𝑟

𝑒−𝑡 (1−𝜆 𝑗,𝑟 )
�� 𝑓 𝑗 ,𝑟��2

2 � max
𝑟

𝑒−𝑡 (1−𝜆 𝑗,𝑟 )
∑
𝑟

�� 𝑓 𝑗 ,𝑟��2
2 = max

𝑟
𝑒−𝑡 (1−𝜆 𝑗,𝑟 )

�� 𝑓 = 𝑗��2
2.

Inequality (16) now follows from the second item in Lemma 7.10.
We now expand out the expression we have for the probability of the complementary event using

Plancherel:

1
𝜇(𝑆) 〈1𝑆 , 𝑒

−𝑡 (𝐼−T)1𝑆〉 =
1

𝜇(𝑆)
∑
𝑗

〈 𝑓 = 𝑗 , 𝑒−𝑡 (𝐼−T) 𝑓 = 𝑗〉 � 1
𝜇(𝑆)

∑
𝑗

�� 𝑓 = 𝑗��2

���𝑒−𝑡 (𝐼−T) 𝑓 = 𝑗
���

2

�
1

𝜇(𝑆)
∑
𝑗

𝑒−
𝑗𝑡
𝑛−1

�� 𝑓 = 𝑗��2
2, (17)

where in the last two transitions we used Cauchy–Schwarz and inequality (16). Lastly, we bound
�� 𝑓 = 𝑗��2

2.
For 𝑗 > 𝑑, we have that

∑
𝑗>𝑑

�� 𝑓 = 𝑗��2
2 � 𝜇(𝑆) by Parseval, and for 𝑗 � 𝑑, we use hypercontractivity.

First, bound
�� 𝑓 = 𝑗��2 �

�� 𝑓 � 𝑗��2 and note that the function 𝑓 � 𝑗 is (2 𝑗 , 2𝑂 ( 𝑗4)𝜀2 log𝑂 ( 𝑗) (1/𝜀))-global
by Claim A.1. Thus, using Hölder’s inequality and Theorem 1.4, we get that

�� 𝑓 � 𝑗��2
2 = 〈 𝑓 , 𝑓 � 𝑗〉 � ‖ 𝑓 ‖4/3

�� 𝑓 � 𝑗��4 � 𝜇(𝑆)3/42𝑂 ( 𝑗3)
√

2𝑂 ( 𝑗4)𝜀2 log𝑂 ( 𝑗) (1/𝜀)
�� 𝑓 � 𝑗��1/2

2 .

Rearranging gives
�� 𝑓 � 𝑗��2

2 � 2𝑂 ( 𝑗4)𝜇(𝑆)𝜀 log𝑂 ( 𝑗) (1/𝜀).
Plugging our estimates into (17), we get

1
𝜇(𝑆) 〈1𝑆 , 𝑒

−𝑡 (𝐼−T)1𝑆〉 �
𝑑∑
𝑗=0

2𝑂 ( 𝑗4)𝑒−
𝑗𝑡
𝑛−1 𝜀 log𝑂 ( 𝑗) (1/𝜀) + 𝑒−

(𝑑+1)𝑡
𝑛−1 � 2𝑂 (𝑑4)𝜀 log𝑂 (𝑑) (1/𝜀) + 𝑒−

(𝑑+1)𝑡
𝑛−1 .

�

Using exactly the same technique, one can prove a lower bound on the probability of escaping a
global set in a single step, as stated below. This result is similar in spirit to a variant of the KKL Theorem
over the Boolean hypercube [15], and therefore, we modify the formulation slightly. Given a function
𝑓 : 𝑆𝑛 → R, we define the influence of coordinate 𝑖 ∈ [𝑛] to be

𝐼𝑖 [ 𝑓 ] = E
𝑗≠𝑖

[��𝐿 (𝑖, 𝑗) 𝑓
��2

2

]
and define the total influence of f to be 𝐼 [ 𝑓 ] = 𝐼1 [ 𝑓 ] + · · · + 𝐼𝑛 [ 𝑓 ].
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Theorem 7.13. There exists 𝐶 > 0 such that the following holds for all 𝑑 ∈ N and 𝑛 ∈ N such that
𝑛 � 2𝐶 ·𝑑3 . Suppose 𝑆 ⊆ 𝑆𝑛 is such that for all derivative operators D ≠ 𝐼 of order at most d, it holds
that ‖D1𝑆 ‖2 � 2−𝐶 ·𝑑4 . Then

𝐼 [1𝑆] �
1
4
𝑑 · var(1𝑆).

Proof. Deferred to Appendix A. �

7.4. Deducing results for the multi-cube

Our hypercontractive inequalities also imply similar hypercontractive inequalities on differ-
ent non-product domains. One example from [3] is the domain of 2-to-1 maps (i.e.,{
𝜋 : [2𝑛] → [𝑛] |

��𝜋−1(𝑖)
�� = 2 ∀𝑖 ∈ [𝑛]

}
). A more general domain, which we consider below, is the

multi-slice.

Definition 7.14. Let 𝑚, 𝑛 ∈ N such that 𝑛 � 𝑚 and let 𝑘1, . . . , 𝑘𝑚 ∈ N sum up to n. The multi-slice
U𝑘1 ,...,𝑘𝑚 of dimension n consists of all vectors 𝑥 ∈ [𝑚]𝑛 that, for all 𝑗 ∈ [𝑚], have exactly 𝑘 𝑗 of their
coordinates equal to j.

We consider the multi-slice as a probability space with the uniform measure.

In exactly the same way one defines the degree decomposition over 𝑆𝑛, one may consider the degree
decomposition over the mutli-slice. A function 𝑓 : U𝑘1 ,...,𝑘𝑚 → R is said to be a d-junta if there are
𝐴 ⊆ [𝑛] of size at most d and 𝑔 : [𝑚]𝑑 → R such that 𝑓 (𝑥) = 𝑔(𝑥𝐴). We then define the space
𝑉𝑑 (U𝑘1 ,...,𝑘𝑚 ) spanned by d-juntas. Also, one may analogously define globalness of functions over the
multi-slice. A d-restriction consists of a set 𝐴 ⊆ [𝑛] of size d and 𝛼 ∈ [𝑚]𝐴, and the corresponding
restriction is the function 𝑓𝐴→𝛼 (𝑧) = 𝑓 (𝑥𝐴 = 𝛼, 𝑥 �̄� = 𝑧) (whose domain is a different multi-slice).

Definition 7.15. We say 𝑓 : U𝑘1 ,...,𝑘𝑚 → R is (𝑑, 𝜀)-global if for any d-restriction (𝐴, 𝛼), it holds that
‖ 𝑓𝐴→𝛼‖2 � 𝜀.

7.4.1. Hypercontractivity
Our hypercontractive inequality for the multi-slice reads as follows.

Theorem 7.16. There exists an absolute constant 𝐶 > 0 such that the following holds. Let 𝑑, 𝑞, 𝑛 ∈ N
be such that 𝑛 � 𝑞𝐶 ·𝑑2 and let 𝑓 ∈ 𝑉𝑑 (U𝑘1 ,...,𝑘𝑚 ). If f is (2𝑑, 𝜀)-global, then

‖ 𝑓 ‖𝑞 � 𝑞𝑂(𝑑3)𝜀
𝑞−2
𝑞 ‖ 𝑓 ‖

2
𝑞

2 .

Proof. We construct a simple deterministic coupling C between 𝑆𝑛 and U𝑘1 ,...,𝑘𝑚 .
Fix a partition of [𝑛] into sets 𝐾1, . . . , 𝐾𝑚 such that

��𝐾 𝑗

�� = 𝑘 𝑗 for all j. Given a permutation 𝜋, we
define C (𝜋) = 𝑥 as follows: for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], we set 𝑥𝑖 = 𝑗 if 𝜋(𝑖) ∈ 𝐾 𝑗 . Define the mapping
𝑀 : 𝐿2 (U𝑘1 ,...,𝑘𝑚 ) → 𝐿2 (𝑆𝑛) that maps a function ℎ : U𝑘1 ,...,𝑘𝑚 → R to 𝑀ℎ : 𝑆𝑛 → R defined by
(𝑀ℎ) (𝜋) = ℎ(C (𝜋)).

Let 𝑔 = 𝑀 𝑓 . We claim that g has degree at most d and is global. To see that 𝑔 ∈ 𝑉𝑑 (𝑆𝑛), it is enough
to show that the mapping 𝑓 → 𝑔 is linear (which is clear) and maps a d-junta into a d-junta, which is
also straightforward. To see that g is global, let 𝑇 = {(𝑖1, 𝑟1), . . . , (𝑖ℓ , 𝑟ℓ)} be consistent and define the
r-restriction (𝐴, 𝛼) as 𝐴 = {𝑖1, . . . , 𝑖ℓ }, and 𝛼𝑖𝑠 = 𝑗 if 𝑟𝑠 ∈ 𝐾 𝑗 . Note that the distribution of 𝑥 ∈ U𝑘1 ,...,𝑘𝑚

conditioned on 𝑥𝐴 is exactly the same as of C (𝜋) conditioned on 𝜋 respecting T, so if 𝑟 � 2𝑑, we get that

‖𝑔𝐴→𝛼‖2 = ‖ 𝑓→𝑇 ‖2 � 𝜀,

and g is (2𝑑, 𝜀)-global. The result thus follows from Theorem 1.4 and the fact that M preserves 𝐿𝑝

norms for all 𝑝 � 1. �
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The coupling in the proof of Theorem 7.16 also implies in the same way a level-d inequality over
U𝑘1 ,...,𝑘𝑚 from the corresponding result in 𝑆𝑛, Theorem 1.6, as well as isoperimetric inequalities, as we
describe next.

