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Abstract. We use an intermediate value theorem for quasi-monotone increasing
functions to prove the existence of the smallest and the greatest solution of the Dirichlet
problem u′′ + f (t, u) = 0, u(0) = α, u(1) = β between lower and upper solutions, where
f : [0, 1] × E → E is quasi-monotone increasing in its second variable with respect to
a regular cone.
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1. Introduction. Let E be a real Banach space ordered by a cone K . A cone K is a
non-empty closed convex subset of E such that λK ⊆ K (λ ≥ 0), and K ∩ (−K) = {0}.
As usual x ≤ y : ⇐⇒ y − x ∈ K . For x ≤ y let [x, y] denote the order interval of all z
with x ≤ z ≤ y. Let K∗ denote the dual wedge of K , that is the set of all ϕ ∈ E∗ with
ϕ(x) ≥ 0 (x ≥ 0).

For D ⊆ E a function g : D → E is called quasi-monotone increasing (qmi for
short), in the sense of Volkmann [16], if

x, y ∈ D, x ≤ y, ϕ ∈ K∗, ϕ(x) = ϕ(y) =⇒ ϕ(g(x)) ≤ ϕ(g(y)).

For I ⊆ � (an interval) a function g : I × D → E is called qmi if x → g(t, x) is qmi for
each t ∈ I .

Let f : [0, 1] × E → E be continuous and qmi. We consider the Dirichlet boundary
value problem (BVP)

u′′(t) + f (t, u(t)) = 0 (t ∈ [0, 1]), u(0) = α, u(1) = β. (1)

As usual, functions v,w ∈ C2([0, 1], E) are called lower and upper solutions for
problem (1) in case

v′′(t) + f (t, v(t)) ≥ 0 (t ∈ [0, 1]), v(0) ≤ α, v(1) ≤ β, (2)

w′′(t) + f (t, w(t)) ≤ 0 (t ∈ [0, 1]), w(0) ≥ α, w(1) ≥ β, (3)

respectively.
The use of lower and upper solutions to obtain existence of solutions of boundary

value problems dates back to Perron’s method for the Dirichlet problem for elliptic
equations, and since that time, hundreds of papers have used lower and upper solutions
for all kind of equations and boundary conditions. For a survey on the history of this
subject, we refer to [3, Chapter 4.3], and the references given there.
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If v(t) ≤ w(t) (t ∈ [0, 1]), the question whether (1) has a solution u ∈ C2([0, 1], E)
between v and w is answered positively under different assumptions on E and K .
The typical methods of proofs are variants of Nagumo’s cutting off method and the
method of monotone iteration, see [1, 2, 4, 7, 9, 11, 13], and the references given there.
In this paper, we will study this problem by a construction that allows the application
of intermediate value theorems for qmi functions, in a quite natural way.

2. Preliminaries. We will make use of the following existence and comparison
theorem:

THEOREM 1. Let h : [a, b] × E → E be continuous, qmi and Lipschitz continuous in
its second variable with constant L < π2/(b − a)2. Then

(1) The BVP u′′(t) + h(t, u(t)) = 0, u(a) = α, u(b) = β has a unique solution
u(·, α, β) ∈ C2([a, b], E) for each choice of α, β ∈ E, and the solution operator
S : E2 → C1([a, b], E),

S(α, β) = u(·, α, β)

is Lipschitz continuous.
(2) If v,w ∈ C2([a, b], E) satisfy

v′′(t) + h(t, v(t)) ≥ w′′(t) + h(t, w(t)) (t ∈ [a, b]),

and

v(a) ≤ w(a), v(b) ≤ w(b),

then v(t) ≤ w(t) (t ∈ [a, b]).

REMARKS. Part 1 of Theorem 1 is Lettenmeyer’s existence theorem for BVPs [10].
The Lipschitz continuity of S follows from the corresponding integral equation. Part 2
of Theorem 1 is a special case of [6, Theorem 3]. In particular, part 2 of Theorem 1
proves that the solution operator S in part 1 is monotone increasing, if E2 is ordered
by the cone K2, and if C1([a, b], E) is ordered by the cone

{z ∈ C1([a, b], E) : z(t) ≥ 0 (t ∈ [a, b])}.

3. Main result. Let f : [0, 1] × E → E be continuous, qmi and Lipschitz
continuous in its second variable with constant L > 0. We consider problem (1). Let
Z = {t0, t1, . . . , tn, tn+1} be a partition of [0, 1], that is, 0 = t0 < t1 · · · < tn < tn+1 = 1,
such that

max{tk+1 − tk : k = 0, . . . , n} <
π√
L

.

Under these assumptions, Theorem 1 applies to each interval [a, b] = [tk, tk+1].
For convenience of the notation, we set x0 = α and xn+1 = β.

In particular, we can define a function G = (G1, . . . , Gn) : En → En by setting

Gk(x) = u′
k+1(tk) − u′

k(tk) (k = 1, . . . , n),
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for each x = (x1, . . . , xn) ∈ En, where u1, . . . , un+1 denote the solutions of the boundary
value problems

u′′
k(t) + f (t, uk(t)) = 0, uk(tk−1) = xk−1, uk(tk) = xk (k = 1, . . . , n + 1).

