BIORTHOGONALITY IN THE REAL SEQUENCE SPACES ℓ^p

by ANTHONY J. FELTON and H. P. ROGOSINSKI*

(Received 14th August 1995)

In this paper we generalise some of the results obtained in [1] for the *n*-dimensional real spaces $\ell^p(n)$ to the *infinite dimensional* real spaces ℓ^p . Let p > 1 with $p \neq 2$, and let x be a non-zero real sequence in ℓ^p . Let $\mathcal{E}(x)$ denote the closed linear subspace spanned by the set $\{x\}^{\pm}$ of all those sequences in ℓ^p which are biorthogonal to x with respect to the *unique* semi-inner-product on ℓ^p consistent with the norm on ℓ^p . In this paper we show that codim $\mathcal{E}(x) = 1$ unless *either* x has exactly two non-zero coordinates which are equal in modulus, or x has exactly three non-zero coordinates α, β, γ with $|\alpha| \ge |\beta| \ge |\gamma|$ and $|\alpha|^p > |\beta|^p + |\gamma|^p$. In these exceptional cases codim $\mathcal{E}(x) = 2$. We show that $\{x\}^{\pm}$ is a linear subspace if, and only if, x has *either* at most two non-zero coordinates or x has exactly three non-zero coordinates which satisfy the inequalities stated above.

1991 Mathematics subject classification: 46C50.

0. Introduction

Throughout this paper, p denotes a real number with p > 1 and $p \neq 2$. Consider the real normed linear space ℓ^p , and note that there exists a unique semi-inner-product on ℓ^p consistent with the norm. In fact for $\mathbf{x}, \mathbf{y} \in \ell^p$

$$[\mathbf{x}, \mathbf{y}] = \frac{1}{\|\mathbf{y}\|^{p-2}} \sum_{i=1}^{\infty} x_i |y_i|^{p-1} \operatorname{sgn} y_i.$$

For a discussion of semi-inner-products and semi-inner-product spaces we refer the reader to [2] and [3]. The following definitions are given in [1]. If $x, y \in \ell^{p}$ then x and y are said to be *biorthogonal* if [x, y] = [y, x] = 0. Further for fixed $x \in \ell^{p}(n)$, $\tau(x)$ is defined to be the number of elements in a maximal linearly independent set of vectors biorthogonal to x. The following theorem is the main result (Theorem 4.5) of [1].

Theorem 0.1. Let $n \ge 2$, and let $\mathbf{x} \in \ell^{p}(n)$. Let r be the number of non-zero coordinates of \mathbf{x} .

- (i) If r = 0 then $\tau(\mathbf{x}) = n$.
- (ii) If r = 1 or $r \ge 4$ then $\tau(\mathbf{x}) = n 1$.

* This research was funded by the University of Wales.

(iii) If r = 2 then $\tau(\mathbf{x}) = n - 1$ if the two non-zero coordinates have equal modulus, and $\tau(\mathbf{x}) = n - 2$ otherwise.

(iv) If r = 3, let $\{\alpha, \beta, \gamma\}$ be a permutation of the three non-zero coordinates such that $|\alpha| \ge |\beta| \ge |\gamma|$. Then $\tau(\mathbf{x}) = n - 1$ if $|\alpha|^p \le |\beta|^p + |\gamma|^p$ and $\tau(\mathbf{x}) = n - 2$ otherwise.

Definition 0.2. For $x \in \ell^p$, define $\mathcal{E}(x)$ to be the smallest closed linear subspace in ℓ^p which contains every vector biorthogonal to x.

Remark 0.3. Let $x \in \ell^p$. Then $\mathcal{E}(x) \subseteq \{y : [y, x] = 0\}$. (This follows immediately from the left-linearity and left-continuity of the semi-inner-product.)

In the next section we shall show that $\mathcal{E}(\mathbf{x})$ has finite codimension, and we shall determine codim $\mathcal{E}(\mathbf{x})$ for all non-zero \mathbf{x} in ℓ^p .

