
THREE PLANE SEXTICS AND THEIR 
AUTOMORPHISMS 

W. L. EDGE 

1. The sextics of the title have five cusps and are particular examples of the 
curve encountered by Humbert (5). The claim to notoriety of Humbert's curve 
of genus 5 has been that all its abelian integrals of the first kind are linear 
combinations of five elliptic integrals; it also has (1) the striking property that 
its 120 Weierstrassian points are confluent in threes at only 40 distinct points; 
whereas a general curve of genus 5 has, after Riemann, 12 moduli, a Humbert 
curve has merely 2. The three curves to be studied now have no free moduli 
at all, but although this tempts one to construct period matrices, such trans
cendental topics will not be handled here. That the quadrics which contain the 
canonical model C of a Humbert sextic have a common self-polar simplex 2 
so that C is invariant for an elementary abelian group E of 16 self-pro jectivi-
ties, seems to have been unremarked until 1951. Thus it is all the more intrigu
ing that, within a year of the printing of Humbert's paper and in utter 
unawareness of it (still less of any connection with its subject matter) Wiman 
gave (6) the canonical models of the three sextics which we are now to consider. 
The groups of self-pro jectivi ties of Wiman's curves have orders not merely 16 
but 64, 96, 160, respectively; it was the quest for canonical curves of genus 5 
that admitted self-pro jectivi ties, and the more the merrier, that conducted 
Wiman to his goal. 

By far the greater part of the paper is devoted to the Humbert sextics that 
are projections of Wiman's curves from one of their tangents; but three matters 
concerning the general curve C invariant under E are treated, knowledge of 
these being necessary for handling the special cases. 

(a) A canonical form for C, never previously exploited if indeed noticed at 
all, is given in (2.1). 

(b) In §§ 6 and 7 we assemble the "machinery" for projecting C from a 
tangent into a 5-cusped plane sextic. This yields, by a completely different 
process, some of the equations found in (1); but the algebra developed here 
is perhaps better adapted to handle Wiman's curves. 

(c) In §§ 11 and 12 we describe how each of the five harmonic perspectivities 
under which C is invariant implies a Cremona transformation of the plane 
sextic into itself, the homaloids being nodal cubics; and how equations for 
this transformation can be found. 
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In the Appendix we describe a plane sextic with five nodes that admits a 
group of 96 Cremona self-transformations and whose equation is symmetric 
in the coordinates. 

2. Any canonical curve of genus 5 which does not carry a rational pencil of 
either duads or triads of points is the complete intersection of three quadrics 
in [4] (that is, in projective 4-space). I t has been pointed out in (1) that the 
quadrics which so determine the canonical model C of the plane sextic Jtif 
encountered by Humbert in 1894 (5) have a common self-polar simplex 2 ; 
C is therefore invariant under an elementary abelian group E of 16 projecti-
vities whose operations answer to changes in sign of coordinates referred to 2. 
Jlf admits an isomorphic group of 16 birational self-transformations which, 
as will be seen, are subordinate to Cremona transformations of its plane. One 
can, as has recently been remarked (2), span the net N of quadrics containing 
Cby 

(2.1) £ xf = 0, X apj* = 0, 2 *J%2 = 0» 

where, here and hereafter, the summations run over j = 1, 2, 3, 4, 5. Since 
one assumes that no cone of N has a plane for vertex, no two of the fixe aâ 

are equal. The reason why (2.1) is available as a standard form for C is, 
simply, that if C were defined by 

X) afiCj2 = X) PJXJ2 = X) 7JXJ2 = 0, 

the conic, in a plane where homogeneous coordinates are (a, ft, y), through 
the five points (aj, fij, y 3) could, by appropriate choice of the reference system, 
be taken as /52 = ay with parametric representation (t2, t, 1). I t thus appears 
that whereas a curve of genus 5 has, in general, 12 moduli (this being the value 
of 3p — 3 for p = 5), a Humbert curve depends only on the two projective 
invariants of the five numbers aj. 

Now it so happens that three types of such curves, still further restricted 
so that no moduli remain free, were discovered by Wiman in his search for 
curves of genera 4, 5, 6 possessing finite groups of birational self-transforma
tions; equations for them may be found in (6, p. 39). These curves in [4] being 
invariant under groups of projectivities of orders (not merely 16 but) 64, 96, 
160, we name WG\ W9\ W1™. 