7.4.2. Level-d inequality
As on 𝑆𝑛, for 𝑓 : U𝑘1 ,...,𝑘𝑚 → R, we let 𝑓 �𝑑 be the projection of f onto 𝑉𝑑 (U𝑘1 ,...,𝑘𝑚 ). Our level-d
inequality for the multi-slice thus reads as follows:

Corollary 7.17. There exists an absolute constant 𝐶 > 0 such that the following holds. Let 𝑑, 𝑛 ∈ N
and 𝜀 > 0 such that 𝑛 � 2𝐶𝑑3 log(1/𝜀)𝐶𝑑 . If 𝑓 : U𝑘1 ,...,𝑘𝑚 → {0, 1} is (2𝑑, 𝜀)-global, then

�� 𝑓 �𝑑��2
2 �

2𝐶 ·𝑑4
𝜀4 log𝐶 ·𝑑 (1/𝜀).

Proof. The proof relies on an additional easy property of the mapping M from the proof of Theorem
7.16. As in 𝑆𝑛, we define the space of pure degree d functions over U𝑘1 ,...,𝑘𝑚 as 𝑉=𝑑 (U𝑘1 ,...,𝑘𝑚 ) =
𝑉𝑑 (U𝑘1 ,...,𝑘𝑚 ) ∩ 𝑉𝑑−1(U𝑘1 ,...,𝑘𝑚 )⊥ and let 𝑓 =𝑑 be the projection of f onto 𝑉=𝑑 (U𝑘1 ,...,𝑘𝑚 ). We thus have
𝑓 �𝑑 = 𝑓 =0 + 𝑓 =1 + · · · + 𝑓 =𝑑 , and so 𝑓 =𝑑 = 𝑓 �𝑑 − 𝑓 �𝑑−1.

Write ℎ𝑖 = 𝑀 𝑓 =𝑖 and note that ℎ𝑖 is of degree at most i. Also, we note that as restrictions of size 𝑟 < 𝑖
over 𝑆𝑛 are mapped to restrictions of size r over U𝑘1 ,...,𝑘𝑚 , it follows that ℎ𝑖 is perpendicular to degree
𝑖 − 1 functions, and so ℎ𝑖 ∈ 𝑉=𝑖 (𝑆𝑛). By linearity of M, 𝑀 𝑓 = ℎ0 + ℎ1 + · · · + ℎ𝑛, and by uniqueness of
the pure degree decomposition, it follows that ℎ𝑖 = (𝑀 𝑓 )=𝑖 . We therefore have that�� 𝑓 �𝑑��2

2 =
∑
𝑖�𝑑

�� 𝑓 =𝑖��2
2 =

∑
𝑖�𝑑

‖ℎ𝑖 ‖2
2 =

∑
𝑖�𝑑

��(𝑀 𝑓 )=𝑖
��2

2 =
��(𝑀 𝑓 )�𝑑

��2
2 � 2𝐶 ·𝑑4

𝜀4 log𝐶 ·𝑑 (1/𝜀),

where the last inequality is by Theorem 1.6. �

7.4.3. Isoperimetric inequalities
One can also deduce the obvious analogs of Theorems 7.12, 7.13 for the multi-slice. Since we use it for
our final application, we include here the statement of the analog of Theorem 7.13.

For 𝑓 : U𝑘1 ,...,𝑘𝑚 → R, consider the Laplacians L𝑖, 𝑗 that map a function f to a function 𝐿𝑖, 𝑗 𝑓 defined

as L𝑖, 𝑗 𝑓 (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑥 (𝑖, 𝑗) ) and define 𝐼𝑖 [ 𝑓 ] = E 𝑗≠𝑖
[��𝐿𝑖, 𝑗 𝑓 ��2

2

]
and 𝐼 [ 𝑓 ] =

𝑛∑
𝑖=1

𝐼𝑖 [ 𝑓 ]. Similarly

to Definition 4.1, we define a derivative of f as a restriction of the corresponding Laplacian (i.e., for
𝑖, 𝑗 ∈ [𝑛], 𝑎, 𝑏 ∈ [𝑚], we define D(𝑖, 𝑗)→(𝑎,𝑏) 𝑓 = (L𝑖, 𝑗 𝑓 (𝑥))(𝑖, 𝑗)→(𝑎,𝑏) ).

Theorem 7.18. There exists 𝐶 > 0 such that the following holds for all 𝑑 ∈ N and 𝑛 ∈ N such that
𝑛 � 2𝐶 ·𝑑3 . Suppose 𝑆 ⊆ U𝑘1 ,...,𝑘𝑚 such that for all derivative operators D ≠ 𝐼 of order at most d, it
holds that ‖D1𝑆 ‖2 � 2−𝐶 ·𝑑4 . Then 𝐼 [1𝑆] � 1

4𝑑 · var(1𝑆).

We omit the straightforward derivation from Theorem 7.13.

7.5. Stability result for the Kruskal–Katona theorem on the slice

Our final application is the following sharp threshold result for the slice, which can be also seen as a
stability version of the Kruskal–Katona theorem (see [25, 16] for other, incomparable stability versions).
For a family of subsets F ⊆

( [𝑛]
𝑘

)
, we denote 𝜇(F) = |F |/

(𝑛
𝑘

)
and define the upper shadow of F as

F ↑=
{
𝑋 ∈

(
𝑛

𝑘 + 1

) ����∃𝐴 ⊆ 𝑋, 𝐴 ∈ F
}
.

The Kruskal–Katona theorem is a basic result in combinatorics that gives a lower bound on the measure
of the upper shadow of a family F in terms of the measure of the family itself. Below, we state a
convenient, simplified version of it due to Lovász, which uses the generalised binomial coefficients.
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Theorem 7.19. Let F ⊆
( [𝑛]
𝑘

)
and suppose that |F | =

(𝑛−𝑎
𝑛−𝑘

)
. Then |F ↑| �

( 𝑛−𝑎
𝑛−𝑘−1

)
.

In general, Theorem 7.19 is tight, as can be shown by considering ‘subcubes’ (i.e., families of the
form H𝐴 =

{
𝑋 ∈

( [𝑛]
𝑘

) ���𝑋 ⊇ 𝐴
}

for some 𝐴 ⊆ [𝑛]); these correspond to 𝑎 = |𝐴|. This raises the
question of whether a stronger version of Theorem 7.19 holds for families that are ‘far from having a
structure such as H𝐴’. Alternatively, this question can be viewed as a stability version of Theorem 7.19:
must a family for which Theorem 7.19 is almost tight be of a similar structure to H𝐴?

Below, we mainly consider the case that 𝑘 = 𝑜(𝑛) and show an improved version of Theorem 7.19 for
families that are ‘far from H𝐴’. To formalize this, we consider the notion of restrictions: for 𝐴 ⊆ 𝐼 ⊆ [𝑛],
we define

F𝐼→𝐴 = { 𝑋 ⊆ [𝑛] \ 𝐼 |𝑋 ∪ 𝐴 ∈ F }

and also define its measure 𝜇(F𝐼→𝐴) appropriately. We say a family F is (𝑑, 𝜀)-global if for any |𝐼 | � 𝑑
and 𝐴 ⊆ 𝐼, it holds that 𝜇(F𝐼→𝐴) � 𝜀.

Theorem 7.20. There exists 𝐶 > 0, such that the following holds for all 𝑑, 𝑛 ∈ N such that 𝑛 � 2𝐶 ·𝑑4 .
Let F ⊆

( [𝑛]
𝑘

)
and suppose that F is (𝑑, 2−𝐶 ·𝑑4 )-global. Then 𝜇(F ↑) �

(
1 + 𝑑

64𝑘

)
𝜇(F).

Proof. Let 𝑓 = 1F , 𝑔 = 1F↑ and consider the operator 𝑀 :
( [𝑛]
𝑘

)
→

( [𝑛]
𝑘+1

)
that from a set 𝐴 ⊆ [𝑛]

of size k moves to a random set of size 𝑘 + 1 containing it. We also consider M as an operator
𝑀 : 𝐿2

( ( [𝑛]
𝑘

) )
→ 𝐿2

( ( [𝑛]
𝑘+1

) )
defined as 𝑀 𝑓 (𝐵) = E𝐴⊆𝐵 [ 𝑓 (𝐴)] (this operator is sometimes known as

the raising or up operator). Note that for all 𝐵 ∈
( [𝑛]
𝑘+1

)
, it holds that 𝑔(𝐵)𝑀 𝑓 (𝐵) = 𝑀 𝑓 (𝐵) and that the

average of 𝑀 𝑓 is the same as the average of f (i.e., 𝜇(F)). Thus,

𝜇(F)2 = 〈𝑔, 𝑀 𝑓 〉2 � ‖𝑔‖2
2‖𝑀 𝑓 ‖2

2 = ‖𝑔‖2
2〈 𝑓 , 𝑀

∗𝑀 𝑓 〉.

Using the fact that the 2-norm of g squared is the measure of F ↑ and rearranging, we get that

𝜇(F ↑) � 𝜇(F)2

〈 𝑓 , 𝑀∗𝑀 𝑓 〉 =
𝜇(F)2

Pr
𝑥∈𝑅 ( [𝑛]𝑘 )
𝑦∼𝑀𝑀 ∗𝑥

[𝑥 ∈ F , 𝑦 ∈ F] . (18)

We next lower-bound Pr
𝑥∈𝑅 ( [𝑛]𝑘 )
𝑦∼𝑀𝑀 ∗𝑥

[𝑥 ∈ F , 𝑦 ∉ F], which will give us an upper bound on the denominator.

