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BIORTHOGONALITY IN THE REAL SEQUENCE SPACES I"

by ANTHONY J. FELTON and H. P. ROGOSINSKI*

(Received 14th August 1995)

In this paper we generalise some of the results obtained in [1] for the n-dimensional real spaces t'(n) to the
infinite dimensional real spaces I'. Let p > 1 with p jt 2, and let x be a non-zero real sequence in I'. Let £(x)
denote the closed linear subspace spanned by the set {x}* of all those sequences in I' which are biorthogonal
to x with respect to the unique semi-inner-product on I' consistent with the norm on I'. In this paper we
show that codim £(x) = 1 unless either x has exactly two non-zero coordinates which are equal in modulus,
or x has exactly three non-zero coordinates a, /?, y with |a| > |/?| > |y| and |a|p > |/?|' + |y|'. In these
exceptional cases codim £(x) = 2. We show that (x}* is a linear subspace if, and only if, x has either at most
two non-zero coordinates or x has exactly three non-zero coordinates which satisfy the inequalities stated
above.

1991 Mathematics subject classification: 46C50.

0. Introduction

Throughout this paper, p denotes a real number with p > 1 and p ^ 2. Consider the
real normed linear space f, and note that there exists a unique semi-inner-product on
I' consistent with the norm. In fact for x , y e f

For a discussion of semi-inner-products and semi-inner-product spaces we refer the
reader to [2] and [3]. The following definitions are given in [1]. If x, y e I" then x and y
are said to be biorthogonal if [x, y] = [y, x] = 0. Further for fixed x 6 tp(n), T(X) is
defined to be the number of elements in a maximal linearly independent set of vectors
biorthogonal to x. The following theorem is the main result (Theorem 4.5) of [1].

Theorem 0.1. Let n>2, and let x e fin). Let r be the number of non-zero
coordinates ofx.

(i) Ifr = 0thenx(x) = n.

(ii) Ifr = 1 or r > 4 then T(X) = n - 1.
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(iii) If r = 2 then T(X) — n — \ if the two non-zero coordinates have equal modulus,
and T(X) = n — 2 otherwise.

(iv) If r = 3, let {a, ft, y] be a permutation of the three non-zero coordinates such that
|a| > |0| > \y\. Then T(X) = n - 1 if\<x\" < \0\" + \y\" and T(X) = n - 2 otherwise.

Definition 0.2. For x e I", define £(x) to be the smallest closed linear subspace in
lp which contains every vector biorthogonal to x.

Remark 0.3. Let x e I". Then £(x) c {y : [y, x] = 0}. (This follows immediately from
the left-linearity and left-continuity of the semi-inner-product.)

In the next section we shall show that £(x) has finite codimension, and we shall
determine codim £(x) for all non-zero x in f.

1. The space £(x)

We introduce the following notation.

Notation. For x — (x,, x2,..., x j in lp(n), denote by x the sequence (x, ,x2 , . . . .
xn, 0, 0,...) in £p. For x = (x,, x2,...) in lp, denote by xw the sequence (x,, x2,. .., xn) in

Theorem 1.1. Let x be a non-zero vector in lp. Then codim £(x) = 1 unless either

(i) x has exactly two non-zero coordinates a and /? with |a| ^ |/?|

or

(ii) x has exactly three non-zero coordinates a, /? and y with |a| > |/?| > \y\ and
\ x \ p > \ P \ p + \y\p.

If either of the conditions (i) or (ii) holds then codim £(x) = 2.

Proof. Let x e tp. Suppose first that x has infinitely many non-zero coordinates.
Choose N so that xw has at least four non-zero coordinates when n > N. Then by
Theorem 0.1 (ii) for n> N, T(XN) = n — 1, and we can find (n — 1) linearly independent
vectors fiin(l < i < n - 1) in l"(n) which are biorthogonal to xw. The vector x[nl is not a
linear combination of these vectors since every such linear combination is left-
orthogonal to xw. Hence {xw, f, „ , . . . , fn_, „} is a basis for l"{n).

Let y e lp, and let n> N. Then there exists scalars A, „ (0 < i < n — 1) so that
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By the left-linearity of the semi-inner-product,

[yw,x["1] = A0.J|x[n|||2, (2)

and so

l im^ . . = ^ . (3)
||x||2

Let

X>.nL. (»**)• (4)

Then zn e £(x) since each of the vectors f, „ is biorthogonal to x. By (1),

yW = A0,nxW + zn,

and so, using (3) and the observation that xw -*• x, and y[r| ->• y,

Hence, since £(x) is closed,

' llxf

Noting that x ^ 0, it follows from Remark 0.3 that x & £(x). Since (5) holds for all y
in tp, we deduce that

op P(-v\ en T(Y\
•C — t / l A l \I7 «/ I Ay j

where .F(x) is the one-dimensional subspace generated by x. It follows that
codim £(x) = 1.