3. The equations for Wu are in precisely the form (2.1) with a,\ = 1, a2 = i, 
a3 = — 1, a4 = —i, a5 = 0. The projective characterization of this pentad of 
numbers is "a regular sextuple lacking one of its six members", a regular 
sextuple (3, p. 299) consisting of three pairs each harmonic to both the others. 
Every quadric containing W^ is invariant under c, the cyclic permutation 
(x 1X2X3X4). This, in common with all 64 projectivities of the group, can be 
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imposed by a matrix of determinant + 1 , indeed by 

1 • -
1 

1 

• 1 . 

The harmonic inversion hj in the solid Xj = 0 and the opposite vertex Xj of 
the simplex of reference is imposed by a diagonal matrix: all its diagonal 
elements are — 1 save for a single + 1 on row j . Since ch5 = h5c, while 

(3.1) ch\ = h^c, ch2 = hie, chz = Iri^c, ch± — hzcf 

the whole group can be generated by c and any one hi other than &5; for 
instance, 

h$ — hjizhzhi = chic*1 - c2hic~2 - c%zC~z - cAhi = {ch\)A. 

4. Wiman's equations for W160 are, with e 9e 1, a fifth root of unity, 

xi2 + x2
2 + x3

2 + x4
2 + x5

2 = 0, 

Xi2 + ex2
2 + €2x3

2 + e3x4
2 + e4x5

2 = 0, 

e4Xi2 + e3x2
2 + e2x3

2 + €X4
2 + x5

2 = 0. 

As the conic through the five points 

(1, 1,€4), (1, 6, €3), (1, 62, 62), (1, €3, 6), (1, 64,1) 

is a2 = €jfry, Wiman's first unit quadric will be our £ a , x / = 0. Either 
of his two others can play the part of our unit quadric. On replacing Xly X2 , X3 , X 4 

by €3Xi, ex2, e4x3, e2x4, Wiman's quadratic forms become 

exi2 + e2x2
2 + e3x3

2 + e4x4
2 + x5

2, 
€4(e2Xi2 + e4x2

2 + ex3
2 + e3x4

2 + x6
2), 

xi2 + x2
2 + x3

2 + x4
2 + x5

2; 

equating these to zero yields (2.1) with dj = ej. Each of the quadrics is in
variant under the cyclic permutation (xiX2x3x4x5) while the involution that 
replaces Xi , X 2 , X3 , X 4 by €4x4, €

3x3, e
2x2, exi, respectively, leaves X) «'x/ 

invariant and transposes X) %j2 with ]£ e2iXj2. Here, too, the whole group of 
projectivities can be imposed by matrices of determinant + 1 ; take 

1 

1 

and d = 

l j 

Then chj = 1fij-\C\ the harmonic inversions and the cyclic projectivity generate 
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a group of order 80 having E for a normal subgroup. Moreover, while dh5 = hbd, 
dhi = hid, dh2 — hzdy dhz = h2dy dh^ = hid so that the involution and the 
harmonic inversions generate a group of order 32. Finally, the matrices 
satisfy dcd = e4c_1, so that the projectivities satisfy dcd = c~l as for a dihedral 
group. 

5. The three quadrics used by Wiman to determine W96 are line-cones, so 
that it is necessary to use linear combinations of them in order to obtain the 
non-singular quadrics of (2.1). If co is a complex cube root of unity, Wiman 
defines W96 by 

(5.1) Xi2 + X4
2 + #52 = 0, X2

2 + C0X4
2 + 0)2X-0

2 = 0, XZ
2 + C02X4

2 + COX5
2 = 0. 

The conic through the five points 

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, CO, CO2), (1, CO2, CO) 

is fiy + 7<x + aP — 0 and has the parametric form 

a:@:y = t:t2 - t:l - /. 

The chord joining / = u and / = v is 

(u — l)(v — l )a + P + uvy = 0 

and, so long as u ^ v> the conic can be referred to this chord and the tangents 
at / = u and / = v. Thus, in order to attain (2.1), it is enough to combine 
(5.1) linearly using the three sets of multipliers 

(u - l ) 2 , l,u*; (u - l)(v - 1), l,uv; (v - l ) 2 , 1, v2 

and then choose the unit point so that either the first or the third of these 
combinations provides the unit quadratic form. The choice of u and v is free 
save for the ban on their equality and for the proviso that every Xj must be 
present in the unit form. Now 

(U - 1)(V - l ) 0 t i 2 + *42 + Xb
2) + (X2

2 + C0X42 + C02*52) 

+ UV(Xz2 + C02#42 + COX52) = (u — 1)(V — l)Xi2 + X2
2 + UVXz2 

+ (1 + w « ) ( l + œv)(iœXi)2 + (1 + œ2u)(l + co2z;) (ico2x5)2 

so that u, v must not both be among 1, 0, -co2, -co. If, then, Wiman's Xj are 
divided by 

w — 1, 1, u, (1 + œu)iœ, (1 + co2w)ico2, 

the linear combinations of his three line-cones become (2.1) with 

_ U — 1 U 1+0)U 1 + CO U 
v — 1 v 1 + œv 1 + coz; 

