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Abstract
We create a framework to analyze the timing and frequency of instantaneous interactions between pairs
of entities. This type of interaction data is especially common nowadays and easily available. Examples of
instantaneous interactions include email networks, phone call networks, and some common types of tech-
nological and transportation networks. Our framework relies on a novel extension of the latent position
network model: we assume that the entities are embedded in a latent Euclidean space and that they move
along individual trajectories which are continuous over time. These trajectories are used to characterize the
timing and frequency of the pairwise interactions. We discuss an inferential framework where we estimate
the individual trajectories from the observed interaction data and propose applications on artificial and
real data.

Keywords: Latent position models; dynamic networks; non-homogeneous Poisson process; spatial embeddings; statistical
network analysis

1. Introduction
The latent position model (LPM, Hoff et al., 2002) is a widely used statistical model that can
be used to characterize a network through a latent space representation. The model embeds the
nodes of the network as points in the real plane and then uses these latent features to explain the
observed interactions between the entities. This provides a neat and easy-to-interpret graphical
representation of the observed interaction data, which is able to capture some extremely common
empirical features such as transitivity and homophily.

In this paper, we propose a new LPM that can be used to model repeated instantaneous inter-
actions between entities, over an arbitrary time interval. The time dimension is continuous, and
an interaction between any two nodes may happen at any point in time. We propose a data gener-
ative mechanism which is inspired by the extensive literature on LPMs, and we define an efficient
estimation framework to fit our model.

Since the foundational work of Hoff et al. (2002), the literature on LPMs has been developed
in many directions, both from the methodological and from the applied point of views. Recent
review papers on the topic include Salter-Townshend et al. (2012); Rastelli et al. (2016); Raftery
(2017); Sosa and Buitrago (2020).
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As regards statistical methodology, the original paper of Hoff et al. (2002) defined a framework
to infer and interpret a LPM for binary interactions. The authors introduced two types of LPMs:
the projection model and the distance model.

The projection model postulates that the probability that an edge appears between any two
nodes is determined by the dot product of the latent coordinates of the two respective nodes. As
a consequence, a crucial contribution for the edge probability is given by the direction the nodes
point toward. By contrast, the distance model defines the connection probability as a function of
the Euclidean distance between the two nodes. Nodes that are located close to each other are more
likely to connect than nodes that are located far apart. Both models provide a clear representation
of the interaction data which can be used to study the network’s topology or to construct model-
based summaries and visualizations or predictions.

We also note the work of Hoff (2008) which introduces a generalization of the projection
model, called eigenmodel, in which the standard dot product between the latent coordinates is
replaced by larger families of inner products, associated with diagonal matrices (possibly) other
than the identity. Interestingly, the author shows that the eigenmodel can also generalize the dis-
tance model, albeit using a different number of latent dimensions. Since we focus on network
visualization, we do not consider the eigenmodel in this paper, although our methods may be
extended to that framework.

More recently, the projection model and its variations have been extensively studied and used
in a variety of applications (seeHoff (2005, 2018) and references therein). Thismodel has also clear
connections to a rich machine learning literature on spatial embeddings, which include Lee and
Seung (1999); Halko et al. (2011); Kipf and Welling (2016). Variations of the projection model
have been extended to dynamic settings (Durante and Dunson, 2014, 2016) and other types of
network frameworks (Durante et al., 2017).

As regards the distance model, this has been extended by Handcock et al. (2007) and Krivitsky
et al. (2009) to represent clustering of the nodes and more flexible degree distributions. In the
context of networks evolving over time, dynamic extensions of the model have been considered in
Sarkar and Moore (2005), and more recently in several works including Sewell and Chen (2015b)
and Friel et al. (2016) for binary interactions. The recent review paper of Kim et al. (2018) pro-
vides additional references on dynamic network modeling. Other relevant and interesting works
that revolve around the distance models in either static or dynamic settings include Gollini and
Murphy (2014); Salter-Townshend and McCormick (2017) for multi-view networks, Sewell and
Chen (2016) for dynamic weighted networks, and Gormley and Murphy (2007); Sewell and Chen
(2015a) for networks of rankings. We also mention Raftery et al. (2012); Fosdick et al. (2019);
Rastelli et al. (2018); Tafakori et al. (2019) which introduce original and closely related modeling
or computational ideas.

Crucially, we note that almost all existing dynamic LPMs consider a discrete time dimension,
whereby the interactions are observed at a number of different points in time. Some works do use
stochastic processes to model the latent trajectories over time. For instance in Scharf et al. (2018),
the authors employ Gaussian convolution processes to model the node trajectories over time and
rely on a dynamic LPM in order to sample binary interactions between nodes. However, for the
inference, they approximate the stochastic processes by a set of independent normal random vari-
ables anchored at a finite number of knots. Similarly, in Durante and Dunson (2016), the authors
consider a set of stochastic differential equations to model the evolution of the nodes over time.
By imposing conditions on the first derivative of the processes, the authors obtain time-varying
smoothness while keeping a very flexible prior structure. Also in this case, however, the data ana-
lyzed by Durante and Dunson (2016) are a collection of adjacency matrices recorded at different
points in time. One critical advantage of their approach based on stochastic differential equations
is that these adjacency matrices may be observed at arbitrary points in time, which need not be
equally spaced. However, all the pairwise interactions need to be observed in any of the network
snapshots.
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By contrast, a fundamental original aspect of our work is that both the observed data and the
latent trajectories of the nodes are defined in a continuous time dimension. This means that any
two nodes can interact at any given point in time and that these interaction data inform the latent
space by characterizing the fully continuous trajectories that the nodes follow. Our new framework
comes at a time when continuous networks are especially common and widely available, as they
include email networks (Klimt and Yang, 2004), functional brain networks (Park and Friston,
2013), and other networks of human interactions (see Cattuto et al., 2010; Barrat and Cattuto,
2013 and references therein).

Some of the approaches that have been proposed in the statistics literature to model instan-
taneous interactions include Corneli et al. (2018) and Matias et al. (2018); however, we note that
these approaches rely on extensions of the stochastic blockmodel (Nowicki and Snijders, 2001)
and not on the LPM. Another relevant strand of literature focuses instead on modeling this type
of data using Hawkes processes (see Junuthula et al., 2019 and references therein).

We propose our new continuous latent position model (CLPM) both for the projection model
framework and for the distance model framework. In our approach, each of the nodes is charac-
terized by a latent trajectory on the real plane, which is assumed to be a piece-wise linear curve.
The interactions between any two nodes are modeled as events of an inhomogeneous Poisson
point process, whose rate is determined by the instantaneous positions of the nodes, at each point
in time. The piece-wise linear curve assumption gives sufficient flexibility regarding the possible
trajectories, while not affecting the purely continuous nature of the framework, in that the rate
of the Poisson process is not piece-wise constant. This is a major difference with respect to other
approaches that have been considered (Corneli et al., 2018 and one of the approaches of Matias
et al., 2018).