1. The space $\mathcal{E}(\mathbf{x})$

We introduce the following notation.

Notation. For $\mathbf{x} = (x_1, x_2, ..., x_n)$ in $\ell^p(n)$, denote by $\hat{\mathbf{x}}$ the sequence $(x_1, x_2, ..., x_n, 0, 0, ...)$ in ℓ^p . For $\mathbf{x} = (x_1, x_2, ...)$ in ℓ^p , denote by $\mathbf{x}^{[n]}$ the sequence $(x_1, x_2, ..., x_n)$ in $\ell^p(n)$.

Theorem 1.1. Let x be a non-zero vector in ℓ^p . Then codim $\mathcal{E}(\mathbf{x}) = 1$ unless either

(i) **x** has exactly two non-zero coordinates α and β with $|\alpha| \neq |\beta|$

or

(ii) **x** has exactly three non-zero coordinates α, β and γ with $|\alpha| \ge |\beta| \ge |\gamma|$ and $|\alpha|^p > |\beta|^p + |\gamma|^p$.

If either of the conditions (i) or (ii) holds then $codim \mathcal{E}(\mathbf{x}) = 2$.

Proof. Let $\mathbf{x} \in \ell^p$. Suppose first that \mathbf{x} has *infinitely* many non-zero coordinates. Choose N so that $\mathbf{x}^{[n]}$ has at least four non-zero coordinates when $n \ge N$. Then by Theorem 0.1(ii) for $n \ge N$, $\tau(\mathbf{x}^{[n]}) = n - 1$, and we can find (n - 1) linearly independent vectors $\mathbf{f}_{i,n}(1 \le i \le n - 1)$ in $\ell^p(n)$ which are biorthogonal to $\mathbf{x}^{[n]}$. The vector $\mathbf{x}^{[n]}$ is *not* a linear combination of these vectors since every such linear combination is left-orthogonal to $\mathbf{x}^{[n]}$. Hence $\{\mathbf{x}^{[n]}, \mathbf{f}_{1,n}, \ldots, \mathbf{f}_{n-1,n}\}$ is a basis for $\ell^p(n)$.

Let $\mathbf{y} \in \ell^p$, and let $n \ge N$. Then there exists scalars $\lambda_{i,n}$ $(0 \le i \le n-1)$ so that

$$\mathbf{y}^{[n]} = \lambda_{0,n} \mathbf{x}^{[n]} + \sum_{i=1}^{n-1} \lambda_{i,n} \mathbf{f}_{i,n}.$$
 (1)

By the left-linearity of the semi-inner-product,

$$[\mathbf{y}^{[n]}, \mathbf{x}^{[n]}] = \lambda_{0,n} \|\mathbf{x}^{[n]}\|^2,$$
(2)

and so

$$\lim_{n \to \infty} \lambda_{0,n} = \frac{[\mathbf{y}, \mathbf{x}]}{\|\mathbf{x}\|^2}.$$
(3)

Let

$$\mathbf{z}_n = \sum_{i=1}^{n-1} \lambda_{i,n} \hat{\mathbf{f}}_{i,n}, \qquad (n \ge N).$$
(4)

Then $\mathbf{z}_n \in \mathcal{E}(\mathbf{x})$ since each of the vectors $\hat{\mathbf{f}}_{i,n}$ is biorthogonal to \mathbf{x} . By (1),

 $\widehat{\mathbf{y}^{[n]}} = \lambda_{0,n} \widehat{\mathbf{x}^{[n]}} + \mathbf{z}_n,$

and so, using (3) and the observation that $\widehat{x^{[n]}} \to x$, and $\widehat{y^{[n]}} \to y$,

$$\lim_{n\to\infty}\mathbf{z}_n=\mathbf{y}-\frac{[\mathbf{y},\mathbf{x}]}{\|\mathbf{x}\|^2}\mathbf{x}$$