These are characterized projectively by a4 and a5 being the Hessian duad of 
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the triad ah a2, a3. If this triad is 0, 1, — 1 , the duad is i / V 3 , — i / V 3 ; one 
takes u to be 0 or 1 and then v to be 2 or — 1 accordingly; the latter alternative 
yields: 

ax = 0, a2 = 1, a3 = — 1, a4 = i/V3, ah = — i / V 3 , 

and IF96 is determined by 

(?i = Xi2 + x2
2 + x3

2 + x4
2 + x5

2 = 0, 
Q2 = x2

2 - x3
2 + (*/V3)x4

2 - (vV3)x5
2 = 0, 

(?3 = X2
2 + X3

2 — |x4
2 — §X5

2 = 0. 

I t is manifestly invariant under the involution that transposes, simultaneously, 
x2 with x3 and x4 with x5. I t is, less obviously, also invariant under the pro-
jectivity of period 3 that replaces 

X l , X 2 , X 3 , X 4 , X5 

by 

— 2X2, — X3 , J X i , C02X4, COX5, 

since the effect of this substitution turns Qu Ç2, Qz into 

(l/4)C?i + (3/2)& + (9/4)Ç„ - (1/4)ÇX - (1/2)Q, + (3/4)&, 

( l / 4 ) & - (1/2)Q, + (1/4)Ç,. 

The matrix of these fractional coefficients is also of period 3 ; its latent roots are 
1, co, co2 and the corresponding latent row-vectors are 

(1, 0, 3), (1, 2co2 - 2co, - 3 ) , (1, 2co - 2co2, - 3 ) , 

respectively, so that those quadrics which contain W96 and are themselves 
invariant under this projectivity of period 3 are 

Î
X12 + 4(x2

2 + x3
2) = 0, 

xi2 + 4co2x2
2 + 4cox3

2 + 4x4
2 = 0, 

Xi2 + 4cox2
2 + 4OJ2X3

2 + 4x52 = 0. 

These quadrics will be alluded to again in an Appendix; it will appear that 
W9& can be projected from a chord into a five-nodal plane sextic whose equation 
is completely symmetrical in three suitably chosen homogeneous coordinates. 

6. The special five-nodal or five-cusped plane sextics that emerge from 
these discoveries by Wiman are projections of W from chords, the plane curve 
being cusped when the chord of W is a tangent. First, a few paragraphs will 
be in place concerning the projection from a tangent of the general curve C 
given by (2.1). If, as in (1), 

/ (0) s (tf - ai)(p - ai)(û - a8)(tf - a4)(tf - a5) 
= #5 - ei#4 + e2û

z - e3#
2 + e& - e6, 
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a tangent of C is the line X, given parametrically in terms of / by 

XjVf'iaj) = t + dj; 

the different signs of the five square roots produce the 16 lines on the cyclide F 
whose equations are 

(6.1) X x/ = Z > , t f / = 0. 

For, again as in (1), if sk = 2 a*/Vf (a/), then 

(6.2) S0 = Si = S2 = SZ = 0, S4 = 1, 

so that X touches C where t = oo, or Xj = l/Vfiaj)* None of the f(a,j) is 
zero because the five roots dj of/(#) = 0 are presumed distinct. 

The equations of X are 

2 

or, say 

(6.3) X = F = Z = 0. 

Thus, since no two aj are equal, the plane co given by 

(6.4) E-T^K = E-7#T = 0 
Vf (aj) ^ Vf (aj) 

is skew to X and can serve as the plane of the cusped sextic Jtif. The conic 
through the cusps is, it will be remembered (1, p. 488), the intersection 
r of co with the quadric line-cone of tangent planes to F at the points of X. 
But the tangent solids to the quadrics (6.1) at the point on X with parameter t 
are tZ + F = 0 and tY + X = 0, so that the cone of tangent planes is 
F2 = ZX. The cusps of ffl are the intersections of œ with the tangent planes 
to F at the points where X meets the solids x3- = 0; the relevant values of t 
are —aj so that, in terms of coordinates in cô, the five cusps are (a / , ajf 1). I t 
is, moreover, a notable property (5, p. 139) of <#?, proved anew by projection 
in (1), that its five cuspidal tangents all meet T again at (1, 0, 0). 