We propose a penalized likelihood approach to perform inference, and we use optimization
via stochastic gradient descent (SGD) to obtain optimal estimates of the model parameters. We
have created a software that implements our estimation method, which is publicly available from
CLPM GitHub repository (2021).

The paper is structured as follows: in Section 2, we introduce our new model and its two vari-
ants (i.e., the projection and distance model), and we derive the main equations that are used in
the paper; in Section 3, we describe our approach to estimate the model parameters; in Section 5,
we illustrate our procedure on three synthetic datasets, whereas in Section 6 we propose real data
applications. We give final comments and conclusions in Section 7.

2. The model
2.1 Modeling the interaction times
The data that we observe are stored as a list of interactions (or edge list) in the format E :=
{(τe, ie, je)}e∈N, where τe ∈ [0, T] for all e is the interaction time between the nodes ie and je, with
ie, je ∈ {1, . . . ,N}. Thus, the integer index e counts the edges in the graph and it ranges from 1 to
the total number of edges observed before T, say E. We consider undirected interactions without
self-loops, since this is a common setup in network analysis. Extensions to the directed case could
be considered; however, we do not pursue this here. We emphasize that all interactions are instan-
taneous, that is their length is not relevant or not recorded. An interaction between two nodes
may occur at any point in time τe ∈ [0, T]. Let us now formally introduce the list of the interaction
times between two arbitrary nodes i and j:

Eij =
{
τ
(i,j)
1 , . . . , τ (i,j)Eij

}
, (1)

where Eij is the total number of times i interacts with j before T or, equivalently, the number of
edges connecting i with j. Also, E=∑i,j Eij. We assume that the interaction times in the above
equation are the realization of an inhomogeneous Poisson point process with instantaneous rate
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function denoted with λij(t)≥ 0, ∀t ∈ [0, T] and nodes i and j. Using a more convenient (but
equivalent) characterization, we state that the waiting time for a new interaction event between
i and j is exponential with a variable rate that changes over time. Then, if we assume that the
inhomogeneous point processes are independent for all pairs i and j, the likelihood function for
the rates can be written as:

L (λ)=
∏
i,j: i<j

⎡
⎣
⎛
⎝ ∏
τe∈Eij

λij(τe)

⎞
⎠ exp

{
−
∫ T

0
λij(t)dt

}⎤⎦ , (2)

where, for simplicity, we have removed the superscript (i, j) from τ
(i,j)
e . In the sections below, we

will specify the conditions that make the processes independent across all node pairs.

2.2 Latent positions
Our goal is to embed the nodes of the network into a latent space, such that the latent positions are
the primary driving factor behind the frequency and timing of the interactions between the nodes.
Crucially, since the time dimension is continuous and interactions can happen at any point in
time, we aim at creating a modeling framework which also evolves continuously over time. Thus,
the fundamental assumption of our model is that, at any point in time, the Poisson rate function
λij(t) is determined by the latent positions of the corresponding nodes, which we denote zi(t) ∈R

2

and zj(t) ∈R
2.

Remark.We assume that the number of dimensions of the latent space is equal to 2, because the
main interest of the proposed approach is in latent space visualization of the network. However,
we note that the generative model presented in this section can be easily extended to the case
zi(t) ∈R

d, with d> 2.

To facilitate the inference task, the trajectories are assumed to be piece-wise linear curves, char-
acterized by a number of user-defined change points in the time dimension. These change points
are in common across the trajectories of all nodes, and they determine the points in time when the
linear motions of the nodes change direction and speed. This means that we must define a grid of
the time dimension through K change points

0= η1 <η2 < . . . < ηK−1 <ηK = T

that are common across all trajectories. We stress that this modeling choice is only meant to
restrict the variety of continuous trajectories that we may consider, as it allows us to use a tractable
parametric structure while keeping a high flexibility regarding the trajectories, as the number of
change points increases. Also, we make the assumption that, within any two consecutive criti-
cal points, the speed at which any given node moves remains constant. As a consequence, we only
need to store the coordinates of the nodes at the change points, since all the intermediate positions
can then be obtained with:

zi
(
(1− t)ηk + tηk+1

)= (1− t)zi (ηk)+ tzi
(
ηk+1

) ∀t ∈ [0, 1] (3)

for any change points ηk and ηk+1 and node i. Under this parametrization of the trajectories, we
can increase the number of change points to allow for more flexible structures, at the expense
of computational efficiency since this would also increase the number of model parameters to
estimate. The choice of the number of change points is made by the user, who defines directly the
level of refinement of the trajectories based on the available computing resources.
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2.2.1 Projection model
Similarly to the foundational paper of Hoff et al. (2002), we introduce two possible character-
izations of the rates through the latent positions: one is inspired by the projection model and
the other is inspired by the distance model. In our projection model, we assume that the rate of
interactions is specified by:

log λij(t)= β + 〈zi(t), zj(t)〉
for all t ∈ [0, T] and for all nodes i and j. Here, β ∈R is an intercept parameter regulating the
overall interaction rates in a homogeneous fashion, but extensions of the model where it becomes
specific to each node can also be considered. As regards the contributions of the latent positions,
the further the nodes are positioned from the origin, the more frequent their interactions will
be, especially toward other nodes that are aligned in the same direction.1 Vice versa, we are not
expecting frequent interactions for nodes that are located too close to the origin, or between pairs
of nodes forming an obtuse angle.

By taking the logarithm of Equation (2) and replacing λij(t), the log-likelihood for the
projection model is:

logL (β , Z)=
∑
i,j:i<j

⎡
⎣∑
τe∈Eij

(
β + 〈zi(τe), zj(τe)〉)−

∫ T

0
eβ+〈zi(t),zj(t)〉dt

⎤
⎦ (4)

As we discuss in Appendix A, the integral term appearing in Equation (4) does not generally
have a straightforward analytical solution. So, we take advantage of the fact that the integrand
function is fairly regular, to efficiently estimate the integral with a composite Simpson’s rule (see
equation 5.1.16 of Atkinson, 1991).

2.2.2 Distance model
Here, we introduce a version of the LPM that uses the latent Euclidean distances between the
nodes, rather than the dot products. The distancemodel formulation provides easier interpretabil-
ity than the projection model, and, as we show in the simulation studies (Section 5), it also
provides great flexibility, hence generally leading to superior results in this context where the
hidden space is in low dimension (two).