Hence, since $\mathcal{E}(\mathbf{x})$ is closed,

$$\mathbf{y} - \frac{[\mathbf{y}, \mathbf{x}]}{\|\mathbf{x}\|^2} \mathbf{x} \in \mathcal{E}(\mathbf{x}).$$
(5)

Noting that $x \neq 0$, it follows from Remark 0.3 that $x \notin \mathcal{E}(x)$. Since (5) holds for all y in ℓ^{p} , we deduce that

$$\ell^p = \mathcal{E}(\mathbf{x}) \oplus \mathcal{F}(\mathbf{x}),$$

where $\mathcal{F}(\mathbf{x})$ is the one-dimensional subspace generated by \mathbf{x} . It follows that $\operatorname{codim} \mathcal{E}(\mathbf{x}) = 1$.

Suppose now that $\mathbf{x} = (x_1, x_2, ...)$ has finitely many non-zero coordinates. Choose n_0 so that $x_i = 0$ when $i > n_0$. Let $\tau_0 = \tau(\mathbf{x}^{[n_0]})$, and let $\tau_1 = n_0 - \tau_0$. Then we can find a basis $\{\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_{n_0}\}$ in $\ell^p(n_0)$ with \mathbf{f}_i biorthogonal to $\mathbf{x}^{[n_0]}$ when $\tau_1 + 1 \le i \le n_0$. Let $\mathbf{y} = (y_1, y_2, ...) \in \ell^p$. Then there exist scalars λ_i $(1 \le i \le n_0)$ so that

$$\mathbf{y} = \sum_{i=1}^{n_0} \lambda_i \hat{\mathbf{f}}_i + \sum_{i=n_0+1}^{\infty} y_i \mathbf{e}_i, \tag{6}$$

where \mathbf{e}_i is the ith standard basis vector in ℓ^p . We can write

$$\mathbf{y} = \mathbf{y}_1 + \mathbf{y}_2,\tag{7}$$

where

$$\mathbf{y}_1 = \sum_{i=\tau_1+1}^{n_0} \lambda_i \hat{\mathbf{f}}_i + \sum_{i=n_0+1}^{\infty} y_i \mathbf{e}_i, \quad \text{and} \quad \mathbf{y}_2 = \sum_{i=1}^{\tau_1} \lambda_i \hat{\mathbf{f}}_i$$

Since each of the vectors $\hat{\mathbf{f}}_i$ $(\tau_1 + 1 \le i \le n_0)$ and each of the vectors \mathbf{e}_i $(i \ge n_0 + 1)$ is biorthogonal to \mathbf{x} ,

$$\mathbf{y}_1 \in \mathcal{E}(\mathbf{x}). \tag{8}$$

If $\mathcal{F}(\mathbf{x})$ is the τ_1 -dimensional subspace of ℓ^p spanned by the vectors $\hat{\mathbf{f}}_i$ $(1 \le i \le \tau_1)$ then

$$\mathbf{y}_2 \in \mathcal{F}(\mathbf{x}). \tag{9}$$

Noting that the map $z \to z^{[n_0]}$ is a continuous linear map from ℓ^p onto $\ell^p(n_0)$, and also that z is biorthogonal to x if, and only if, $z^{[n_0]}$, is biorthogonal to $x^{[n_0]}$, it is easy to see that if $z \in \mathcal{E}(x)$ then $z^{[n_0]} \in \mathcal{E}(x^{[n_0]})$. Now let $z \in \mathcal{E}(x) \cap \mathcal{F}(x)$. Then $z^{[n_0]}$ belongs to $\mathcal{E}(x^{[n_0]})$, and so $z^{[n_0]}$ is a linear combination of the vectors \mathbf{f}_i $(1 \le i \le \tau_1)$, $z^{[n_0]}$ must also be a linear combination of the vectors \mathbf{f}_i $(1 \le i \le \tau_1)$, $z^{[n_0]}$ must also be a linear combination of the vectors \mathbf{f}_i $(1 \le i \le \tau_1)$, $z^{[n_0]}$ must also be a linear combination of the vectors \mathbf{f}_i . It follows that $z^{[n_0]}$ is the zero-vector in $\ell^p(n_0)$, and so $\mathbf{z}(=\widehat{\mathbf{z}^{[n_0]}})$ is the zero-vector in ℓ^p . Hence

$$\mathcal{E}(\mathbf{x}) \cap \mathcal{F}(\mathbf{x}) = \{\mathbf{0}\}.\tag{10}$$