The vertices of the triangle of reference in œ are found by dropping, in 
turn, each one of the equations (6.3) and then solving the remaining two 
determinantally with (6.4). Or, alternatively, their coordinates are within 
the range of surmise on appealing to the recurrence relation 

(6.5) Sfc+5 — eisk+A + e2sk+s — ezsk+2 + e ^ + i — ebsk = 0 

with its initial conditions (6.2). The outcome is 

Y — Z = 0: Xj^/f (dj) — e2 — eidj + a / , 
Z = X = 0: Xj^f(aj) = ez — e2aj + eiaf — a / , 

X = F = 0: XjVfiaj) = e± — ezaj + e2aj2 — eia/ + a / . 
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When each of these three expressions for xù is substituted in X, Y, Z, respec
tively, the results are 1, — 1 , 1; so one takes, as a point of general position in 
[4], 

(6.6) XjVf'faj) = P + WJ + x(e2 - e&j + a / ) 
— y (e* — fya j + eidj2 — dj3) + z{e± — ezaj + e2aj

2 — eia/ + a / ) . 

If one now substitutes for Xj from (6.6) in X) XJ2 = 0 and X) # ;# / = 0, the 
resulting equations are both linear in p and q; the calculations need not be 
given. One applies (6.5) repeatedly to express the sk as polynomials in the 
elementary symmetric functions ejf and the two equations appear as 

(6 7) f%(Pz + yy) + °°2 — Zé&y + *2 0y2 + 2zx) — 2e&z + e&2 = o, 
^ ' ' \2(py + qx) — eix2 + 2e2xy — ezy2 + e$z2 = 0. 

When these are solved for p and q and the solution inserted in the result, 
namely 

(6.8) q2 + 2px + e2x
2 - e±y2 + 2e6yz = 0, 

of substituting from (6.6) in ]T afaj2 = 0, the outcome is the equation of Jtif, 
an equation already on record in (1) where, in the notation there used, it was 
C2 = 0. The ternary sextic C2 is "normalized" by assigning to y2xA the 
coefficient + 5 . 

7. The projections from X of the sections of F by the solids Xj = 0 are those 
adjoint cubics 4>j that cut, apart from the five cusps, octads of Weierstrassian 
points on^f . Their equations 3^ = 0 were found in (1) by using the fact 
that <j>j is determined by its behaviour at the pentad of cusps of Jf7. Here they 
are found by remarking that, just as elimination between (6.7) and (6.8) 
produces the equation of J^7, so elimination between (6.7) and the outcome of 
using (6.6) for Xj = 0 produces the equation of <£;; this latter elimination is 
achieved simply by equating a three-rowed determinant to zero. To accord 
with the earlier results one normalizes $j so that xz has coefficient + 1 ; this 
is feasible because no <j>j passes through (1, 0, 0), all its intersections with T 
being accounted for by four of the cusps and a contact at the remaining one. 
And there is an identity 

8. The procedure for Wu runs easily. Here 

(8.1) ai = 1 , #2 = i, cs = — 1, ai = —i, a-0 = 0; 
/ ( 0 ) = 0 * _ 0 , / ' ( # ) = 504 _ 1 ; 

(8.2) f'(ai) = / ' ( a 2 ) = / ' ( a , ) = / ' ( a 4 ) = 4, / ' ( a , ) = - 1 ; 

01 = &2 = #3 = 0 = £5, 04 = — 1 , 
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and the five relations (6.6) are 

2xi = p + q + x + y, 2x2 = p + iq — x — iy, 

2x3 = p — q + x — y, 2x4 = p — iq — x + iy, 

2x5 = -2ip + 2iz. 

J X) x2 = 2pz + 2qy + x2 — z2 

\ X) a&* = %py + 2gx = o, 
= 0, 

(8.3) 

Then 

(8.4) 

giving 
p:q:z2 — x2 = x:—y:2(zx — y2) 

and hence, since £ afxj2 = q2 + 2px + ;y2, the equation of J^f 64 is 

(8.5) 4;y6 - 8 / s x + 3;2(s4 - 2z2x2 + 5x4) + 4sx3(s2 - x2) = 0. 

And this is, precisely, the third column of the table in (1, p. 493) when the 
values (8.2), with e0 = 1, are inserted. J^ 6 4 is, clearly, unaffected when 
x, y, z are replaced by ix, y, — iz. 