In the distance model, we assume that:

log λij(t)= β − ‖zi(t)− zj(t)‖2 (5)

where the last term corresponds to the squared Euclidean distance between nodes i and j at time
t. The interpretation of β ∈R is analogous to the projection model. By taking the logarithm of
Equation (2) and using Equation (5), the log-likelihood of the distance model becomes:

logL (β , Z)=
∑
i,j:i<j

⎧⎨
⎩
⎛
⎝∑
τe∈Eij

(β− ‖ zi(τe)− zj(τe) ‖2 )
⎞
⎠−

∫ T

0
eβ−‖zi(s)−zj(s)‖2ds

⎫⎬
⎭ (6)

Unlike the projection model, the above log-likelihood has a closed form, since the integral inside
the brackets can be calculated analytically (proof in Appendix B).

2.3 Penalized likelihood
Due to the piece-wise linearity assumption in Equation (5), for each node we only need to estimate
its positions at times {ηk}k∈[K]. In order to avoid over fitting, and to obtain more interpretable and
meaningful results, we introduce likelihood penalizations based on the latent positions parameters
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at {ηk}k∈[K]. In particular, a penalization term is included on the right-hand size of Equation (6),
whose effect is to disfavor large velocities of the nodes in the latent space.

For both the projection and distance model, as likelihood penalizations,2 we define Gaussian
random walk priors on the critical points of the latent trajectories:

zi(ηk+1) | zi(ηk) ⊥∼ N
(
zi(ηk), (ηk+1 − ηk)σ 2I2

) ∀k= 1, . . . ,K − 1 (7)

for every node i where I2 is the identity matrix of order two. The equation above (with σ 2 = 1)
would correspond to a Brownian motion for the ith latent trajectory, except that we would only
observe it at the change points, where the latent positions are estimated. However, as the number
of change points increases, the prior that we specify tends to a scaled Brownian motion on the
plane. The parameter σ 2 is user-defined; hence, it can be reduced to penalize the movements
of the nodes between consecutive change points. In order to obtain sensible penalizations, we
choose small values of the variance parameters, as to ensure that the speed of the nodes along the
trajectories is not too large. In this way, the nodes are forced to move as little as necessary, making
the latent visualization of the network easier to read and interpret, and ensuring that the latent
space only captures the critical features that are present in the data.

Remark. The likelihood function of the original latent distance model of Hoff et al. (2002) is not
identifiable with respect to translations, rotations, and reflections of the latent positions. This is
a challenging issue in a Bayesian setting that relies on sampling from the posterior distribution.
In fact, the posterior samples become non-interpretable, since rigid transformations may have
occurred during the collection of the sample (Shortreed et al., 2006). These non-identifiabilities
are not especially relevant in our optimization setting, since the equivalent configurations of
model parameters lead to the same qualitative results and interpretations. However, a case for
non-identifiability can be made for dynamic networks, since translations, rotations, and reflec-
tions can occur across time, thus affecting results and interpretation. The penalizations that we
introduce in this paper ensure that the nodes move as little as necessary, thus disfavoring any
rotations, translations, and reflections of the space. As a consequence, the penalizations directly
address the identifiability issues and the latent point process remains comparable across time.

3. Inference
In this section, we discuss the inference for the distance model described in Section 2.2.2, but an
analogous procedure is considered for the projection model.

Recalling that we work with undirected graphs and in force of Equation (7), the penalized
log-likelihood is

logL (β , Z)=
N∑
i=1

⎧⎪⎪⎨
⎪⎪⎩
1
2

N∑
j=1
j�=i

⎡
⎣
⎛
⎝∑
τe∈Eij

(β− ‖ zi(τe)− zj(τe) ‖2 )
⎞
⎠−

∫ T

0
eβ−‖zi(s)−zj(s)‖2ds

⎤
⎦

− 1
2σ 2

K∑
k=1

‖ zi(ηk)− zi(ηk−1) ‖2
}

+ C,
(8)

where C is a constant term that does not depend on (β , Z) and the integral can be explicitly com-
puted as shown in Appendix B. Since the log-likelihood has a closed form, we implement it and
rely on automatic differentiation (Griewank, 1989; Baydin et al., 2018) to maximize it numeri-
cally, with respect to (β , Z), via gradient descent (GD).3 Note that, as pointed out in the previous
section, maximizing the above-penalized log-likelihood is equivalent to performing maximum-a-
posteriori inference. Moreover, as it can be seen in Equation (8), the log-likelihood is additive in
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the number of nodes. This remark allows us to speed up the inference of the model parameters by
means of SGD (Bottou, 2010). Indeed, let us introduce ψ1, . . . ,ψn such that

ψi(β , Z):= 1
2

N∑
j=1
j�=i

⎡
⎣
⎛
⎝∑
τe∈Eij

(β− ‖ zi(τe)− zj(τe) ‖2 )
⎞
⎠−

∫ T

0
eβ−‖zi(s)−zj(s)‖2ds

⎤
⎦

− 1
2σ 2

K∑
k=1

‖ zi(ηk)− zi(ηk−1) ‖2 (9)

and a discrete random variable�(β , Z) such that

π := πi := P{�(β , Z)=ψi(β , Z)|Z} = 1
N
, ∀i ∈ {1, . . . ,N}

where we stress that the above probability is conditional to Z and given the model parameter β .
Then, let us denote ∇ the gradient operator with respect to (β , Z) and Eπ the expectation taken
with respect to the probability measure π introduced above (and hence with Z given). Then, we
have the following

Proposition 1. N∇�(β , Z) is an unbiased estimator of ∇ logL (β , Z).

Proof.

Eπ [N∇�(β , Z)]=
N∑
i=1

∇ψi(β , Z)= ∇
( N∑

i=1
ψi(β , Z)

)
= ∇logL (β , Z),

where the last equality follows from the additivity of the gradient operator. �
The above proposition allows us to sample (subsets of) nodes uniformly at random, with re-

injection, and use each sample (a.k.a. mini-batch) to update the model parameters via SGD, as
shown in Bottou (2010). In more details, if θ := {β , Z} denotes the set of the model parameters,
at the kth iteration of the SGD algorithm, θ is updated as follows

θ := θ + ρ
N

|Bk|∇ψBk(θ),

where the hyper-parameter ρ is the learning rate, Bk is a set of |Bk| nodes extracted uniformly at
random andψBk(θ) refers to the estimator of the full-batch log-likelihood, based on the data batch
Bk, namely:

ψBk(β , Z):=
1
2
∑
i∈Bk

⎡
⎢⎢⎣

N∑
j=1
j�=i

⎛
⎝∑
τe∈Eij

(β− ‖ zi(τe)− zj(τe) ‖2 )
⎞
⎠−

∫ T

0
eβ−‖zi(s)−zj(s)‖2ds

⎤
⎥⎥⎦

− 1
2σ 2

K∑
k=1

‖ zi(ηk)− zi(ηk−1) ‖2 .