Towards this end, we relate this probability to the total influence of 1F as defined in Section 7.4.3. Note
that the distribution of y conditioned on x is this: with probability 1/(𝑘 + 1), we have 𝑦 = 𝑥, and
otherwise 𝑦 = 𝑥 (𝑖, 𝑗) , where 𝑖, 𝑗 are random coordinates such that 𝑥𝑖 ≠ 𝑥 𝑗 . Consider 𝑧 ∼ T𝑥, where T is
the operator of applying a random transposition; the probability that it interchanges two coordinates 𝑖, 𝑗
such that 𝑥𝑖 ≠ 𝑥 𝑗 is 𝑘 (𝑛 − 𝑘)/

(𝑛
2
)
, and so we get

Pr
𝑥∈𝑅 ( [𝑛]𝑘 )
𝑦∼𝑀𝑀 ∗𝑥

[𝑥 ∈ F , 𝑦 ∉ F] = 𝑘

𝑘 + 1
𝑛(𝑛 − 1)

2𝑘 (𝑛 − 𝑘) Pr
𝑥∈𝑅 ( [𝑛]𝑘 )
𝑦∼T𝑥

[𝑥 ∈ F , 𝑦 ∉ F]

=
𝑘

𝑘 + 1
𝑛(𝑛 − 1)

2𝑘 (𝑛 − 𝑘)
1
2

Pr
𝑥∈𝑅 ( [𝑛]𝑘 )
𝑦∼T𝑥

[1F (𝑥) ≠ 1F (𝑦)] = 𝑘

𝑘 + 1
𝑛(𝑛 − 1)

2𝑘 (𝑛 − 𝑘)
1

2𝑛
𝐼 [1F ] �

1
8𝑘

𝐼 [1F ],
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which is at least 𝑑
64𝑘 𝜇( 𝑓 ) by Theorem 7.18 (and the fact that var( 𝑓 ) = 𝜇( 𝑓 ) (1 − 𝜇( 𝑓 )) � 𝜇( 𝑓 )/2).

It follows that the denominator in (18) is at most 𝜇( 𝑓 )
(
1 − 𝑑

64𝑘

)
, and plugging this into (18), we get

that

𝜇(F ↑) �
(
1 + 𝑑

64𝑘

)
𝜇(F). �

Let us compare this to Theorem 7.19. Suppose that |F | =
(𝑛−𝑎
𝑛−𝑘

)
. Then Theorem 7.19 states that

𝜇(F ↑)
𝜇(F) �

( 𝑛−𝑎
𝑛−𝑘−1

)( 𝑛
𝑘+1

) (𝑛
𝑘

)(𝑛−𝑎
𝑛−𝑘

) =
𝑘 + 1

𝑘 + 1 − 𝑎
≈ 1 + 𝑎

𝑘
.

Theorem 7.20 states that if F is (𝑑, 2−𝐶 ·𝑑4 )-global, then we can improve 𝑎/𝑘 to 𝑑/𝑘 . Stated differently,
if the ratio above is only 1 + 𝑎/𝑘 , then F must be ‘somewhat close to H𝐴’ for some A of size 𝑂 (𝑎).

We can also compare Theorem 7.20 to Bourgain’s sharp threshold theorem [12, Appendix], which
states that if f is a monotone Boolean function satisfying 𝑝𝐼 𝑝 [ 𝑓 ] � 𝐶𝑠𝜇𝑝 ( 𝑓 ), then 𝜇𝑝 ( 𝑓𝑆→1) � 𝑒−𝑂 (𝑠2)

for some S of size s. Recall that Russo’s lemma shows that 𝐼 𝑝 [ 𝑓 ] is the derivative of 𝜇𝑝 ( 𝑓 ). It thus
corresponds to [𝜇(F ↑) − 𝜇(F)]/( 𝑘+1

𝑛 − 𝑘
𝑛 ). Multiplying by 𝑝 = 𝑘/𝑛, the assumption of Bourgain’s

theorem translates to 𝑘 (𝜇(F ↑) − 𝜇(F)) � 𝐶𝑠𝜇(F) – that is, 𝜇(F ↑) � (1 + 𝐶𝑠
𝑘 )𝜇(F). The conclusion

is that there is a restriction of size s whose measure is 2−𝑂 (𝑠2) . This almost matches the contrapositive
of Theorem 7.20, up to the power of d in the exponent. (In contrast, Theorem 7.19 corresponds to the
isoperimetric inequality 𝑝𝐼 𝑝 [ 𝑓 ] � 𝜇𝑝 ( 𝑓 ) log𝑝 𝜇𝑝 ( 𝑓 ).)

8. Proof of the level-d inequality

The goal of this section is to prove Theorem 1.6.

8.1. Proof overview

Proof overview in an idealized setting.
We first describe the proof idea in an idealized setting in which derivative operators, and truncations,

interact well. By that, we mean that if D is an order ℓ derivative, and f is a function, then D( 𝑓 �𝑑) =
(D 𝑓 )�𝑑−ℓ . We remark that this property holds in product spaces but may fail in non-product domains
such as 𝑆𝑛.

Adapting the proof of the level-d inequality from the hypercube (using Theorem 1.4 instead of
standard hypercontractivity), one may easily establish a weaker version of Theorem 1.6, wherein 𝜀2 is
replaced by 𝜀3/2, as follows. Take 𝑞 = log(1/𝜀); then�� 𝑓 �𝑑��2

2 = 〈 𝑓 �𝑑 , 𝑓 〉 �
�� 𝑓 �𝑑��

𝑞
‖ 𝑓 ‖1+1/(𝑞−1) .

Since f is integer-valued, we have that ‖ 𝑓 ‖1+1/(𝑞−1) is at most ‖ 𝑓 ‖2(𝑞−1)/𝑞
2 � 𝜀2(𝑞−1)/𝑞 . Using the

assumption of our idealized setting and Parseval, we get that for every derivative D of order ℓ, we have
that

��D( 𝑓 �𝑑)
��

2 =
��(D 𝑓 )�𝑑−ℓ

��
2 � ‖D 𝑓 ‖2. Thus, using the globalness of f and both items of Claim 4.2,

we get that 𝑓 �𝑑 is (𝑑, 2𝑂 (𝑑)𝜀)-global, and so by Theorem 1.4, we get that
�� 𝑓 �𝑑��

𝑞
� (2𝑞)𝑂 (𝑑3)𝜀. All in

all, we get that
�� 𝑓 �𝑑��2

2 � (2𝑞)𝑂 (𝑑3)𝜀3, which falls short of Theorem 1.6 by a factor of 𝜀.
The quantitative deficiency in this argument stems from the fact that 𝑓 �𝑑 is in fact much more global

than what the simplistic argument above establishes, and it shows that we prove things by induction
on d. This induction is also the reason we have strengthened Theorem 1.6 from the introduction to
Proposition 8.11 below.
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Returning to the real setting.
To lift the assumption of the ideal setting, we return to discuss restrictions (as opposed to derivatives).

Again, we would have been in good shape if restrictions were to commute with degree truncations, but
this again fails, just like derivatives. Instead, we use the following observation (Claim 8.4). Suppose
𝑘 � 𝑑 + ℓ + 2, let g be a function of pure degree k, and let S be a restriction of size at most ℓ. Then the
restricted function 𝑔𝑆 is perpendicular to degree 𝑘 − ℓ − 1 > 𝑑 functions, and so (𝑔𝑆)�𝑑 = ((𝑔�𝑘 )𝑆)�𝑑 .

Note that for 𝑘 = 𝑑, this statement exactly corresponds to truncations and restrictions commuting,
but the conditions of the statement always require that 𝑘 > 𝑑 at the very least. In fact, in our setting we
will have ℓ = 2𝑑, so we would need to use the statement with 𝑘 = 3𝑑 + 2. Thus, to use this statement
effectively, we cannot apply it on our original function f and instead have to find an appropriate choice
of g such that 𝑔�𝑘 , 𝑔�𝑑 ≈ 𝑓 �𝑑 , and moreover, that they remain close under restrictions (so, in particular,
we preserve our globalness). Indeed, we are able to design such g by applying appropriate sparse linear
combinations of powers of the natural transposition operator of 𝑆𝑛 on f.

8.2. Constructing the auxiliary function g

In this section, we construct the function g.

Lemma 8.1. There is an absolute constant𝐶 > 0, such that the following holds. Suppose 𝑛 � 2𝐶 ·𝑑3 and
let T be the adjacency operator of the transpositions graph (see Section 7.3). There exists a polynomial
P with ‖𝑃‖ � 2𝐶 ·𝑑4 such that

��𝑃(T) ( 𝑓 �4𝑑) − 𝑓 �𝑑
��

2 �
(

1
𝑛

)19𝑑�� 𝑓 �4𝑑��
2.