Since the equation x5 = 0 is, here, p = z, $5 is 

— z 
x — z = 0, 

1 -
12z 2y 
\2y 2x 

so that <£5 = xs + xz2 — 2y2z. 
05, like every adjoint curve, contains all the cusps of ^ 64; but it touches T 

at (a5
2, a5, 1), i.e. at (0, 0, 1), and its tangents at the other four cusps of JÏ?64 

all meet T again at this point. Thus these four concurrent tangents of 05 form 
a harmonic pencil and 05 is a harmonic cubic; it is, like Jtif 64 itself, invariant 
when x, y, z are replaced by ix, y, —iz. This replacement permutes 0i, 02, 03, 04 
cyclically. Since 0i is the projection from X of the section of F by xi = 0, its 
equation is 

1 1 x + 3; 
\2z 2y x2 - z2 \ = 0 
\2y 2x • I 

and $1 = (x2 — z2)(x — y) — 2(x + ^)(^x — y2). On replacing x, ;y, s by 
x, — fy, — z (thereby ensuring that the coefficient of x3 remains + 1 ) we find 

<ï>2 = (x2 — z2)(x + iy) + 2(x — iy)(zx — y2), 

<ï>3 = (x2 — z2)(x + y) — 2(x — y)(zx — y2), 

$ 4 = (x2 — z2)(x — iy) + 2(x + iy)(zx — y2). 

Then i(<E>i2 — $22 + $32 — $42) agrees in every detail with the left-hand 
side of (8.5). 

9. The corresponding discussion of Wie0 stems from 

(9.1) aj = €>, f(#) s fi* - 1, / ' ( * ) = 5#4, / ' ( a , ) = 5e4'; 

1̂ = £2 = £3 = 04 = 0, e5 = 1. 
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Corresponding to (6.6) we have 

e2jXjV5 = p + qej + xe2j + ye*j + zeAJ 

and so must eliminate p and q between 

( 5 E * / = 5(x2 + 2qy + 2pz) = 0, 
(9.2) < 5 £ « V = 5(s2 + 2gx + 2£y) = 0, 

b ] C €*^ / = 5(g2 + 2£x + 2yz) = 0. 

The first two of these three equations yield 

(9.3) 2p(zx — y2) = yz2 — x3, 2q(zx — y2) = x2y — JS3, 

whereupon, on substitution in the third, the equation of $?160 appears as 

(9.4) (x2y - s3)2 + 4:x(yz2 - xz){zx - y2) + Syz(zx - y2)2 = 0, 

8ybz - 20yh2x + 5y2xA + 10yz*x2 + z(z5 - 4x5) = 0. 

The left-hand side is C2, and agrees with the right-hand column in (1, p. 493) 
when (9.1) holds. If x,y,z are replaced by e3x, y, e2z, this ternary sextic is 
merely multiplied by e2. 

As for the curves <t>ki one takes 

€2*x*V5 = p + qek + xe2k + yeu + zék = 0 

and on eliminating p and q between this and the first two of the equations 
(9.2), one has 

1 € xe + ye + ze 
2z 2y x2 = 0, 

$* 

12y 2x zL 

xz — yz2 + ek(zd — x2y) + 2(xe2k + yesk + zeAk) (y2 — zx). 

Then £ af^f/ffaj), being here £ £ e3-^/ , is identical with the left-hand 
side of (9.4). 

10. For W96, with 

a\ — 0, #2 = 1 , a3 = — 1, a4 = i/V^y &h — —i/'s/S, 

the relevant data are 

(10.1) / (*) ^#*-U 

e.i = e% — e$ = 0, 

#5 _ 2^3 _ 1 ^ flty) = 504 __ 2^2 3 i 

e2 = — c4 = - | . 

The equations (6.7) and (6.8) become 

(10.2) 
2(pz + qy) + x2- (2/3)(y2 + 2zx) - (l/3)z2 

2(py + qx) - (4/3)*y = 0, 
q2 + 2px - (2/3)x2 + ( 1 / 3 ) / = 0, 

= 0, 
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and the elimination of p and q leads to 

9C2 = 16;y6 - 4;y4(3x2 + fax - z2) + y2(4:5xA - 24x3s - 6x2z2 + zA) 

- 12zx*(z + 3x)(z - x) = 0, 

again in agreement with (1) when the general form there displayed for C2 
is specialized by (10.1). ffl 96 is thus invariant when the sign of y is changed. 
One also finds 

3$i = 3x3 + z2x - 2y2(z + x), 

3$ 2 = 3x3 - fax2 - z2x - y(3x2 + 2zx - z2) + 4y2x + fy\ 

3V3S4 = (3x3 + 2zx2 - z2x)VZ - iy(3x2 - fax - z2) - 4 ; y W 3 - 4£y3; 

<£3 is obtained from <i>2 and $5 from 3>4 by changing the sign of y. And there is 
the identity 

3($2 2 + $32 " $42 - <^52) = 8C 2 . 