We stress that, if |Bk| = 1, the above equation reduces to Equation (9); conversely if |Bk| =N
SGD reduces to full-batch GD. We finally note that the above two equations state that the model
parameters can be updated, at each iteration, based on a sub-graph with N nodes whose links are
uniquely those connecting the nodes in Bk with their neighbors of order one (a.k.a. friends). We
have implemented the estimation algorithm and visualization tools in a software repository, called
CLPM, which is publicly available (CLPM GitHub repository, 2021).
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4. Interpretation andmodel-based summaries
Both the distance and the projection model provide a visual representation of the latent space
as output. Due to the continuous time dimension, the results are most easily shown as a video.
For this paper, the code and results (including videos) are publicly available from CLPM GitHub
repository (2021).

The evolution of the latent space provides a visualization which can be used to qualitative assess
the connectivity, both at the global level (e.g., contractions and expansions of the latent space) as
well as at a local level (e.g., which nodes have more connections and when).

For the projection model, we expect highly connected nodes to be located far from the origin.
They would have a higher chance to interact with any other node. On the other hand, nodes that
are close to the origin will have lower connectivity, overall. For both types of nodes, the angle in
between them will also play a role, favoring interactions between nodes that point in the same
direction. For the distance model, we are expecting nodes to take more central positions as they
become more active, and, clearly, communities arise when clusters of points are observed.

Clusteredness. In order to capture this particular behavior, we introduce a quantitative measure
of clustering, or “clusteredness” of the latent space. The goal of this index is to capture and mea-
sure the local contractions of the latent space, whereby nodes tend to aggregate into clusters at a
particular point in time. To construct this measure, we choose an arbitrary threshold value ϕ and
consider circles of radius ϕ around each of the nodes, in the latent space. If we consider an arbi-
trary node, we want to count how many other nodes fall within its circle, at each point in time. By
averaging this measure across all nodes, we obtain our clusteredness index, defined as the average
number of nodes that fall within a random node’s circle.

This measure evolves continuously over time, and we can easily calculate it from the algo-
rithm’s output. The relative increases and decreases of themeasure over time can permit an appre-
ciation of how the latent space can locally contract, to create communities within the network.

Partition. An additional model-based summary that we consider is a partitioning of the nodes
of the network. Based on the latent space representation, we aim at deriving a partitioning of
the nodes, whereby nodes in the same group tend to spend more time close to each other. This
is achieved by calculating a similarity value for each pair of nodes (i, j), at each change point
η, equal to exp{− ‖ zi(η)− zj(η) ‖2}. Then, we can aggregate the pairwise similarities over time
by calculating their median and use these node similarities as an input for a spectral clustering
algorithm (the number of groups for the algorithm is user-defined).

This approach provides additional information (in the videos and plots, these clusters can be
indicated with the different nodes’ colors), and it provides a higher-level visualization and sum-
marization of the model’s results. We note that, ideally, a challenging but interesting idea would
be to include these clustering aspects directly into the generative process of the model; however,
we do not pursue this here and leave the extension as future work.

Goodness of fit. We consider a basic measure of model fit whereby we calculate the observed
number of interactions:

uijk =
∑
τe∈Eij

1{ηk≤τe<ηk+1}

Here, 1{A } is equal to one if the event A is true or zero otherwise. In addition, we calculate the
corresponding expectation according to our model:

ûijk =
∫ ηk+1

ηk

λij(t)dt
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Then, we calculate the absolute value difference between the two values and average it across all
edge pairs and across all change points. This corresponds to a measure of in-sample prediction
error for the number of interactions. We emphasize that choosing this particular measure is arbi-
trary, and in fact, more sophisticated measures may be constructed (e.g., see Yang et al., 2017;
Huang et al., 2022) to provide a better assessment of the goodness of fit. Our measure can be used
to compare different models (i.e., distance model against projection model or different choices
of the penalization parameter σ 2 or the number of the latent dimensions), as long as the change
points in the two models are located identically. On the other hand, the measure is sensitive to the
change point choice, in that the average number of interactions per time segment directly affects
the magnitude of the mean absolute error.

5. Experiments: Synthetic data
In this section, we illustrate applications of our methodology on artificial data. We propose two
types of frameworks: in the first one, we consider dynamic block structures (which involve the
presence of communities, hubs, and isolated points). In this case, our aim is to inspect how the
network dynamics are captured by CLPM. In the second framework, we generate data using the
distance CLPM and we aim at recovering the simulated trajectories for each node.

5.1 Dynamic block structures
Simulation study 1. In this first experiment, we use a data generative mechanism that relies on
a dynamic blockmodel structure for instantaneous interactions (Corneli et al., 2018). We specif-
ically focus on a special case of a dynamic stochastic blockmodel where we can have community
structure, but we cannot have disassortative mixing, that is, the rate of interactions within a com-
munity cannot be smaller than the rate of interactions between communities. In this framework,
the dynamic stochastic blockmodel approximately corresponds to a special case of our distance
CLPM, whereby the nodes clustered together essentially are located nearby.

In the generative framework that we consider the only node-specific information is the cluster
label, hence, this structure is not as flexible as the CLPM as regards modeling node’s individual
behaviors. So, our goal here is to obtain a latent space visualization for these data and to ensure that
CLPM can accurately capture and highlight the presence of communities. An aspect of particular
importance is how CLPM reacts to the creation and dissolution of communities over time: for this
purpose, our generated data include changes in the community structure over time.

For this setup, we consider the time interval [0, 40] (for simplicity, we use seconds as a unit
measure of time) and divide this into four consecutive time segments of 10 s each. In each of
the four time segments, 60 nodes are arranged into different community structures. Thus, any
changes in community structure are synchronous for all nodes and they happen at the endpoints
of a time segment. The rate of interactions between any two nodes is determined by their group
allocations in that specific time segment. The rate remains constant in each time segment, so that
we effectively have a piece-wise homogeneous Poisson process over time, for each dyad.

We denote with X(s) ∈N
N×N a simulated weighted interaction matrix which counts howmany

interactions occur in the sth time segment for each dyad:

X(s)
ij |C∼ P

(
θ (s)cicj

)
,

where P( · ) indicates the Poisson probability mass function, and C is a latent vector of length
N indicating the cluster labels of each of the nodes. Once we know the number of interactions
for each dyad and each segment, the timing of these interactions can be sampled from a uniform
distribution in the respective time segment. More in detail, the rate parameters are characterized
as follows:
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(i) in the time segment [0, 10[, the expected number of interactions is the same for every pair
of nodes: θ (1)c1cj = 1, for all i and j;

(ii) in the time segment [10, 20[, three communities emerge, in particular θ (2)11 = 10, θ (2)22 = 5
and θ (2)33 = 1, whereas the rate for any two nodes in different communities is 1;

(iii) in the time segment [20, 30[, the first community splits and each half joins a different
existing community. The two remaining communities are characterized by θ (3)11 = θ

(3)
22 = 5.