Proof. Let

𝑄(𝑧) =
𝑑∑
𝑖=1

∏
𝑗∈[4𝑑 ]\{𝑖 }

(
𝑧𝑛 − 𝑒−2 𝑗

𝑒−2𝑖 − 𝑒−2 𝑗

)20𝑑

and define 𝑃(𝑧) = 1 − (1 −𝑄(𝑧))20𝑑 . We first prove the upper bound on ‖𝑃‖; note that

‖𝑄‖ �
𝑑∑
𝑖=1

∏
𝑗∈[4𝑑 ]\{𝑖 }

���� 𝑧𝑛 − 𝑒−2 𝑗

𝑒−2𝑖 − 𝑒−2 𝑗

����20𝑑

=
𝑑∑
𝑖=1

∏
𝑗∈[4𝑑 ]\{𝑖 }

(
1 + 𝑒−2 𝑗

𝑒−2𝑖 − 𝑒−2 𝑗

)20𝑑

= 2𝑂(𝑑3) ,

so ‖𝑃‖ � (1 + 2𝑂 (𝑑3) )20𝑑 = 2𝑂 (𝑑4) .
Next, we show that for 𝑔 = 𝑃(T) 𝑓 , it holds that

��𝑔�4𝑑 − 𝑓 �𝑑
��

2 �
(

1
𝑛

)10𝑑�� 𝑓 �4𝑑
��

2, and we do so by
eigenvalue considerations. Let 𝑑 < ℓ � 4𝑑 and let 𝜆 be an eigenvalue of T corresponding to a function of
pure degree ℓ. Since ℓ � 𝑛/2, Lemma 7.10 implies that 𝜆 = 1− 2ℓ

𝑛 +𝑂
(
ℓ2

𝑛2

)
, and so 𝜆𝑛 = 𝑒−2ℓ ±𝑂

(
𝑑2

𝑛

)
.

Thus, as each one of the products in 𝑄(𝜆) contains a term for ℓ, we get that

|𝑄(𝜆) | � 𝑑 ·
(

2𝑂 (𝑑2)

𝑛

)20𝑑

�
2𝑂 (𝑑3)

𝑛20𝑑 ,

so |𝑃(𝜆) | = 1 − (1 − 2𝑂 (𝑑3 )

𝑛20𝑑 )𝑑 � 1
𝑛19𝑑 . Next, let ℓ � 𝑑 and let 𝜆 be an eigenvalue of T corresponding to

a function of pure degree ℓ. As before, 𝜆𝑛 = 𝑒−2ℓ ± 𝑂
(
𝑑2

𝑛

)
, but now in 𝑄(𝜆) there is one product that

omits the term for ℓ. A direct computation gives that
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𝑄(𝜆) =
∏

𝑗∈[4𝑑 ]\{ℓ }

(
𝜆𝑛 − 𝑒−2 𝑗

𝑒−2ℓ − 𝑒−2 𝑗

)20𝑑

+ 2𝑂 (𝑑3)

𝑛20𝑑 =
∏

𝑗∈[4𝑑 ]\{ℓ }

(
1 −𝑂

(
2𝑂 (𝑑)

𝑛

))
+ 2𝑂 (𝑑3)

𝑛20𝑑 ,

so 𝑄(𝜆) = 1 −𝑂
(

2𝑂 (𝑑)

𝑛

)
. Thus,

|𝑃(𝜆) − 1| = 𝑂

(
2𝑂 (𝑑2)

𝑛20𝑑

)
�

1
𝑛19𝑑 .

It follows that 𝑔�4𝑑 − 𝑓 �𝑑 =
4𝑑∑
ℓ=0

𝑐ℓ 𝑓
=ℓ for |𝑐ℓ | � 1

𝑛19𝑑 , and the result follows from Parseval. �

8.3. Properties of Cayley operators and restrictions

In this section, we study random walks along Cayley graphs on 𝑆𝑛. The specific transition operator we
will later be concerned with is the transposition operator from Lemma 7.10 and its powers, but we will
present things in greater generality.

8.3.1. Random walks

Definition 8.2. A Markov chain M on 𝑆𝑛 is called a Cayley random walk if for any 𝜎, 𝜏, 𝜋 ∈ 𝑆𝑛, the
transition probability from 𝜎 to 𝜏 is the same as the transition probability from 𝜎𝜋 to 𝜏𝜋.

In other words, a Markov chain M is called Cayley if the transition probability from 𝜎 to 𝜏 is only a
function of 𝜎𝜏−1. We will be interested in the interaction between random walks and restrictions, and
towards this end we first establish the following claim, asserting that a Cayley random walk either never
transitions between two restrictions T and 𝑇 ′ or can always transition between the two.
Claim 8.3. Suppose M is a Cayley random walk on 𝑆𝑛, let 𝑖1, . . . , 𝑖𝑡 ∈ [𝑛] be distinct and let 𝑇 =
{(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )}, 𝑇 ′ =

{(
𝑖1, 𝑗

′
1
)
, . . . ,

(
𝑖𝑡 , 𝑗

′
𝑡

)}
be consistent sets. Then one of the following two must

hold:
1. Pr𝑢∈𝑆𝑇 ′

𝑛
𝑣∼M𝑣

[
𝑣 ∈ 𝑆𝑇𝑛

]
= 0.

2. For all 𝜋 ∈ 𝑆𝑇𝑛 , it holds that Pr𝑢∈𝑆𝑇 ′
𝑛

𝑣∼M𝑣

[
𝑣 = 𝜋

]
> 0.

Proof. If the first item holds, then we are done, so let us assume otherwise. Then there are 𝑢 ∈ 𝑆𝑇
′

𝑛 ,
𝑣 ∈ 𝑆𝑇𝑛 such that M has positive probability of transitioning from u to v. Denoting 𝜏 = 𝑢𝑣−1, we note
that 𝜏( 𝑗ℓ) = 𝑗 ′ℓ for all ℓ = 1, . . . , 𝑡. Fix 𝜋 ∈ 𝑆𝑇𝑛 . Since M is a Cayley operator, the transition probability
from 𝜏𝜋 to 𝜋 is positive, and since 𝜏𝜋 is in 𝑆𝑇

′
𝑛 , the proof is concluded. �

If M satisfies the second item of the above claim with T and 𝑇 ′, we say that M is compatible with
(𝑇, 𝑇 ′).

8.3.2. Degree decomposition on restrictions
Let 𝑇 = {(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )} be consistent. A function 𝑓 ∈ 𝐿2 (𝑆𝑇𝑛 ) is called a d-junta if there is
𝑆 ⊆ [𝑛] \ {𝑖1, . . . , 𝑖𝑡 } of size d such that 𝑓 (𝜋) only depends on 𝜋(𝑖) for 𝑖 ∈ 𝑆 (we say that 𝑓 (𝜋) only
depends on 𝜋(𝑆)). With this definition in hand, we may define the space of degree d functions on 𝑆𝑇𝑛 ,
denoted by 𝑉𝑑 (𝑆𝑇𝑛 ), as the span of all d-juntas and subsequently define projections onto this subspaces.
That is, for each 𝑓 ∈ 𝐿2 (𝑆𝑇𝑛 ), we denote by 𝑓 �𝑑 the projection of f onto 𝑉𝑑 (𝑆𝑇𝑛 ). Finally, we define the
pure degree d part of f as 𝑓 =𝑑 = 𝑓 �𝑑 − 𝑓 �𝑑−1.

We have the following basic property of pure degree d functions.
Claim 8.4. Suppose that 𝑓 : 𝑆𝑛 → R is of pure degree d. Let T be a set of size ℓ < 𝑑. Then 𝑓𝑇 is
orthogonal to all functions in 𝑉𝑑−1−ℓ .
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Proof. Clearly, it is enough to show that 𝑓𝑇 is orthogonal to all (𝑑 − 1 − ℓ)-juntas. Fix 𝑔 : 𝑆𝑇𝑛 → R

to be a (𝑑 − 1 − ℓ)-junta and let h be its extension to 𝑆𝑛 by setting it to be 0 outside 𝑆𝑇𝑛 . Then h is a
(𝑑 − 1)-junta, and so

0 = 〈 𝑓 , ℎ〉 = (𝑛 − ℓ)!
𝑛!

〈 𝑓𝑇 , 𝑔〉. �

8.3.3. Extension to functions
Any random walk M on 𝑆𝑛 extends to an operator on functions on 𝑆𝑛, which maps 𝑓 : 𝑆𝑛 → R to the
function M 𝑓 : 𝑆𝑛 → R given by

M 𝑓 (𝜋) = E
𝑢∈𝑆𝑛
𝑣∼M𝑢

[ 𝑓 (𝑢) | 𝑣 = 𝜋] .

8.4. Strengthening Proposition 3.1

Our main goal in this section is to prove the following statement that both strengthens and generalises
Proposition 3.1.

Proposition 8.5. Let 𝑓 : 𝑆𝑛 → R. Let M be a Cayley random walk on 𝑆𝑛, let 𝑔 = M 𝑓 and let
𝑇 = {(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )} be a consistent set. Then for all d,

‖(𝑔𝑇 )�𝑑 ‖2 � max
𝑇 ′={(𝑖1 , 𝑗′1) ,...,(𝑖𝑡 , 𝑗′𝑡)}
M compatible with (𝑇 ,𝑇 ′)

‖ ( 𝑓𝑇 ′ )�𝑑 ‖2.

Let M be a Cayley random walk and let 𝑇 = {(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )} and 𝑇 ′ =
{(
𝑖1, 𝑗

′
1
)
, . . . ,

(
𝑖𝑡 , 𝑗

′
𝑡

)}
be consistent so that M is compatible with (𝑇,𝑇 ′). Put 𝐼 = {(𝑖1, 𝑖1), . . . , (𝑖𝑡 , 𝑖𝑡 )}. Define the operator
M𝑆𝑇𝑛→𝑆𝑇

′
𝑛

: 𝐿2 (𝑆𝑇𝑛 ) → 𝐿2 (𝑆𝑇 ′
𝑛 ) in the following way: given a function 𝑓 ∈ 𝐿2 (𝑆𝑇𝑛 ), we define

M𝑆𝑇
′

𝑛 →𝑆𝑇𝑛
𝑓 (𝜋) = E

𝑢∈𝑅𝑆𝑇𝑛
𝑣∼M𝑢

[
𝑓 (𝑢)

�� 𝑣 = 𝜋
]
.