Since the tangents to <j>j at those four cusps of 3f where <t>j does not touch V 
all pass through the fifth cusp, where 0 ; does touch T, #4 and #5 are, îorJ^f 96, 
equianharmonic cubics. 

11. Every Humbert sextic is invariant under 15 transformations of period 2 
corresponding to harmonic inversions of C in [4] and, since these inversions 
all leave F invariant, projection from X induces Cremona transformations, 
necessarily also of period 2, in œ. 

The join of X to a line I of general position in œ is a solid XZ whose residual 
intersection with F is a twisted cubic c which, since XZ meets the quadric cone 
of tangent planes to F at the points of X in two planes, has X for a chord. The 
five lines on F that meet X are skew to c, their intersections with \l being not 
on c but on X ; but each of the ten lines on F that are skew to X meets X/, and 
so c, once. The central harmonic inversion, hk, in xk = 0 and the opposite 
vertex of 2, transforms X into Xfc, that line on F which meets X on xk = 0; 
the transform ck of c by hk has \k as a chord. But ck meets the other four lines 
on F which intersect X each once, because they are transforms by hk of lines on F 
skew to X and so meeting c once. Hence the Cremona transformation ^ \ in œ 
that corresponds to hk replaces I by a plane cubic with a node at Ak(ak

2, ak, 1) 
and passing through the remaining four Aj. Were I to touch T, this cubic 
would have a cusp at Ak. 

Since the join of each pair of points that correspond in hk passes through Xk, 
the join of each pair of points that correspond in ^ \ passes through Ak\ and 
since, on F, the branch curve of hk is the section by xk = 0, every individual 
point (apart from fundamental points of 9%) of <pk is invariant under ^k. 

If / passes through Ak} the solid \l contains Xk, as well as X, and meets F 
further in a conic 7 that intersects both X and \k; it is 7 of which / is now the 
projection, and just as the points of 7 are paired in involution by hk so the 
points of / are (when it passes through Ak) paired in involution by ^k. The 
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foci of this involution on I are its two intersections, other than Akl with fa, 
these being the projections from X of the two points on y where xk = 0. The 
harmonic conjugate of Ak with respect to these two points on fa is on the polar 
conic of Ak with respect to fa, in other words, on I\ Ak is, as contemporary 
writers sometimes say, dilated by %\ into V. ̂ ^ is an instance of a central 
involution (4, pp. 47, 108, 116); its properties are manifest when it is derived 
as a projection of hk. 

The five cubic Cremona transformations ^f fc, like the five harmonic inver
sions hk, generate an elementary abelian group of order 16; their ten products 
in pairs are quadratic transformations. For hkhj transposes X with XJk, which 
is skew to X, so that, as c meets \jk once, its transform cjk meets X once and is 
projected into a conic in co; Xj and Xfe, being transposed, are skew to cJk as they 
are to c, but the other three lines on F that meet X are transforms of lines 
skew to X and so each meet cjk once. *$ féî k = *£$> ̂  thus turns the lines of 
w into conies through the three cusps of 3? other than Aj and Ak. 

12. Each line in œ is its intersection with a solid 

(12.1) £ (la,2 + maj + tfixj/Vfio,) = 0 

through X. The image of this solid under hk is 

(12.2) £ (laj2 + ma, + n)x3/\/f
f((ij) = 2(lak

2 + mak + n)xk/V/''(<**)• 

On substituting here from (6.6), the left-hand side collapses to Ix + my + nz. 
The right-hand side is linear in p and q which may therefore be eliminated 
determinantally between this equation and (6.7). The éliminant is the nodal 
(or cuspidal) plane cubic that is the transform of the line œ under ^k. 

13. Now apply this process to obtain %\ f o r ^ 6 4 . By (12.2), (8.1), and 
(8.3), we have: 

Ix + my + nz = 2nx5/i = —2n(p — z), 

and hence, eliminating p and q between this and (8.4), 

n • Ix + my — nz 
2 2 

z y x — z 0, 
\y x 

(Ix + my)(zx — y2) + n(y2z — xz) = 0. 

Thus the equations for ^ 5 are 

£ = x(zx — y2), r] = y(zx — y2), f = ;y2z 
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The analogous process for ^ i yields: 

Ix + my + nz = 2(1 + m + n)x\/2, 

2(lx + my + nz) = (/ + m + n) (p + <Z + x + 3')» 
J = (x — y){z2 — x2 — 2(zx — y2)}, 

rj = (x — y){z2 — x2 + 2(zx — y2)), 

f = (x _ y)(z2 _ X2) + 2(x + 3; - 2s)(sx - y2). 