Again, any two nodes in different communities interact with rate 1;
(iv) in the time segment [30, 40], we are back to the same structure as in (i).

Throughout the simulation, node 1 always behaves as a hub, and node 60 is always isolated.
This means that node 1 interacts with rate 10 at all times with any other node, whereas node 60
interacts with rate 0.01 at all times with any other node, regardless of any cluster label.

In Figure 1, we show a collection of snapshots at some critical time points, for the projection
model.

The full videos of the results are provided in the code repository. The main observation is that
the communities are clearly captured at all times, and they are clearly visually separated. In the
two cluster formation, we see that the clusters are almost aligned to the axes; hence, they point in
perpendicular directions. In the three cluster formation, the non-community third cluster, which
has low interaction rate, is instead positioned more centrally between the two, but still separated
from the others. This is perhaps surprising since this group should is expected to have fewer inter-
actions and a weaker community structure. The hub is always located very far from the origin and
from other points, since this guarantees a large dot product value with respect to all other nodes,
at all times. By contrast, the isolated node is always located toward the opposite direction, which
is very reasonable.

Figure 2 shows instead the snapshots for the distance model. In this case, the clusters are clearly
separated at all times. The cluster with a strong community structure is less dispersed than the
clusters with a weaker community structure. The hub is constantly positioned in the center of
the space, as to minimize the distance from all of the nodes at the same time. The isolated node
is instead wandering in the outskirts of the latent social space. The creation and dissolution of
communities only happens right at the proximity of start/end of each time segment. For this sim-
ulation study, the mean absolute error arising from the goodness of fit procedure is 0.63 for the
projection model against 0.73 for the distance model, thus preferring the projection model.

Technical details regarding the simulation’s parameters, including penalization terms and
number of change points, can be consulted on the CLPM code repository.

Simulation study 2. In the second simulation study, we use again a blockmodel structure; how-
ever, in this case we approximate a continuous time framework by defining very short time
segments and letting the communities change from one time segment to the next. Since creations
and dissolutions of communities would be unlikely in such a short period of time, we keep the
community memberships unchanged, and we progressively increase the cohesiveness of the com-
munities. This means that we progressively increase the rates of interactions between any pairs
of nodes that belong to the same community, while keeping any other rate constant. The rate of
interactions within each community starts at value 1 and increases in a step-wise fashion over
40 segments, up to the value 5. The time interval is [0, 40], and we consider two communities.
Halfway through the simulation, a special node moves from one community to the other.

For the projection CLPM, we show the results in Figure 3, whereas Figure 4 shows the results
for the distance model. Both approaches clearly capture the reinforcement of the communities
over time by aggregating the nodes of each group. We observe this behavior both for the projec-
tion model and for the distance model. The projection model also exhibits nodes getting farther
from the center of the space, since this would give them higher interaction rates, overall. As con-
cerns the special node moving from one community to the other, this is well captured in that
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Figure 1. Simulation study 1: snapshots for the projection model. The sizes and colors (fading from blue to yellow) of the
nodes reflect their current level of interaction. The hub and the isolated node are colored in green and red, respectively.

the node transitions smoothly after approximately 20 s, in both models. As concerns model fit
and model choice, the mean absolute error is 5.48 for the projection model against 3.97 for the
distance model, thus preferring the distance model.

5.2 Comparison with the static LPM
For simulation study 2, we propose a comparison of our results with a static LPM, as per Hoff et al.
(2002). We use an implementation of the static LPM available from the R package latentnet.
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Figure 2. Simulation study 1: snapshots for the distance model. The sizes and colors (fading from blue to yellow) of the
nodes reflect their current level of interaction. The hub and the isolated node are colored in green and red, respectively.

In order tomake the results comparable, we divide the time interval of 40 s into 80 sub-intervals
of 0.5 s each. Then, within each sub-interval, we aggregate the interaction data by creating an edge
between all those nodes that have at least one interaction. By doing so, we obtain a sequence of 80
binary undirected networks, on which we fit the distance model of Hoff et al. (2002).

We propose the visual results for four sub-intervals in Figure 5. From these results, we make
the following observations:
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Figure 3. Simulation study 2: snapshots for the projection model. The sizes and colors (fading from blue to yellow) of the
nodes reflect their current level of interaction.

• The static LPM does not capture the transition of the special node from one community to
the other.

• The static LPM does not provide a model-based framework to make the snapshots
comparable across time frames, due to rotations, translations, and reflections.

• The static LPM does not provide an initial strong separation of the communities, due to
the adaption that is made in discretizing the data over time.

On the other hand, the CLPM can address these issues directly by providing a continuous time
evolution and thus a more accurate representation of the trajectories, without using any ad hoc
data transformation.

5.3 Distance model
Simulation study 3. In this simulation study, we generate data from the latent distance model
itself (Section 2.2.2). In this case, our goal can be more ambitious, and thus, we aim at recon-
structing the individual trajectory of each of the nodes, at every point in time, as accurately as
possible. To make the reading of the results easier, we assume that the nodes move along some
pre-determined trajectories that are easy to visualize. The N = 20 nodes start on a ring which is
centered at the origin of the space and has radius equal to 1. The nodes are located consecutively
and in line along the ring, with equal space in between any two consecutive nodes. Then, they
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Figure 4. Simulation study 2: snapshots for the distance model. The sizes and colors (fading from blue to yellow) of the
nodes reflect their current level of interaction.

start to move at constant speed toward the center of the space, which they reach after 5 s. After
reaching the center, they perform the same motion backward, and they are back at their initial
positions after 5 more seconds. The trajectories of the nodes make it so that, when the nodes are
along the largest ring, their rate of interaction is essentially zero; however, the rate increases as
they are closer and closer to the center of the space.

Figure 6 shows a collection of snapshots for the projectionmodel. The nodes are approximately
equally spaced along a line, and they progress outwards from the center of the space. As they get far
apart from the center and from each other, their dot products increase and so do their interaction
rates. The projection model, which is not the same model that has generated the data, tends to
spread out the nodes on the space, which is ideal and expected from these data. However, this
means that some of the nodes almost point in perpendicular directions, which is at odds with the
fact that, halfway through the study, all nodes should interact with all others.

As concerns the results for the distance model, these are shown in Figure 7, and they high-
light that the true trajectories are essentially accurately recovered. The model can capture really
well the contraction and expansion of the latent space, and the individual trajectories of the nodes
are closely following the theoretical counterparts. The scale of the latent space is also correctly
estimated since the largest ring has approximately radius 1. In addition, the goodness of fit crite-
rion is equal to 43.9 for the projection model and 33.6 for the distance model, thus preferring the
distance model. This is an expected result since the data are in fact generated using the distance
model itself.
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Figure 5. Simulation study 2: fitted static LPM on four sub-intervals. Colors indicate the cluster membership, with one node
in red being the transient node that changes community.