By (7), (8), (9) and (10) we see that

$$\ell^p = \mathcal{E}(\mathbf{x}) \oplus \mathcal{F}(\mathbf{x}),$$

and hence codim $\mathcal{E}(\mathbf{x}) = \dim \mathcal{F}(\mathbf{x}) = \tau_1$. An application of Theorem 0.1 shows that $\tau_1 = 1$ unless x satisfies either of the conditions (i) and (ii) in which case $\tau_1 = 2$.

Remark 1.2. If E and F are proper linear subspaces of X with codim E = 1 and $E \subseteq F$ then E = F.

Let [., .] be a semi-inner-product on the normed space X which is consistent with the norm on X.

Theorem 1.3. (i) Let x be a non-zero vector in X. Then $\mathcal{E}(x)$ has codimension 1 in X if, and only if,

328

$$\mathcal{E}(\mathbf{x}) = \{\mathbf{y} \in X : [\mathbf{y}, \mathbf{x}] = 0\}.$$

(ii) If the set of all vectors biorthogonal to \mathbf{x} is a linear subspace of X with codimension 1 then every vector which is left-orthogonal to \mathbf{x} is also right-orthogonal to \mathbf{x} .

Proof. Write $\{x\}^L = \{y \in X : [y, x] = 0\}$.

(i) If $\mathcal{E}(\mathbf{x}) = {\mathbf{x}}^{L}$ then $\mathcal{E}(\mathbf{x})$ is the kernel of a non-zero continuous linear functional on X, and so has codimension 1. Suppose conversely that $\mathcal{E}(\mathbf{x})$ has codimension 1. Let $E = \mathcal{E}(\mathbf{x})$ and $F = {\mathbf{x}}^{L}$. Applying Remarks 0.3 and 1.2 we see that $\mathcal{E}(\mathbf{x}) = {\mathbf{x}}^{L}$.

(ii) Apply Remark 1.2 with $E = \{y : x \pm y\}$ and $F = \{x\}^{L}$.

2. The subspace problem

For $x \in \ell^p$, let $\{x\}^{\pm}$ denote the set of all those sequences in ℓ^p which are biorthogonal to x. In this section we consider the problem of characterising those x for which $\{x\}^{\pm}$ is a linear subspace. We begin with the following lemma.

Lemma 2.1. (i) Let $\mathbf{x} \in \ell^{p}(3)$. If all of the coordinates of \mathbf{x} are non-zero then there exists a vector in $\ell^{p}(3)$ which is left-orthogonal but not right-orthogonal to \mathbf{x} .

(ii) Let $\mathbf{x} \in \ell^p$. If \mathbf{x} has at least three non-zero coordinates then there exists a vector in ℓ^p which is left-orthogonal but not right-orthogonal to \mathbf{x} .

Proof. We shall only prove (i) since (ii) then follows as an obvious consequence.

Noting the fact that the semi-inner-product is homogeneous, we can assume without loss of generality that $\mathbf{x} = (a, b, 1)$, with a and b non-zero. Suppose for a contradiction that every vector which is left-orthogonal to x is right-orthogonal to x. The vector $(1, 0, -|a|^{p-1} \operatorname{sgn} a)$ is left-orthogonal to x, and so by our supposition right-orthogonal to x. This implies that

$$a+|a|^{(p-1)^2}\operatorname{sgn}(-\operatorname{sgn} a)=0,$$

and so $|a| = |a|^{(p-1)^2}$. Hence |a| = 1 since $p \neq 2$. Similarly the left-orthogonality and consequent right-orthogonality of $(0, 1, -|b|^{p-1} \operatorname{sgn} b)$ to x implies that |b| = 1. Since |a| = |b| = 1, the vector (2sgn a, -sgn b, -1) is left-orthogonal to x, and a simple calculation shows that the right-orthogonality of this vector to x implies that $2^{p-1} = 2$. Since $p \neq 2$ we obtain the desired contradiction.