Suppose now that x = (x , ,x 2 , . . . ) has finitely many non-zero coordinates. Choose
n0 so that x, = 0 when i > «„. Let T0 = T(x[no1), and let T, = n0 — T0. Then we can find a
basis {f,, f2,..., f^} in ^(MQ) with f, biorthogonal to x["°' when T, + 1 < i < n0. Let
y = (y,, y2,...) e lp. Then there exist scalars A, (1 < i < «o) s o that

w . (6)
i=no+l

https://doi.org/10.1017/S0013091500023762 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023762


328 ANTHONY J. FELTON AND H. P. ROGOSINSKI

where e, is the i'* standard basis vector in I'. We can write

y = y, + y2. (7)

where

y. = 5Z A'*i+ 1C y*" and y 2 = 5ZA^-

Since each of the vectors f, (x, -I-1 < i < n0) and each of the vectors e, (i > t% + 1) is
biorthogonal to x,

y, e £(x). (8)

If !F{\) is the T,-dimensional subspace of f spanned by the vectors f, (1 < i < T,) then

y2 e H*)- (9)

Noting that the map z -*• z1""1 is a continuous linear map from "'' onto tp{n^), and also
that z is biorthogonal to x if, and only if, z[no1, is biorthogonal to x1""1, it is easy to see
that if z G £(x) then z1""1 e £(xln°]). Now let z e 5(x) n 5"(x). Then z(no1 belongs to £(xM),
and so z1"0' is a linear combination of the vectors f, (T, + 1 < i < n0). On the other hand,
since z is a linear combination of the vectors f, (1 < i < T,), Z["O) must also be a linear
combination of the vectors f, (1 < i < T,). It follows that z1"0' is the zero-vector in lp(n0),
and so z(= zt"«i) is the zero-vector in V. Hence

= {0}. (10)

By (7), (8), (9) and (10) we see that

I' = £(\) © T{x),

and hence codim £(x) = dim.F(x) = T,. An application of Theorem 0.1 shows that
T, = 1 unless x satisfies either of the conditions (i) and (ii) in which case T, = 2. •

Remark 1.2. If E and F are proper linear subspaces of X with codim E = 1 and
E c F then E = F.

Let [. , .] be a semi-inner-product on the normed space X which is consistent with
the norm on X.

Theorem 1.3. (i) Let x be a non-zero vector in X. Then £(x) has codimension 1 in X
if, and only if.
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£(x) = (y 6 X : [y, x] = 0}.

(ii) If the set of all vectors biorthogonal to x is a linear subspace ofX with codimension
1 then every vector which is left-orthogonal to x is also right-orthogonal to x.

Proof. Write {x}L = {y € X:\y,x] = 0).

(i) If £(x) = {x}L then £(x) is the kernel of a non-zero continuous linear functional
on X, and so has codimension 1. Suppose conversely that £(x) has codimension 1. Let
E = £(x) and F - {x}L. Applying Remarks 0.3 and 1.2 we see that £(x) — {\}L.

(ii) Apply Remark 1.2 with E = {y : x ± y} and F = {x}L. •

2. The subspace problem

For x G V', let {x}* denote the set of all those sequences in V which are biorthogonal
to x. In this section we consider the problem of characterising those x for which {x}*
is a linear subspace. We begin with the following lemma.

Lemma 2.1. (i) Let x G lp(3). If all of the coordinates of x are non-zero then there
exists a vector in £p(3) which is left-orthogonal but not right-orthogonal to x.

(ii) Let x e f If x has at least three non-zero coordinates then there exists a vector
in lp which is left-orthogonal but not right-orthogonal to x.

Proof. We shall only prove (i) since (ii) then follows as an obvious consequence.
Noting the fact that the semi-inner-product is homogeneous, we can assume without

loss of generality that x = {a, b, 1), with a and b non-zero. Suppose for a contradiction
that every vector which is left-orthogonal to x is right-orthogonal to x. The vector
(1,0, — |a|p"'sgn a) is left-orthogonal to x, and so by our supposition right-orthogonal
to x. This implies that

a + |a|<p-|)2sgn(-sgn a) = 0,

and so \a\ = \a\{'~x) . Hence |a| = 1 since p # 2. Similarly the left-orthogonality and
consequent right-orthogonality of (0,1, — Ibl^'sgn b) to x implies that \b\ = 1. Since
\a\ = \b\ = 1, the vector (2sgn a, — sgn b, — 1) is left-orthogonal to x, and a simple
calculation shows that the right-orthogonality of this vector to x implies that 2"~' = 2.
Since p / 2 we obtain the desired contradiction. •

Theorem 2.2. For given x G V, {x}* is a linear subspace if, and only if, either x has
at most two non-zero coordinates or x has exactly three non-zero coordinates a, /?, y with

Proof. If x = 0 then {x}* = V. If x has exactly one non-zero coordinate xni then
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{x}± = { (> ' 1 > y 2 , . . . ) e£ ' > :y n i =0} .

If x has exactly two non-zero coordinates xni and xni then it is easily verified that

M± = {(yi,y2,---)eZp--ynl=yn2 = 0} if I x j ^ i x j ,

and

Hence {x}* is a linear subspace if x has at most two non-zero coordinates. If x has
exactly three non-zero coordinates xn|,xn2 and xnj with |xni| > |xn2| > |xnj and
\Xn,\P > |xB2r + |xaj|

p thenT(xni>xn2,xn,) = 1 and

M* = {(y,, y2, • • •) e I" : (yn,, yn, yn}) e V},

where V is the one-dimensional linear subspace of £p(3) consisting of all those vectors
which are biorthogonal to (xni, xn2, xnj). Hence also in this case {x}* is a linear
subspace.

In all of the remaining cases, Lemma 2.1 shows that there exists a vector which is
left-orthogonal but not right-orthogonal to x. Moreover in all of these cases
Theorem 1.1 shows that codim £(x) = 1. Hence {x}* is not a linear subspace, since
otherwise £(x) = {x}* and Theorem 1.3(ii) leads to a contradiction. •
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