There are some important remarks to make. First, after 5 s, that is, when all nodes are located
close to the center, it is understandable that a rotation or reflection (with respect to the origin
of the space) may happen. This is inevitable since the solution can only be recovered up to a
rotation/reflection of all the latent trajectories, but also because the first 5 s and the last 5 s can
technically be seen as two independent problems. The collapse to zero can be seen as a reset in
terms of orientation of the latent space. That is because the penalization terms only work with two
consecutive change points, so, if we view them as identifiability constraints, they would lose their
effectiveness when all the nodes collapse to zero for some time. A second fundamental remark is
that the estimation procedure can lead to good results only if we observe an appropriate number
of interactions. This is a specific trait of LPMs in general, since we can only guess the position
of one node accurately when we know to whom it connects (or, in this context, how frequently),
as we would tend to locate it close to its neighbors. In our simulated setting, there are few to no
interactions when nodes are along the largest ring, so it makes sense that the results seem a bit
more noisy in those instants.
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Figure 6. Simulation study 3: snapshots for the projection model. The sizes and colors (fading from blue to yellow) of the
nodes reflect their current level of interaction.

5.4 Running times
We report some results aiming at quantifying the time gain due to the use of the SGD algo-
rithm detailed in Section 3. We simulated dynamic networks according to the setup of Simulation
study 2 (Section 5.1) with number of nodes varying in the range {30, 60, . . . , 180}. For each num-
ber of nodes, the distance model was first fit to the data with (mini) batch size N/10 and 25
epochs.4 These settings were checked to be sufficient to numerically reach a stationary point (Z, β)
stabilizing the log-likelihood. The average log-likelihood (say l) on the last epoch was computed
and a full-batch GD algorithm was independently run on the same data and stopped either once
reaching l or after 250 epochs. The same initial (random) values for Z and β were adopted for
both SGD and GD, with a learning rate of 1.0−4 for Z and 1.0−7 for β . The running times (sec-
onds) needed to reach l for each number of nodes are reported in Figure 8. As it can be seen,
with N = 180 nodes, the full-batch GD algorithm roughly needs 16 min to converge versus 4
min required by the mini-batch SGD counterpart. The experiment was run on a DELL server
PowerEdge T640, equipped with an Intel Xeon processor, 28 cores (12 cores and 27 of RAM
memory available on a dedicated virtual machine), and a NVIDIA GeForce RTX 2080 graphic
card. The optimization algorithms (GD and SGD) were coded in PyTorch and exploited GPU
acceleration.
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Figure 7. Simulation study 3: snapshots for the distance model. The sizes and colors (fading from blue to yellow) of the
nodes reflect their current level of interaction.

Figure 8. Time (in seconds) needed tomaximize the penalized log-likelihood with full-batch GD (green) andmini-batch SGD
(blue).
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Figure 9. ACM application: cumulative number of interactions for each quarter hour (first day).

6. Applications
In this section, we illustrate our approach over three real datasets, highlighting how we can char-
acterize the trajectories of individual nodes, the formation and dissolution of communities, and
other types of connectivity patterns. From the simulation studies, we have pointed out that the
distance model generally provides a more convenient and appropriate framework to study these
aspects of the data. In addition, the distance model is also easier to interpret. So, since our main
focus here is onmodel-based visualization and interpretation, we only show the results for the dis-
tance model and redirect the reader to the associated code repository where the complete results
can be found also for the projection model.

6.1 ACM hypertext conference dataset
The ACM Hypertext 2009 conference was held over 3 days in Turin, Italy, from June 29 to July 1.
At the conference, 113 attendees wore special badges which recorded an interaction whenever
two badges were facing each other at a distance of 1.5 m or less, for at least 20 s. For each of these
interactions, a timestamp was recorded as well as the identifiers of the two personal badges.

This interaction dataset was first analyzed by Isella et al. (2011) and is publicly available from
Hypertext 2009 network dataset - KONECT (2017). Similarly to Corneli et al. (2016), we focus
our analysis on the first day of the conference. On the first day, the main events that took place
included a poster session in the morning (starting from 8 a.m.), a lunch break around 1 p.m., and
a cheese and wine reception in the evening between 6 and 7 p.m. (Figure 9).

We use our distance CLPM to provide a graphical representation of these data and to note how
the model responds to the various gatherings that happened during the day. We use 20 change
points, which we found provided a sufficient level of flexibility for this application. Figures 10
and 11 show a number of snapshots highlighting some of the relevant moments of the day. The
complete results, shown as a video, can be found in the code repository that accompanies this
paper.

We can see that, in the morning, there is a high level of mixing between the attendees. The
visitors tend to merge and split into different communities that change very frequently and very
randomly. These communities reach a high level of clusteredness, which signals that the partici-
pants of the study are mixing into different groups. This is perfectly in agreement with the idea
that the participants are moving from one location to another, as it usually happens during poster
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Figure 10. ACM application: snapshots for the distance model (morning hours). The sizes of the nodes reflect their current
level of interaction. The colors are obtained with the spectral procedure of Section 4, with five groups.

sessions and parallel talk sessions. The nodes exhibit different types of patterns and behaviors, in
that some nodes are central and tend to join many communities, whereas others have lower levels
of participation and remain at the outskirts of the space.

In the late morning, we see a clear close gathering around 12 p.m., whereby almost all nodes
move toward the center of the space. This is emphasized even more at 1.40 p.m., which corre-
sponds to the lunch break. It is especially interesting that, even though the space becomes more
contracted at this time, we can still clearly see a strong clustering structure.

In the afternoon, we go back to the same patterns as in the morning, whereby the participants
mix in different groups and move around the space. The wine reception is also clearly captured
around 6 p.m. where we see again some level of contraction of the space, to signal a large gathering
of the participants.

After this event, the overall rate of interactions diminishes sharply, and as a consequence we
see the nodes spreading out in the space.

In terms of clustering, we use the index introduced in Section 4 on the results for the distance
model, for various threshold levels. The results are shown in Figure 12, where we can appreciate
strong time-dynamic patterns. All threshold values highlight several peaks for the clustering mea-
sure, confirming the aggregations happening throughout the morning, at lunchtime, and in the
evening. In addition, we can also highlight a number of smaller cycles, which are congruent with
the creation and dissolution of small communities as may be observed during parallel sessions or
poster presentations.
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Figure 11. ACM application: snapshots for the distance model (afternoon hours). The sizes of the nodes reflect their current
level of interaction. The colors are obtained with the spectral procedure of Section 4, with five groups.