Theorem 2.2. For given $\mathbf{x} \in \ell^p$, $\{\mathbf{x}\}^{\pm}$ is a linear subspace if, and only if, either \mathbf{x} has at most two non-zero coordinates or \mathbf{x} has exactly three non-zero coordinates α , β , γ with $|\alpha| \ge |\beta| \ge |\gamma|$ and $|\alpha|^p > |\beta|^p + |\gamma|^p$.

Proof. If x = 0 then $\{x\}^{\pm} = \ell^{p}$. If x has exactly one non-zero coordinate x_{n} then

 $\{\mathbf{x}\}^{\pm} = \{(y_1, y_2, \ldots) \in \ell^p : y_{n_1} = 0\}.$

If x has exactly two non-zero coordinates x_{n_1} and x_{n_2} then it is easily verified that

$$\{\mathbf{x}\}^{\pm} = \{(y_1, y_2, \ldots) \in \ell^p : y_{n_1} = y_{n_2} = 0\} \text{ if } |x_{n_1}| \neq |x_{n_2}|,$$

and

$$\{\mathbf{x}\}^{\pm} = \left\{ (y_1, y_2, \ldots) \in \ell^p : y_{n_1} = -\operatorname{sgn}\left(\frac{x_{n_1}}{x_{n_2}}\right) y_{n_2} \right\} \quad \text{if} \quad |x_{n_1}| = |x_{n_2}|.$$

Hence $\{\mathbf{x}\}^{\pm}$ is a linear subspace if \mathbf{x} has at most two non-zero coordinates. If \mathbf{x} has exactly three non-zero coordinates x_{n_1}, x_{n_2} and x_{n_3} with $|x_{n_1}| \ge |x_{n_2}| \ge |x_{n_3}|$ and $|x_{n_1}|^p > |x_{n_2}|^p + |x_{n_3}|^p$ then $\tau(x_{n_1}, x_{n_2}, x_{n_3}) = 1$ and

$$\{\mathbf{x}\}^{\pm} = \{(y_1, y_2, \ldots) \in \ell^p : (y_{n_1}, y_{n_2}, y_{n_3}) \in \mathcal{V}\},\$$

where \mathcal{V} is the one-dimensional linear subspace of $\ell^{p}(3)$ consisting of all those vectors which are biorthogonal to $(x_{n_1}, x_{n_2}, x_{n_3})$. Hence also in this case $\{\mathbf{x}\}^{\pm}$ is a linear subspace.

In all of the remaining cases, Lemma 2.1 shows that there exists a vector which is left-orthogonal but not right-orthogonal to x. Moreover in all of these cases Theorem 1.1 shows that codim $\mathcal{E}(\mathbf{x}) = 1$. Hence $\{\mathbf{x}\}^{\pm}$ is *not* a linear subspace, since otherwise $\mathcal{E}(\mathbf{x}) = \{\mathbf{x}\}^{\pm}$ and Theorem 1.3(ii) leads to a contradiction.

Acknowledgement. We would like to thank the referee for his helpful comments concerning the presentation of this paper.

REFERENCES

1. ANTHONY J. FECTON and H. P. ROGOSINSKI, Biorthogonality in the Banach Spaces $\ell^{p}(n)$, Proc. Edinburgh Math. Soc. 39 (1996), 325-336.

2. J. R. GILES, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436-446.

3. G. LUMER, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WALES, SWANSEA SINGLETON PARK, SA2 8PP WALES

330