Drawing inspiration from the proof of Proposition 3.1, we study the operator M𝑆𝑇𝑛→𝑆𝑇
′

𝑛
. Since we are

also dealing with degree truncations, we have to study its interaction with this operator. Indeed, a key
step in the proof is to show that the two operators commute in the following sense: for all 𝑑 ∈ N and
𝑓 ∈ 𝐿2 (𝑆𝑇𝑛 ), it holds that (

M𝑆𝑇𝑛→𝑆𝑇
′

𝑛
𝑓
)=𝑑

= M𝑆𝑇𝑛→𝑆𝑇
′

𝑛

(
𝑓 =𝑑

)
.

Towards this end, we view 𝐿2 (𝑆𝑇𝑛 ) (and similarly 𝐿2 (𝑆𝑇 ′
𝑛 )) as a right 𝑆𝐼𝑛-module using the following

operation: a function-permutation pair ( 𝑓 , 𝜋) ∈ 𝐿2 (𝑆𝑇𝑛 ) × 𝑆𝐼𝑛 is mapped to a function 𝑓 𝜋 ∈ 𝐿2 (𝑆𝑇𝑛 )
defined as

𝑓 𝜋 (𝜎) = 𝑓 (𝜎𝜋−1).

Claim 8.6. With the setup above, M𝑆𝑇𝑛→𝑆𝑇
′

𝑛
: 𝐿2 (𝑆𝑇𝑛 ) → 𝐿2 (𝑆𝑇 ′

𝑛

)
is a homomorphism of 𝑆𝐼𝑛-modules.

Proof. The proof is essentially the same as the proof of Lemma 5.1 and is therefore omitted. �

Therefore, it is sufficient to prove that any homomorphism commutes with taking pure degree d part,
which is the content of the following claim.
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Claim 8.7. Let 𝑇,𝑇 ′ be consistent as above and let A: 𝐿2 (𝑆𝑇𝑛 ) → 𝐿2 (𝑆𝑇 ′
𝑛 ) be a homomorphism of right

𝑆𝐼𝑛-modules. Then for all 𝑓 ∈ 𝐿2 (𝑆𝑇𝑛 ), we have that

(A 𝑓 )=𝑑 = A
(
𝑓 =𝑑

)
.

Proof. We first claim that A preserves degrees (i.e., A𝑉𝑑 (𝑆𝑇𝑛 ) ⊆ 𝑉𝑑 (𝑆𝑇
′

𝑛 )). To show this, it is enough to
note that if 𝑓 ∈ 𝐿2 (𝑆𝑇𝑛 ) is a d-junta, then A 𝑓 is a d-junta. Let f be a d-junta and suppose that 𝑆 ⊆ [𝑛] is
a set of size at most d such that 𝑓 (𝜎) only depends on 𝜎(𝑆). Then for any 𝜋 that has S as fixed points,
we have that 𝑓 (𝜎) = 𝑓 (𝜎𝜋−1) = 𝑓 𝜋 (𝜎), so 𝑓 = 𝑓 𝜋 . Applying A and using the previous claim, we get
that A 𝑓 = A 𝑓 𝜋 = (A 𝑓 ) 𝜋 . This implies that A 𝑓 is invariant under any permutation that keeps S as fixed
points, so it is an S-junta.

Let 𝑉=𝑑 (𝑆𝑇𝑛 ) be the space of functions of pure degree d (i.e., 𝑉𝑑 (𝑆𝑇𝑛 ) ∩ 𝑉𝑑−1 (𝑆𝑇𝑛 )⊥). We claim that
A also preserves pure degrees (i.e., A𝑉=𝑑 (𝑆𝑇𝑛 ) ⊆ 𝑉=𝑑 (𝑆𝑇

′
𝑛 )). By the previous paragraph, it is enough to

show that if 𝑓 ∈ 𝑉=𝑑 (𝑆𝑇𝑛 ), then A 𝑓 is orthogonal to 𝑉𝑑−1 (𝑆𝑇
′

𝑛 ). Letting A∗ be the adjoint operator of A,
it is easily seen that A∗ : 𝐿2 (𝑆𝑇 ′

𝑛 ) → 𝐿2 (𝑆𝑇𝑛 ) is also a homomorphism between right 𝑆𝐼𝑛-modules, and
by the previous paragraph, it follows that A∗ preserves degrees. Thus, for any 𝑔 ∈ 𝑉𝑑−1 (𝑆𝑇

′
𝑛 ), we have

that A∗𝑔 ∈ 𝑉𝑑−1 (𝑆𝑇𝑛 ), and so

〈A 𝑓 , 𝑔〉 = 〈 𝑓 ,A∗𝑔〉 = 0.

We can now prove the statement of the claim. Fix 𝑓 ∈ 𝐿2 (𝑆𝑇𝑛 ) and d. Then by the above paragraph,
A
(
𝑓 =𝑑

)
∈ 𝑉=𝑑 (𝑆𝑇

′
𝑛 ), and by linearity of A, we have

∑
𝑑

A
(
𝑓 =𝑑

)
= A 𝑓 . The claim follows from the

uniqueness of the degree decomposition. �

We define a transition operator on restrictions as follows. From a restriction 𝑇 =
{(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡 )}, we sample 𝑇 ′ ∼ 𝑁 (𝑇) as follows. Take 𝜋 ∈ 𝑆𝑇𝑛 uniformly, sample 𝜎 ∼ M𝜋
and then let 𝑇 ′ be {(𝑖1, 𝜎(𝑖1)), . . . , (𝑖𝑡 , 𝜎(𝑖𝑡 ))}. The following claim is immediate:

Claim 8.8. (M 𝑓 )𝑇 = E𝑇 ′∼𝑁 (𝑇 )
[
M𝑆𝑇

′
𝑛 →𝑆𝑇𝑛

𝑓𝑇 ′
]
.

We are now ready to prove Proposition 8.5.

Proof of Proposition 8.5. By Claim 8.8, we have 𝑔𝑇 = E𝑇 ′∼𝑇 M𝑆𝑇
′

𝑛 →𝑆𝑇𝑛
𝑓𝑇 ′ . Using Claim 8.7 and the

linearity of the operator 𝑓 ↦→ 𝑓 =𝑑 , we get

(𝑔𝑇 )=𝑑 = E𝑇 ′∼𝑁 (𝑇 )M𝑆𝑇
′

𝑛 →𝑆𝑇𝑛

(
( 𝑓𝑇 ′ )=𝑑

)
.

Summing this up using linearity again, we conclude that

(𝑔𝑇 )�𝑑 = E𝑇 ′∼𝑁 (𝑇 )M𝑆𝑇
′

𝑛 →𝑆𝑇𝑛

(
( 𝑓𝑇 ′ )�𝑑

)
.

Taking norms and using the triangle inequality gives us that

‖(𝑔𝑇 )�𝑑 ‖2 � E𝑇 ′∼𝑁 (𝑇 )

���M𝑆𝑇
′

𝑛 →𝑆𝑇𝑛

(
( 𝑓𝑇 ′ )�𝑑

)���
2
� max

𝑇 ′ : M consistent with (𝑇 ,𝑇 ′)

���M𝑆𝑇
′

𝑛 →𝑆𝑇𝑛

(
( 𝑓𝑇 ′ )�𝑑

)���
2
.

The proof is now concluded by appealing to Fact 3.2. �

8.5. A weak level-d inequality

The last ingredient we will need in the proof of Theorem 1.6 is a weak version of the level-d inequality,
which does not take the globalness of f into consideration.
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Lemma 8.9. Let C be sufficiently large, let 𝑛 � log(1/𝜀)𝑑𝐶𝑑2 and let 𝑓 : 𝑆𝑛 → {0, 1} satisfy ‖ 𝑓 ‖2 � 𝜀.
Then

‖ 𝑓 �𝑑 ‖2 � 𝑛𝑑 log(1/𝜀)𝑂 (𝑑)𝜀2.

Proof. Set 𝑞 = log(1/𝜀), and without loss of generality, assume q is an even integer (otherwise, we may
change q by a constant factor to ensure that). Using Hölder’s inequality, Lemma 5.14 and the fact that
‖ 𝑓 ‖𝑞/(𝑞−1) = 𝑂

(
𝜀2) , we obtain�� 𝑓 �𝑑��2

2 =
〈
𝑓 �𝑑 , 𝑓

〉
�

�� 𝑓 �𝑑��
𝑞
‖ 𝑓 ‖𝑞/(𝑞−1) � log(1/𝜀)𝑂 (𝑑)𝑛𝑑

�� 𝑓 �𝑑��2𝜀
2,

and the lemma follows by rearranging. �

8.6. Interchanging truncations and derivatives with small errors

Lemma 8.10. There is𝐶 > 0, such that the following holds for 𝑛 � 2𝐶 ·𝑑3 . For all derivatives D of order
𝑡 � 𝑑, we have ���𝐷 (

𝑓 �𝑑
)���

2
� 2𝑂 (𝑑)4

max
𝑡−derivative D′

���(D′ 𝑓 )�𝑑−𝑡
���

2
+
(

1
𝑛

)10𝑑�� 𝑓 �4𝑑��
2.

Proof. Let T𝑑 = 𝑃(T) be as in Lemma 8.1 and write 𝑓 �𝑑 = T𝑑 ( 𝑓 �4𝑑) +𝑔, where ‖𝑔‖2 � 𝑛−19𝑑
�� 𝑓 �4𝑑

��
2.