The product, in either order, of ^\ and ^ 5 is found to be the quadratic 
transformation 

£ = z2 — x2 — 2(zx — y2), 

rj = z2 — x2 + 2(zx — y2), 

f = (z + x)(z + 3x + 43;) - 2(sx - ;y2). 

The quadratic forms on the right are linearly independent and have the 
common zeros 

( 1 , - 1 , 1 ) , ( - M , 1), ( - l , - i , l ) ; 

i.e. the cusps of Jtf 64 other than (1, 1, 1) and (0, 0, 1). 
Of course this quadratic transformation can be obtained directly by pro

jection from [4]. The image of (12.1) under hih5 is 

X) (laj2 + maj + n^xjy/f'(a3) = 2(lax
2 + mai + ^ )^ i /V / / (^ i ) 

+ 2(la5
2 + ma5 + n)x5/Vfi'(05) 

which, for the special curve IF64, is, by § 8, 

2(lx + my + nz) = (/ + m + n) (p + q + x + y) — 2n(p — z). 

The three-rowed determinant that is the éliminant of this equation and (8.4) 
has x — y as a factor; the remaining factor provides the above quadratic 
transformation. The line x = y is the join of those two cusps of Jtif 64 that are 
not base points of the homaloidal net of conies. 

The group of 64 Cremona transformations that leave Jrf?64 invariant is 
generated by *€ \ and 

£ = ix, rj = y, f = —iz. 

14. The equation (12.2) for W160 is 

£ (le2j + mej + n)xj/e2j\/5 = 2(le2k + mek + n)xk/e
2kV$ 

which, on using (6.6), yields: 

b(lx + my + nz) = 2(/e3* + me2k + nek)(p + qek + xe2k + yezk + se4*). 

Elimination of p and q between this and (9.3) produces a determinant wherein 
the coefficients of /, m, n provide the equations for ^f *. One finds 

£ = e**(yZ* _ X3) + €M(x2y _ 28) + (2X __ ^ 2 ) ( 2 e ^ + 2 e % - 3x), 
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and similar expressions for rj, f. That the transformation is central, with 
centre (e2*, ek, 1), is seen from the relations 

IT = )T = 5(y - zx). 
x — ey y — ez 

There is a group of 80 Cremona transformations, generated by the projectivity 

£ = €3x, 7] = y, f = €2z 

and any one of the five ^ fc, for which J^ 160 is invariant. 

15. Wiman's group of 160 projectivities mentioned in § 4 included an 
involution that transposed the quadrics 5Z # / = 0 and £ e2jXj2 = 0, and 
hence transformed F into another surface. Since F is not invariant, the corre
sponding involution in œ is not a Cremona transformation; it need only be a 
Riemann transformation operating merely on Jt? 16°, not on the whole of co. 
Equations (9.2) show that the interchange of ]C xf = 0 with £ e2jXj2 = 0, 
with ]T eyx / = 0 unaffected, is achieved by transposing x with q and y with £ ; 
thus, in virtue of (9.3), the corresponding transformation of J4?160 occurs 
when z is left unaltered, x replaced by \{x2y — zz)/(zx — y2) and y by 
\(yz2 — xz)/ (zx — y2). This transformation is given by 

£ = x
2y — JS3, r; = ;yz2 — x3, f = 2JS(ZX — y2), 

equations which may also be written as 

£ = Z €4'** i? = Z ** r = Z «'**. 

Since it appears, on calculation, that 

£2*? — f3 = 3;22C2 — x(3s3x — 222^2 — x3;y)2, 

ilf2 - £3 = s3C2 - y(Sz*x - 2s2;y2 - x3;y)2, 

2f (f£ - T?2) = 2X2C2 - z(3s3x - 2s2;y2 - xzy)2, 

the transformation has period 2 so far as the points on C2 = 0 are concerned. 

16. The same methods serve to find equations for the Cremona self-trans
formations of Jti? 96, and it will suffice to give ^ 2 . The appropriate form of 
(12.2) leads to 

3(1 + m + n)(p + q) + x(m + n - 31) + y(n + I - 3m) - knz = 0; 

elimination of p and q between this equation and (10.2) yields: 

(I + m + ri) (z2x — z2y + 6zx2 + 2xyz — 3x3 + 3x23> — 4xy2 — 4;y3) 

= 8(lx + my + nz)(zx — y2). 
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Hence the equations for ^ 2 , thrown into a form so that (1, 1, 1) is seen to be 
a double point on all the cubic curves /£ + mrj + nf = 0, are 

* = (x-y){(z-xy-4:(x*-y*)}, 

7] = (x — y){ (z — x)(z + 7x) + 4(#2 — :y2)}, 

f = (x — y) (z — x) (z + 3x) + 4(x + y — 2z) (zx — y2). 