Figure 12. ACM application: clusteredness measure for various threshold values. The x-axis shows the hour of the day,
whereas the y-axis shows the average number of nodes that a random node would have within the threshold distance.
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6.2 Reality mining
The reality mining dataset (Eagle and Pentland, 2006) is derived from the Reality Commons
project, which was run at the Massachusetts Institute of Technology from 14 September 2004
to 5 May 2005. The dataset describes proximity interactions in a group of 96 students, collected
primarily through Bluetooth devices. An overview of this network dataset is also given by Rastelli
(2019).

In the context of this paper, the proximity interactions can be reasonably considered as instan-
taneous interactions, due to the study being 9 months long. With our latent space representation,
we aim at highlighting the patterns of connections of the students during the study, and any social
communities that arise and how these change over time.

Figure 13 shows a few snapshots of our fitted distance CLPM. For this application, we also used
20 change points; however, all the implementation details, along with the complete results shown
as a video, can be found in the code repository that accompanies this paper.

We observe that, in general, the students are quite separated and few communities arise. This
does not necessarily mean that the nodes do not interact, but it is a sign that there are no sub-
groups of students with an uncommonly high interaction rate. Over time, the students tend to
mix in different social groups, thus quickly forming and undoing communities. This could be
explained by the interactions that the students have due to college activities or other daily activ-
ities. Near the end of the study, a large cluster appears, signaling a large gathering to which the
students participated. This may correspond to the period before a deadline, as outlined in Eagle
and Pentland (2006).

6.3 London bikes
Infrastructure networks provide an excellent example of instantaneous interaction data. In this
section, we consider a network of bike hires which is collected and publicly distributed by
Transport for London: Cycle hire usage data 2012–2015 (n.d.). We focus on a specific weekend
day (Sunday 6 September 2015) and study the patterns of interactions between all bike hire sta-
tions in London over 24 h, from midnight to midnight. The bike hire stations correspond to the
nodes of our network, whereas an instantaneous interaction between two nodes at time t simply
means that a bike started a journey from one station toward the other, at that time (we consider
undirected connections). For the change points η1, . . . , ηK , we set a change point every 15 min,
for a total K = 96 change points over the day.

In Figure 14, we show a collection of snapshots at some critical time points during the day, for
the distance model. Figure 15 shows instead the clusteredness index. The complete results, shown
as a video, can be found in the code repository that accompanies this paper. Although there are a
total of 818 stations that are active in this dataset, we provide a visualization for the 60 most active
stations only. However, we emphasize that the results were obtained using the whole dataset. As
said, we highlight with a different color the three stations with the highest number of interactions,
overall. These stations are:

• Belgrove Street, King’s Cross, situated next to King’s Cross Square (shown in red);
• Finsbury Circus, Liverpool Street, situated next to Liverpool Street station (shown in

green);
• Newgate Street, St. Paul’s, situated next to St. Paul’s Cathedral (shown in yellow).

The first aspect that we notice is that the latent space expands during inactive times, and it
contracts during busy hours. The contractions and expansions are not homogeneous; rather they
highlight the presence of dense and less dense clusters of stations.
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Figure 13. MIT application: snapshots for the distancemodel. The sizes of the nodes reflect their current level of interaction.
The colors are obtained with the spectral procedure of Section 4, with five groups.

The estimate for the intercept parameter is −4.95, and the dispersion of the points in the latent
space is not particularly large. This indicates that the latent space characterization is not having a
very strong effect on the rate of interactions, and the model does not capture much variability in
the rates of interactions. This highlights that these connectivity data follow patterns that cannot
be completely explained by the purely geometrical nature of our model. That is, the connections
are determined by a variety of factors that cannot be framed into this latent position’s context, and
the geographical information on bike hiring accounts for only a part of the problem.
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Figure 14. London bikes application: snapshots for the distance model. The sizes and colors (fading from blue to yellow) of
the nodes reflect their current level of interaction. Three most active stations are shown in red, green, and yellow.

Figure 15. London bikes application: clusteredness measure for various threshold values. The x-axis shows the hour of the
day, whereas the y-axis shows the average number of nodes that a random node would have within the threshold distance.
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7. Conclusions and perspectives
Wehave introduced a new time-continuous version of the well known and widely used LPM, as an
extension which can model instantaneous interactions between entities. We have proposed a new
methodology which provides good flexibility while also allowing for an efficient inferential frame-
work. The methodology is implemented in our software CLPM which accompanies this paper and
is publicly available. This provides an essential additional tool for practitioners that are interested
in deriving latent space visualizations from observed instantaneous interaction data.

The framework that we propose is highly inspired by the work of Hoff et al. (2002) and by
the vast literature that has followed in this direction. Our work combines some crucial theoretical
and statistical aspects of latent position modeling, with a pragmatic approach to inference and
visualization of the results. Crucially, we provide simulation studies and real data applications
to demonstrate how our method leads to sensible and accurate results, with low computational
demands.

As regards extensions and future work, our research opens up several new directions, to address
and potentially change some crucial parts of our procedure. Being able to assess the uncertainty
around the estimated latent positions would be crucial, but it is not trivial. Indeed, as the observed
data log-likelihood is invariant with respect to isometries in the latent space, sampling from the
posterior distribution could lead to non-interpretable samples. For the very same reason, para-
metric bootstrap cannot be easily exploited. Stochastic variational inference seems to be the most
valuable way to quantify the uncertainty around Z. Another fundamental challenge is related
to the geometric nature of the latent space. In this paper, and in the literature cited here, affine
latent spaces are considered, endowed with the standard dot product, which, in turn, induces the
Euclidean distance. However, some important works in the literature of the static LPM consider
the latent space to be spherical (McCormick and Zheng, 2015) or hyperbolic (Krioukov et al.,
2010; Asta and Shalizi, 2015). As expected, since LPMs are generative models, the geometry of the
latent space has crucial consequences on the properties of the simulated network (Smith et al.,
2019). Indeed, recently, Lubold et al. (2020) introduced a method to consistently estimate the
manifold type, dimension, and curvature from a class of latent spaces. Addressing these topics
in the context of dynamic LPMs is a promising avenue of research that can extend our work.
Another challenging aspect of our methodology regards inference: in this paper, we propose an
optimization approach to maximize a penalized likelihood. An interesting alternative would be
to consider a different approach that could allow one to also quantify uncertainty around the
parameter estimates. Goodness of fit and model selection is also another critical aspect of our pro-
posed method. In this work, we have primarily focused on data visualization and interpretation as
a goal. However, many modeling decisions that we have arbitrarily taken (e.g., number of latent
dimensions, penalization parameter values) could be replaced by more formal procedures that
rely on model choice criteria and goodness of fit. This opens up a number of interesting research
directions that we leave as potential future work. Finally, in terms of modeling, we use piece-
wise continuous trajectories due to their flexibility and easy tractability. However, the assumption
of fixing the change points arbitrarily is a limitation of our framework, and so alternatives to
our parametrization may be considered to allow the change points to be estimated from the
data.
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Notes
1 Indeed, we could say equivalently 〈