Let S be a consistent restriction of t coordinates and let D be a derivative along S. Then there is 𝑅 ⊆ 𝐿
of size t such that D 𝑓 = (L 𝑓 )𝑆→𝑅. By Claim 4.3, the degree of D( 𝑓 �𝑑) is at most 𝑑 − 𝑡; thus,

D( 𝑓 �𝑑) =
(
D( 𝑓 �𝑑)

)�𝑑−𝑡
. (19)

We want to compare the right-hand side with (D(T𝑑 𝑓 ))�𝑑−𝑡 , but first we show that in it, one may
truncate all degrees higher than 4𝑑 in f. Note that by Claim 8.7, for each 𝑘 > 4𝑑, the function T𝑑 𝑓

=𝑘

has pure degree k, so D(T𝑑 𝑓
=𝑘 ) is perpendicular to degree 𝑘 − 𝑡 − 1 functions. Since 𝑘 − 2𝑡 − 1 � 𝑑 − 𝑡,

we have that its level 𝑑 − 𝑡 projection is 0, so (D(T𝑑 𝑓 ))�𝑑−𝑡 =
(
D
(
T𝑑 𝑓

�4𝑑 ) )�𝑑−𝑡 . It follows that��D( 𝑓 �𝑑) − (D(T𝑑 𝑓 ))�𝑑−𝑡
��

2 =

����(D(
𝑓 �𝑑 − T𝑑 ( 𝑓 �4𝑑)

))�𝑑−𝑡����
2
� ‖D𝑔‖2 � 𝑛2𝑡 ‖𝑔‖2

� 𝑛2𝑡−19𝑑�� 𝑓 �4𝑑��
2. (20)

Our task now is to bound
��(D(T𝑑 𝑓 ))�𝑑−𝑡

��
2. Since T commutes with Laplacians, it follows that T𝑑

also commutes with Laplacians, and so

(D(T𝑑 𝑓 ))�𝑑−𝑡 = ((LT𝑑 𝑓 )𝑆→𝑅)�𝑑−𝑡 = ((T𝑑L 𝑓 )𝑆→𝑅)�𝑑−𝑡 . (21)

By Proposition 8.5, for all i and ℎ : 𝑆𝑛 → R, we have

‖
( (

T𝑖ℎ
)
𝑆

)�𝑑 ‖2 � max
𝑆′={(𝑖1 , 𝑗′1) ,...,(𝑖𝑡 , 𝑗′𝑡)}

��(ℎ𝑆′ )�𝑑��2,

and so

‖((T𝑑ℎ)𝑆)�𝑑 ‖2 � ‖𝑃‖ max
𝑆′={(𝑖1 , 𝑗′1) ,...,(𝑖𝑡 , 𝑗′𝑡)}

��(ℎ𝑆′ )�𝑑��2 � 2𝑂 (𝑑4) max
𝑆′={(𝑖1 , 𝑗′1) ,...,(𝑖𝑡 , 𝑗′𝑡)}

��(ℎ𝑆′ )�𝑑��2.
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Applying this for ℎ = 𝐿 𝑓 gives that��((T𝑑L 𝑓 )𝑆→𝑅)�𝑑−𝑡
��

2 � 2𝑂(𝑑4) max
𝑅′

���((L 𝑓 )𝑆→𝑅′
)�𝑑−𝑡���

2
= 2𝑂(𝑑4) max

𝐷′

���(D′ 𝑓 )�𝑑−𝑡
���

2
, (22)

where the last transition is by the definition of derivatives. Combining (20), (21), (22) and using the
triangle inequality finishes the proof. �

8.7. Proof of the level-d inequality

We end this section by deriving the following proposition, which by Claim 4.2 implies Theorem 1.6.

Proposition 8.11. There exists an absolute constant 𝐶 > 0 such that the following holds for all 𝑑 ∈ N,
𝜀 > 0 and 𝑛 � 2𝐶 ·𝑑3 log(1/𝜀)𝐶 ·𝑑 . Let 𝑓 : 𝑆𝑛 → Z be a function, such that for all 𝑡 � 𝑑 and all
t-derivatives D, we have ‖D 𝑓 ‖2 � 𝜀. Then�� 𝑓 �𝑑��2 � 2𝐶𝑑4

𝜀2 log(1/𝜀)𝐶𝑑 .

Proof. The proof is by induction on d. If 𝑑 = 0, then�� 𝑓 �𝑑��2 =

����E[ 𝑓 (𝜋)]���� � E[| 𝑓 (𝜋) |2] = ‖ 𝑓 ‖2
2 � 𝜀2,

where in the second transition we used the fact that f is integer-valued.
We now prove the inductive step. Fix 𝑑 � 1. Let 1 � 𝑡 � 𝑑 and let D be a t-derivative. By Lemma

8.10, there is an absolute constant 𝐶1 > 0 such that���D
(
𝑓 �𝑑

)���
2
� 𝑒𝐶1(𝑑4) max

D′ a 𝑡−derivative

���(D′ 𝑓 )�𝑑−𝑡
���

2
+ 𝑛−10𝑑�� 𝑓 �4𝑑��

2. (23)

Fix D′. The function D′ 𝑓 takes integer values and is defined on a domain that is isomorphic to 𝑆𝑛−𝑡 , so
by the induction hypothesis we have���(D′ 𝑓 )�𝑑−𝑡

���
2
� 𝑒𝐶 (𝑑−𝑡)4

𝜀2 log
(

1
𝜀

)𝐶 (𝑑−𝑡)
.

As for ‖ 𝑓 �4𝑑 ‖2
2 , applying Lemma 8.9, we see it is at most 𝑛8𝑑𝜀4 log𝐶𝑑 (1/𝜀). Plugging these two

estimates into (23), we get that ���D
(
𝑓 �𝑑

)���
2
� 𝑒𝐶𝑑4

𝜀2 log𝐶 ·𝑑 (1/𝜀),

provided that C is sufficiently large.
If �� 𝑓 �𝑑��2

2 � 𝑒2𝐶𝑑4
𝜀4 log

(
1
𝜀

)2𝐶𝑑

,

we are done, so assume otherwise. We get that
��D′ ( 𝑓 �𝑑 )��2 � ‖ 𝑓 �𝑑 ‖2 for all derivatives of order at most

d, and from Claim 4.3,
��D′ ( 𝑓 �𝑑 )��2 = 0 for higher-order derivatives, and so by Claim 4.2, the function

𝑓 �𝑑 is (2𝑑, 4𝑑 ‖ 𝑓 �𝑑 ‖2)-global, and by Lemma 3.5, we get that 𝑓 �𝑑 is 4𝑑 ‖ 𝑓 �𝑑 ‖2-global with constant
48. In this case, we apply the standard argument as presented in the overview, as outlined below.
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Set 𝑞 = log(1/𝜀), and without loss of generality, assume q is an even integer (otherwise, we may
change q by a constant factor to ensure that). Set 𝜌 = 1

(10𝑞48)2 . From Lemmas 5.1, 5.4 we have that T(𝜌)

preserves degrees, and so by Corollary 5.11, we get�� 𝑓 �𝑑��2
2 � 𝜌−𝐶2 ·𝑑 〈T(𝜌) 𝑓 �𝑑 , 𝑓 �𝑑〉 = 𝜌−𝐶2 ·𝑑 〈T(𝜌) 𝑓 �𝑑 , 𝑓 〉 � 𝜌−𝐶2 ·𝑑

���T(𝜌) 𝑓 �𝑑
���
𝑞
‖ 𝑓 ‖𝑞/(𝑞−1) ,

where we also used Hölder’s inequality. By Theorem 3.3, we have
��T(𝜌) 𝑓 �𝑑

��
𝑞
� 4𝑑

�� 𝑓 �𝑑��2, and by a
direction computation, ‖ 𝑓 ‖𝑞/(𝑞−1) � 𝜀2(𝑞−1)/𝑞 . Plugging these two estimates into the inequality above
and rearranging yields that�� 𝑓 �𝑑��2

2 � 𝜌−2𝐶2 ·𝑑42𝑑 ‖ 𝑓 ‖2
𝑞/(𝑞−1) � 𝜌−3𝐶2 ·𝑑𝜀4 = 26𝐶2 log(10𝐶)𝜀4 log6𝐶2 ·𝑑 (1/𝜀) � 2𝐶 ·𝑑4

𝜀4 log𝐶 ·𝑑 (1/𝜀),

for large enough C. �

8.8. Deducing the strong level-d inequality: proof of Theorem 1.7

Let 𝛿 = 2𝐶1 ·𝑑4
𝜀2 log𝐶1 ·𝑑 (1/𝜀) for sufficiently large absolute constant 𝐶1. By Claim A.1, we get that

𝑓 �𝑑 is 𝛿-global with constant 48. Set 𝑞 = log(1/‖ 𝑓 ‖2), and let 𝜌 = 1/(10 · 48 · 𝑞)2 be from Theorem
3.3. From Lemmas 5.1, 5.4 we have that T(𝜌) preserves degrees, and so by Corollary 5.11 we get��� 𝑓 �𝑑���2

2
= 〈 𝑓 �𝑑 , 𝑓 �𝑑〉 � 𝜌−𝑂 (𝑑) 〈 𝑓 �𝑑 ,T(𝜌) 𝑓 �𝑑〉 = 𝜌−𝑂 (𝑑) 〈 𝑓 ,T(𝜌) 𝑓 �𝑑〉 � 𝜌−𝑂 (𝑑) ‖ 𝑓 ‖𝑞/(𝑞−1)

���T(𝜌) 𝑓 �𝑑
���
𝑞
.