These cubics all pass through the other four cusps of Jffn, namely the points 
{t\ t, 1) with t = 0, - 1 , i / V 3 , - Î / V 3 . 

17. The transformations ^ , combined with the change of sign of y, yield 
a group of 32 Cremona self-transformations of J4?96. But the operation of 
period 3 that was described in § 5 transforms F into another cyclide, and the 
associated (1,1) correspondence between the points of Jtf96 will not be 
subordinate to a Cremona transformation. Yet there is a plane Humbert 
sextic J4?n that admits 96 Cremona transformations and it is entitled to a brief 
mention. As the curves studied in this paper are cuspidal, this nodal curve J^ny 

and the way to obtain it by projection from a chord of W9e, may be relegated 
to an appendix. 

Appendix. The quadrics (5.2) were found as those three containing W96 

which are invariant under a projectivity of period 3. The involutory projecti-
vity of § 5 leaves the first of the three invariant and transposes the other two; 
hence the cyclide ^ commoa to these two is invariant under the whole group 
of 96 projectivities, so that the projection of PP6, from any one of the 16 lines 
/x on ^ onto a plane IT skew to ju, is invariant under a group of 96 Cremona 
transformations of w. One line M is 

Xi + 2(^2 + Xz) = Xi + 0)2X2 — OiXz — X5 + 0)X2 — 0)2X% = 0 . 

This is skew to the plane x* = x6 = 0 which will serve as w. The quadric cone 
generated by the tangent planes of ^ at the points of ju is 

2x2Xz + XzXi + Xix2 = 0 

which meets -K in the conic T whose equation is 

it + « + & = 0; 
here, since it adds much to arithmetical convenience, the coordinates in ir are 

The nodes of J%?n all lie on r and are the intersections of w with the five planes 
IXXÛ hence three of the nodes are Xi, X2, Xz while, by § 5, the other two are 
the Hessian duad of this triad on T. This duad is the pair of intersections of T 
with£ + V + f = 0, the join of the collinear intersections of X2Xz,X%X\,XiX2 

with the tangents to T a t Xi, X2, X$, respectively. Hence the remaining two 
nodes N, N' oiJ^fn are (1, w2, o>) and (1, o>, co2). 
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fx meets x4 = 0 at (2, co, co2, 0, co — co2) and x5 = 0 at (2, co2, co, co2 — co, 0) ; 
since these are also its intersections with xi2 + 4(x2

2 + x3
2) = 0, they lie 

on W9Q. Moreover, as they lie one in each of two bounding solids of 2 they are 
Weierstrassian points, and the tangents to W9Q there pass through X± and X5, 
respectively. Now (1, pp. 487-488) when C was projected from X onto cô the 
planes joining A to the tangents of C at its two intersections with X met œ in 
points T, Uon T; and every node of the Humbert sextic had its nodal tangents 
passing one through each of T, U. Thus, for ffln, there is a confluence of T (say) 
with N and U with N' ; NN' is a tangent at both nodes while, at both N and N'9 

the other tangent touches r , Jj?n having an inflection on this latter branch; 
N and Nf are flecnodes of 34?n. 

The plane joining ju to (2£, 77, f, 0, 0) is spanned by this latter point and the 
intersections of \x with x2 = 0 and Xz = 0; it is therefore obtained by varying 
p and q in 

(A.l) (2£ + 2£ - 2g, 77 - £, f + g, £co2 + qa>, £co + gco2). 

I t meets SF, in general, in a single point not on /*• When the coordinates (A.l) 
are substituted in the equations of any two quadrics through ty, the terms in 
p2, pq, q2 all cancel; the two resulting linear equations for p and q have the 
solution 

(A.2) p:q:l = (v
2 - ff)(f + *):(& - r2)(£ + *):2(tf + « + to). 

If the point (A.l) is on IF96, its projection (2£, 77, f, 0, 0) from n is o n ^ n ; 
this occurs when the coordinates satisfy Xi2 + 4(x2

2 + X32) = 0, and hence 
when 

(f + P - <z)2 + (V - £)2 + (f + <Z)2 = 0. 

The equation of Jifn is found on substituting here for p and q from (A.2). 
The calculations have no intrinsic interest, but their outcome has since it is 
symmetric in £, 77, f. In terms of monomial symmetric functions it is 

Z *v + E iv + E *v + 5Z *vr + i wr2 = o; 
in terms of 

£1 s ? + 77 + f, £ 2 s 77f + « + £77, £3 s £77f 
it is 

£ i 3 £ 3 + £ 2
3 = £i 2£ 2

2 + 3£i£ 2£ 3 . 
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