zi(t), zj(t)
〉= cos

(
αij
) ‖ zi(t) ‖‖ zj(t) ‖

where αij ∈ [0, π2 ] is the angle between zi(t) and zj(t) and ‖ · ‖ is the Euclidean norm.
2 Since our inferential approach relies on penalized likelihood optimization, it is also equivalent to a maximum-a-posteriori
Bayesian framework, whereby the likelihood penalization corresponds to a prior for the latent positions. For this reason,
we introduce the penalizations as prior distributions over the latent positions, noting that our inferential approach is not
necessarily Bayesian since we only obtain point estimates.
3 Since we maximize a log-likelihood, gradient ascent is performed instead of gradient descent. However, since maximizing
the log-likelihood is equivalent to minimize its opposite and in order to adopt the same convention as in machine/statistical
learning literature we keep using the expression “gradient descent.”
4 In more details, groups of N/10 nodes were selected uniformly at random in the graph. The kth epoch is concluded once
all nodes were selected at least k times.
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A. Log-likelihood for the projection model

Tomake the forthcoming results clearer, we introduce the following notation for the dot products:

Sghij := 〈
zi(ηg), zj(ηh)

〉
(A1)

for some nodes i and j, and for any g, h ∈ {1, . . . ,K}. Most commonly, g and h will correspond to
the labels of two consecutive change points; thus, we will use them to identify two breakpoints for
the trajectories and to reconstruct the positions in between. Also, we denote:

Sij(t) :=
〈
zi(t), zj(t)

〉
for the dot product at a generic time t ∈ [0, T].

Proposition 2. Under the projection model, the log-likelihood is exactly equal to:

logL (β , Z)=
∑
i,j: i<j

⎧⎨
⎩
∑
τe∈Eij

(β + Sij(τe))

−eβ
K−1∑
g=1

(
ηh − ηg

) ∫ 1

0
exp

{[
(1− t)2Sggij + t(1− t)(Sghij + Shgij )+ t2Shhij

]}
dt

⎫⎬
⎭

(A2)
where h= g + 1.

Proof. The only non-trivial part in formula (4) regards the integral:∫ T

0
exp{β + 〈zi(s), zj(s)〉}ds

where we have that, for s ∈ [ηg , ηg+1]:
zi(s)= (1− t)zi(ηg)+ tzi(ηg+1)

and, thanks to Equation (3), t ∈ [0, 1] is such that s= (1− t)ηg + tηg+1. Back to the calculation of
the integral, we can decompose this into K − 1 integrals using the K change points as follows:∫ T

0
exp{β + 〈zi(s), zj(s)〉}ds= eβ

K−1∑
g=1

∫ ηg+1

ηg
exp{〈zi(s), zj(s)〉}ds

and then, in each integral, we apply the transformation s= (1− t)ηg + tηg+1 and set h= g + 1 to
obtain:∫ ηh

ηg
exp{〈zi(s), zj(s)〉}ds= (ηh − ηg

) ∫ 1

0
exp

{〈
zi((1− t)ηg + tηh), zj((1− t)ηg + tηh)

〉}
dt

= (ηh − ηg
) ∫ 1

0
exp

{[
(1− t)2Sggij + t(1− t)(Sghij + Shgij )+ t2Shhij

]}
dt
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where Sghij is defined in Equation (A1). Since the S terms do not depend on t, the integral can
be efficiently approximated using a composite Simpson’s rule (see equation 5.1.16 of Atkinson
(1991)). �

B. Log-likelihood for the distance model

We focus on the integral in Equation (6) and prove that it can be explicitly solved.

Proof. In force of Equation (3), it reads

eβ
⎛
⎝K−1∑

g=1

∫ 1

0
exp

{− ‖ (1− t)(zi(ηg)− zj(ηg))+ t(zi(ηg+1)− zj(ηg+1)) ‖2
}
(ηg+1 − ηg)dt

⎞
⎠

= eβ
⎛
⎝K−1∑

g=1
(ηg+1 − ηg)

∫ 1

0
exp

{
− ‖ t(�g

i −�
g
j )+ (zgi − zgj ) ‖22

}
dt

⎞
⎠

(B1)

where the variable change t = s−ηg
ηg+1−ηg was performed and the following notations were adopted

to simplify the exposition

�
g
i := zi(ηg+1)− zi(ηg)

�
g
j := zj(ηg+1)− zj(ηg)

zgi := zi(ηg)
zgj := zj(ηg)

By denoting f (t) := − ‖ t(�g
i −�

g
j )+ (zgi − zgj ) ‖22 the exponent inside the integral, we can

“complete the square” as follows

f (t)= − ‖�g
i −�

g
j ‖2

(
t2 + 2t

〈
�

g
i −�

g
j

‖�g
i −�

g
j ‖ ,

zgi − zgj
‖�g

i −�
g
j ‖

〉
+ ‖ zgi − zgj ‖2

‖�g
i −�

g
j ‖2

)

= − ‖�g
i −�

g
j ‖2

(
t −

〈
�

g
i −�

g
j

‖�g
i −�

g
j ‖ ,

zgj − zgi
‖�g

i −�
g
j ‖

〉)2

−
⎛
⎝‖ zgi − zgj ‖2 −

(〈
�

g
i −�

g
j

‖�g
i −�

g
j ‖ , z

g
j − zgi

〉)2⎞⎠
= − 1

2(σ 2)gij
(t −μij)2 −

(
‖ zgi − zgj ‖2 −( ‖�g

i −�
g
j ‖μg

ij)
2
)

where

μ
g
ij:=

〈
�

g
i −�

g
j

‖�g
i −�

g
j ‖ ,

zgj − zgi
‖�g

i −�
g
j ‖

〉
,

(σ 2)gij:=
1

2 ‖�g
i −�

g
j ‖2 . (B2)
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By plugging all this into Equation (B1), it follows that∫ T

0
eβ−‖zi(t)−zj(t)‖22dt =

= √
2πeβ

⎧⎨
⎩

K−1∑
g=1

e−(‖zgi −zgj ‖2−(‖�g
i −�g

j ‖μg
ij)

2)
σ
g
ij (ηg+1 − ηg)

[
�

(
1−μ

g
ij

σ
g
ij

)
−�

(
0−μ

g
ij

σ
g
ij

)]⎫⎬
⎭

(B3)

�
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