Using ‖ 𝑓 ‖𝑞/(𝑞−1) � ‖ 𝑓 ‖2(𝑞−1)/𝑞
2 = ‖ 𝑓 ‖2

2‖ 𝑓 ‖
−2/𝑞
2 � 𝑂 (‖ 𝑓 ‖2

2) and Theorem 3.3 to bound
��T(𝜌) 𝑓 �𝑑

��
𝑞
�

𝛿, it follows that �� 𝑓 �𝑑��2
2 � 𝜌−𝑂 (𝑑) ‖ 𝑓 ‖2

2𝛿 � 2𝐶 ·𝑑4 ‖ 𝑓 ‖2
2𝜀

2 log𝐶 ·𝑑 (1/𝜀),

where we used ‖ 𝑓 ‖2
2 � 𝜀.

A. Missing proofs

A.1. Globalness of f implies globalness of 𝑓 �𝑑

Claim A.1. There exists an absolute constant 𝐶 > 0 such that the following holds for all 𝑛, 𝑑 ∈ N and
𝜀 > 0 satisfying 𝑛 � 2𝐶 ·𝑑3 log(1/𝜀)𝐶 ·𝑑 . Suppose 𝑓 : 𝑆𝑛 → Z is (2𝑑, 𝜀)-global. Then for all 𝑗 � 𝑑, the
function 𝑓 � 𝑗 is

1. (2 𝑗 , 2𝑂 ( 𝑗4)𝜀2 log𝑂 ( 𝑗) (1/𝜀))-global.
2. 2𝑂 ( 𝑗4)𝜀2 log𝑂 ( 𝑗) (1/𝜀)-global with constant 48.

Proof. If 𝑗 = 0, then the claim is clear as 𝑓 � 𝑗 is just the constant E [ 𝑓 (𝜋)], and its absolute value is at
most ‖ 𝑓 ‖2

2 � 𝜀2.
Suppose 𝑗 � 1 and let D be a derivative of order 1 � 𝑟 � 𝑗 . Then by Claim 4.2, we have

‖D 𝑓 ‖2 � 22 𝑗𝜀. Therefore, applying Proposition 8.11 on D 𝑓 , we get that��(D 𝑓 )� 𝑗−1��
2 � 2𝑂 ( ( 𝑗−1)4)𝜀2 log𝑂 ( 𝑗) (1/𝜀).

Using Lemma 8.10, we get that��D( 𝑓 � 𝑗 )
��

2 � 2𝑂 ( 𝑗)4
max

1−derivative D′

���(D′ 𝑓 )� 𝑗−1
���

2
+
(

1
𝑛

)10 𝑗�� 𝑓 �4 𝑗��
2 � 2𝑂 ( 𝑗4)𝜀2 log𝑂 ( 𝑗) (1/𝜀),
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where in the last inequality we our earlier estimate and Lemma 8.9. For derivatives of order
higher than j, we have that D( 𝑓 � 𝑗 ) = 0 from Claim 4.3. Thus, Claim 4.2 implies that 𝑓 � 𝑗 is
(2 𝑗 , 2𝑂 ( 𝑗4)𝜀2 log𝑂 ( 𝑗) (1/𝜀))-global. The second item immediately follows from Lemma 3.5. �

A.2. Proof of Theorem 7.13

Our proof will make use of the following simple fact.

Fact A.2. Let 𝑔 : 𝑆𝑛 → R.

1. We have the Poincaré inequality: var(𝑔) � 1
𝑛

∑
L1

‖L1𝑔‖2
2, where the sum is over all 1-Laplacians.

2. We have 𝐼 [𝑔] = 2
𝑛−1

∑
L1

‖L1𝑔‖2
2, where again the sum is over all 1-Laplacians.

Proof. The second item is straightforward by the definitions, and we focus on the first one. Let L̃𝑔 =
EL1 [L1𝑔] = (𝐼 − T)𝑔. If 𝛼𝑑,𝑟 is an eigenvalue of T corresponding to a function from 𝑉=𝑑 (𝑆𝑛), then by
the second item in Lemma 7.10, we have 𝛼𝑑,𝑟 � 1 − 𝑑

𝑛−1 .
Note that we may find an orthonormal basis of𝑉=𝑑 (𝑆𝑛) consisting of eigenvectors of T, and therefore,

we may first write 𝑔 =
∑
𝑑
𝑔=𝑑 , where 𝑔=𝑑 ∈ 𝑉=𝑑 (𝑆𝑛), and then further decompose each 𝑔𝑑 to 𝑔𝑑 =

𝑟𝑑∑
𝑟=0

𝑔𝑑,𝑟 , where 𝑔𝑑,𝑟 ∈ 𝑉=𝑑 (𝑆𝑛) are all orthogonal and eigenvectors of T. We thus get

〈𝑔, L̃𝑔〉 =
∑
𝑑

𝑟𝑑∑
𝑟=0

(1 − 𝛼𝑑,𝑟 )
��𝑔𝑑,𝑟��2

2 �
∑
𝑑

𝑟𝑑∑
𝑟=0

𝑑

𝑛 − 1
��𝑔𝑑,𝑟��2

2 =
∑
𝑑

𝑑

𝑛 − 1
��𝑔=𝑑��2

2 �
1

𝑛 − 1
var(𝑔). (A.1)

However,

〈𝑔, �̃�𝑔〉 = E
𝜋

[
E

𝜏 a transposition
[𝑔(𝜋) (𝑔(𝜋) − 𝑔(𝜋 ◦ 𝜏))]

]
=

1
2 E
𝜏 a transposition

[
E
𝜋

[
(𝑔(𝜋) − 𝑔(𝜋 ◦ 𝜏))2] ] ,

which is the same as 1
2(𝑛2)

∑
L1

‖L1𝑔‖2
2. Combining this with the previous lower bound gives the first

item. �

Proof of Theorem 7.13. Let 𝑓 = 1𝑆 . Then 𝐼 [ 𝑓 ] = 𝑛−1
2 Pr 𝜋∈𝑆𝑛

𝜎∼T𝜋
[ 𝑓 (𝜋) ≠ 𝑓 (𝜎)], and arithmetizing that

we have that it is equal to 𝑛−1
2 〈 𝑓 , (𝐼 − T) 𝑓 〉. Thus, writing 𝑓 = 𝑓 =0 + 𝑓 =1 + . . . , where 𝑓 = 𝑗 ∈ 𝑉= 𝑗 (𝑆𝑛),

we have, as in inequality (A.1), that

𝑛 − 1
2

〈 𝑓 , (𝐼 − T) 𝑓 〉 � 𝑛 − 1
2

𝑛∑
𝑗=0

𝑗

𝑛 − 1
�� 𝑓 = 𝑗��2

2 �
𝑑

2
�� 𝑓 >𝑑��2

2. (A.2)

To finish the proof, we show that
�� 𝑓 >𝑑��2

2 � Ω(var( 𝑓 )). To do that, we upper-bound the weight of f on
degrees 1 to d.

Let 𝑔 = 𝑓 �𝑑 . We intend to bound var(𝑔) using the Poincaré inequality – namely, the first item in Fact
A.2. Fix an order 1 Laplacian L1. We have

‖L1𝑔‖2
2 = 〈L1𝑔,L1 𝑓 〉 � ‖L1𝑔‖4‖L1 𝑓 ‖4/3. (A.3)
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As f is Boolean, L1 𝑓 is {−1, 0, 1}-valued and so ‖L1 𝑓 ‖4/3 = ‖L1 𝑓 ‖3/2
2 , and next we bound ‖L1𝑔‖4.

Note that

‖L1𝑔‖4
4 = E

D1
order 1 derivative
consistent with L1

[]‖D1𝑔‖4
4, (A.4)

and we analyse ‖D1𝑔‖4
4 for all derivatives D1. For that, we use hypercontractivity, and we first have to

show that D1𝑔 is global.
Fix a 1-derivative D1 and set ℎ = D1𝑔. By Lemma 8.10 (with 𝑓 = 𝑓 −E [ 𝑓 ] instead of f ), we get that

for all 𝑟 � 𝑑 − 1 and order r derivatives D, we have

‖Dℎ‖2 =
���DD1

(
𝑓 �𝑑

)���
2
� 2𝑂(𝑑4) max

D′ an 𝑟−derivative
D′

1 a 1−derivative

���(D′D′
1 𝑓

)�𝑑−𝑟−1
���

2
+ 𝑛−10𝑑�� 𝑓 �4𝑑��

2

� 2−𝐶 ·𝑑4/2 + 𝑛−10𝑑
√

var( 𝑓 ) def
= 𝛿,

where we used D′D′
1 𝑓 = D′D′

1 𝑓 , which by assumption, has 2-norm at most 2−𝐶 ·𝑑4 , and
�� 𝑓 �4𝑑

��
2 ��� 𝑓 ��2 =

√
var( 𝑓 ). For 𝑟 � 𝑑, we have by Claim 4.3 that ‖Dℎ‖2 = 0. Thus, all derivatives of h have small

2-norm, and by Claim 4.2, we get that h is (2𝑑, 2𝑑𝛿)-global. Thus, from Theorem 1.4, we have that

‖D1𝑔‖4 � 2𝑂 (𝑑3)𝛿1/2‖D1𝑔‖1/2
2 . (A.5)

Plugging inequality (A.5) into (A.4) yields that

‖L1𝑔‖4
4 � 2𝑂 (𝑑3)𝛿2

E
D1

order 1 derivative
consistent with L1

[]‖D1𝑔‖2
2 = 2𝑂 (𝑑3)𝛿2‖L1𝑔‖2

2 � 2𝑂 (𝑑3)𝛿2‖L1 𝑓 ‖2
2.

Plugging this, and the bound we have on the 4/3-norm L1 𝑓 , into (A.3), we get that

‖L1𝑔‖2
2 � 2𝑂 (𝑑3)𝛿1/2‖L1 𝑓 ‖2

2.

Summing this inequality over all 1-Laplacians and using Fact A.2, we get that

var(𝑔) � 1
𝑛

∑
L1

‖L1𝑔‖2
2 � 2𝑂 (𝑑3)𝛿1/2 2

𝑛 − 1

∑
L1

‖L1 𝑓 ‖2
2 = 2𝐶 ·𝑑3

𝛿1/2𝐼 [ 𝑓 ]

for some absolute constant C, and we consider two cases.

The case that 𝑰[ 𝒇 ] � 2−𝑪 ·𝒅3
𝜹−1/2var( 𝒇 )/2.

In this case, we get that var(𝑔) � var( 𝑓 )/2, and so
�� 𝑓 >𝑑�� = var( 𝑓 ) − var(𝑔) � var( 𝑓 )/2. Plugging

this into (A.2) finishes the proof.

The case that 𝑰[ 𝒇 ] � 2−𝑪 ·𝒅3
𝜹−1/2var( 𝒇 )/2.

By definition of 𝛿, we get that either 𝐼 [ 𝑓 ] � 2𝐶 ·𝑑4/4var( 𝑓 ), in which case we are done, or 𝐼 [ 𝑓 ] �
2−𝑂 (𝑑3)𝑛5𝑑var( 𝑓 )3/4, in which case we are done by the lower bound on n. �

Competing interest. The authors have no competing interest to declare.

Financial support. This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 802020-ERC-HARMONIC.

Dor Minzer was funded by NSF CCF award 2227876 and NSF CAREER award 2239160.

https://doi.org/10.1017/fms.2023.118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.118


Forum of Mathematics, Sigma 49

References

[1] E. Bannai and T. Ito, Algebraic Combinatorics. I (The Benjamin/Cummings Publishing Co., Menlo Park, CA, 1984).
Association schemes.

[2] J. Bourgain, ‘On the distribution of the Fourier spectrum of Boolean functions’, Israel J. Math. 131 (2002), 269–276.
[3] M. Braverman, S. Khot and D. Minzer, ‘On rich $2$-to-$1$ games’, Electronic Colloquium on Computational Complexity

(ECCC) 26 (2019), 141.
[4] P. Diaconis and M. Shahshahani, ‘Time to reach stationarity in the Bernoulli–Laplace diffusion model’, SIAM J. Math. Anal.

18(1) (1987), 208–218.
[5] C. F. Dunkl, ‘Orthogonal functions on some permutation groups’, in Relations Between Combinatorics and Other Parts of

Mathematics (Proc. Sympos. Pure Math.) vol. 34 (Amer. Math. Soc., Providence, RI, 1979), 129–147.
[6] S. Eberhard, ‘Product mixing in the alternating group’, Preprint, 2015, arXiv:1512.03517, 2015.
[7] D. Ellis, E. Friedgut and H. Pilpel, ‘Intersecting families of permutations’, J. Amer. Math. Soc. 24(3) (2011), 649–682.
[8] Y. Filmus, ‘Orthogonal basis for functions over a slice of the Boolean hypercube’, Electron. J. Combin. 23(1) (2016), P1.23.
[9] Y. Filmus and E. Mossel, ‘Harmonicity and invariance on slices of the Boolean cube’, Probab. Theory Related Fields

175(3–4) (2019), 721–782.
[10] Y. Filmus, R. O’Donnell and X. Wu, ‘A log-Sobolev inequality for the multislice, with applications’, in 10th Innovations in

Theoretical Computer Science Conference (ITCS 2019) (San Diego, CA, 2019), 34: 1–34:12.
[11] E. Friedgut, ‘Boolean functions with low average sensitivity depend on few coordinates’, Combinatorica 18(1) (1998),

27–35.
[12] E. Friedgut and J. Bourgain, ‘Sharp thresholds of graph properties, and the 𝑘-SAT problem’, J. Amer. Math. Soc. 12(4)

(1999), 1017–1054.
[13] W. Fulton and J. Harris, Representation Theory: A First Course vol. 129 (Springer Science & Business Media, 2013).
[14] W. T. Gowers, ‘Quasirandom groups’, Combin. Probab. Comput. 17(3) (2008), 363–387.
[15] J. Kahn, G. Kalai and N. Linial, ‘The influence of variables on Boolean functions’, in FOCS 1988, 68–80.
[16] P. Keevash, ‘Shadows and intersections: Stability and new proofs’, Adv. Math. 218(5) (2008), 1685–1703.
[17] P. Keevash, N. Lifshitz, E. Long and D. Minzer, ‘Hypercontractivity for global functions and sharp thresholds’, Preprint,

2019, arXiv:1906.05568.
[18] P. Keevash, N. Lifshitz, E. Long and D. Minzer, ‘Forbidden intersections for codes, Preprint, 2020, arXiv:2103.05050.
[19] S. Khot, ‘On the power of unique 2-prover 1-round games’ in Proceedings on 34th Annual ACM Symposium on Theory of

Computing (Montréal, Québec, Canada, 2002), 767–775.
[20] S. Khot, D. Minzer and M. Safra, ‘Pseudorandom sets in grassmann graph have near-perfect expansion’, in FOCS 2018,

592–601.
[21] T.-Y. Lee and H.-T. Yau, ‘Logarithmic Sobolev inequality for some models of random walks’, Ann. Probab. 26(4) (1998),

1855–1873.
[22] N. Lifshitz and D. Minzer, ‘Noise sensitivity on the 𝑝-biased hypercube’, in 60th IEEE Annual Symposium on Foundations

of Computer Science, FOCS 2019 ( Baltimore, MD, 2019), 1205–1226.
[23] E. Mossel, R. O’Donnell and K. Oleszkiewicz, ‘Noise stability of functions with low influences: Invariance and optimality’,

in FOCS 2005, 21–30.
[24] R. O’Donnell, Analysis of Boolean Functions (Cambridge University Press, 2014).
[25] R. O’Donnell and K. Wimmer, ‘KKL, Kruskal-Katona, and monotone nets’, SIAM J. Comput. 42(6) (2013), 2375–2399.
[26] J. Salez, ‘A sharp log-Sobolev inequality for the multislice’, 2020, arXiv:abs/2004.05833.

https://doi.org/10.1017/fms.2023.118 Published online by Cambridge University Press

https://arxiv.org/abs/1512.03517,
https://arxiv.org/abs/1906.05568
https://arxiv.org/abs/2103.05050
https://arxiv.org/abs/2004.05833
https://doi.org/10.1017/fms.2023.118

	1 Introduction
	1.1 Global hypercontractivity
	1.2 Hypercontractivity on non-product spaces
	1.3 Main results
	1.4 Applications
	1.4.1 The level-d inequality
	1.4.2 Global product-free sets are small
	1.4.3 Isoperimetric inequalities
	1.4.4 Deducing the results for other non-product domains
	1.4.5 Other applications

	1.5 Our techniques
	1.5.1 The coupling approach: Proof overview
	1.5.2 Instantiating the coupling approach for the symmetric group
	1.5.3 The direct approach: proof overview

	1.6 Organisation of the paper

	2 Preliminaries
	2.1 The level decomposition
	2.2 Hypercontractivity in product spaces

	3 Hypercontractivity: The coupling approach
	3.1 Hypercontractivity from full globalness
	3.2 Hypercontractivity for low-degree functions

	4 Proof of Lemma 3.5
	5 Proof of Lemma 3.6
	5.1 Identifying the eigenspaces of T(ρ)
	5.1.1 T(ρ) commutes with the action of Sn as a bimodule
	5.1.2 Showing that the spaces VA,B and Vd are invariant under T(ρ)

	5.2 Finding a basis for VA,B
	5.3 Showing that the eigenvalues of T(ρ) on Vd are concentrated on at most d values
	5.4 An L2 variant of Lemma 3.6
	5.5 Deducing the Lq approximation

	6 Hypercontractivity: The direct approach
	6.1 Finding a normalised representation
	6.2 Usefulness of normalised representations
	6.3 Analytic influences and the hypercontractive statement
	6.4 Proof of Theorem 6.8
	6.4.1 Proof of Claim 6.10

	6.5 Deducing hypercontractivity for low-degree functions

	7 Applications
	7.1 Global functions are concentrated on the high degrees
	7.2 Global product-free sets are small
	7.2.1 Basic facts about representation theory of Sn
	7.2.2 The eigenvalues of TF*TF
	7.2.3 Applying Hoffman's bound
	7.2.4 Improving on Theorem 1.8?

	7.3 Isoperimetric inequalities in the transpositions Cayley graph
	7.4 Deducing results for the multi-cube
	7.4.1 Hypercontractivity
	7.4.2 Level-d inequality
	7.4.3 Isoperimetric inequalities

	7.5 Stability result for the Kruskal–Katona theorem on the slice

	8 Proof of the level-d inequality
	8.1 Proof overview
	8.2 Constructing the auxiliary function g
	8.3 Properties of Cayley operators and restrictions
	8.3.1 Random walks
	8.3.2 Degree decomposition on restrictions
	8.3.3 Extension to functions

	8.4 Strengthening Proposition 3.1
	8.5 A weak level-d inequality
	8.6 Interchanging truncations and derivatives with small errors
	8.7 Proof of the level-d inequality
	8.8 Deducing the strong level-d inequality: proof of Theorem 1.7

	A Missing proofs
	A.1 Globalness of f implies globalness of fd
	A.2 Proof of Theorem 7.13