Now let En be ordered by the cone Kn, let v,w ∈ C2([0, 1], E) be lower and upper
solutions for problem (1) with v ≤ w on [0, 1], and let

V = (v(t1), . . . , v(tn)), W = (w(t1), . . . , w(tn)).

THEOREM 2. Under the assumptions given above we have
(1) The function G = (G1, . . . , Gn) : En → En is Lipschitz continuous and qmi on En.

Moreover G(V ) ≥ 0 and G(W ) ≤ 0.
(2) The function u : [0, 1] → E defined by

u(t) = uk(t) (t ∈ [tk−1, tk], k = 1, . . . , n + 1)

is a solution of (1) if and only if G(x) = 0.

Proof: (1) Lipschitz continuity of G follows immediately from part 1 of Theorem 1.
Next, note that ψ ∈ (Kn)∗ if and only if there exist ϕ1, . . . , ϕn ∈ K∗ such that

ψ(x) = ϕ1(x1) + · · · + ϕn(xn) (x = (x1, . . . , xn) ∈ En).

For this reason, G is qmi on En if and only if for each x = (x1, . . . , xn) ∈ En and each
k ∈ {1, . . . , n} the following condition holds:

ξ → Gk(x1, . . . , xj−1, ξ, xj+1, . . . , xn)

is monotone increasing on E for j ∈ {1, . . . , n}\{k}, and

ξ → Gk(x1, . . . , xk−1, ξ, xk+1, . . . , xn)

is qmi on E. To verify this property fix k ∈ {1, . . . , n}. First, let j �= k and ξ, η ∈ E with
ξ ≤ η. It is clear that Gk does not depend on the jth coordinate if |j − k| > 1.

We consider j = k + 1. Thus, we have to deal with the solutions of the following
BVPs:

q′′(t) + f (t, q(t)) = 0, q(tk) = xk, q(tk+1) = ξ,

r′′(t) + f (t, r(t)) = 0, r(tk) = xk, r(tk+1) = η.

According to part 2 of Theorem 1 we have q ≤ r on [tk, tk+1] and q(tk) = r(tk). Therefore,

Gk(x1, . . . , xj−1, η, xj+1, . . . , xn) − Gk(x1, . . . , xj−1, ξ, xj+1, . . . , xn)

= r′(tk) − q′(tk) ≥ 0.

For j = k − 1 we consider the BVPs

q′′(t) + f (t, q(t)) = 0, q(tk−1) = ξ, q(tk) = xk,

r′′(t) + f (t, r(t)) = 0, r(tk−1) = η, r(tk) = xk.
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Now, q ≤ r on [tk−1, tk] and q(tk) = r(tk). Therefore,

Gk(x1, . . . , xj−1, η, xj+1, . . . , xn) − Gk(x1, . . . , xj−1, ξ, xj+1, . . . , xn)

= −(r′(tk) − q′(tk)) ≥ 0.

Next, let

ξ, η ∈ E, ξ ≤ η, ϕ ∈ K∗, ϕ(ξ ) = ϕ(η).

We consider the BVPs

q′′(t) + f (t, q(t)) = 0, q(tk) = ξ, q(tk+1) = xk+1,

r′′(t) + f (t, r(t)) = 0, r(tk) = η, r(tk+1) = xk+1.

We have q ≤ r on [tk, tk+1]. Therefore,

ϕ(q′(tk)) = lim
t→tk+

ϕ(q(t)) − ϕ(ξ )
t − tk

≤ lim
t→tk+

ϕ(r(t)) − ϕ(η)
t − tk

= ϕ(r′(tk)).

Analogously, if we consider the BVPs

q′′(t) + f (t, q(t)) = 0, q(tk−1) = xk−1, q(tk) = ξ,

r′′(t) + f (t, r(t)) = 0, r(tk−1) = xk−1, r(tk) = η,

we obtain q ≤ r on [tk−1, tk], and now

ϕ(q′(tk)) = lim
t→tk−

ϕ(q(t)) − ϕ(ξ )
t − tk

≥ lim
t→tk−

ϕ(r(t)) − ϕ(η)
t − tk

= ϕ(r′(tk)).

Thus, we have

ϕ(Gk(x1, . . . , xk−1, ξ, xk+1, . . . , xn)) ≤ ϕ(Gk(x1, . . . , xk−1, η, xk+1, . . . , xn)).

Summing up, we have proved that G is qmi on En.
Now, consider V = (v(t1), . . . , v(tn)). For each k ∈ {1, . . . , n + 1} let uk :

[tk−1, tk] → E be the corresponding solution of the BVPs in the definition of G with
x = V . From the properties of v in (2) and part 2 of Theorem 1, we obtain

v(t) ≤ uk(t) (t ∈ [tk−1, tk], k ∈ {1, . . . , n + 1})

and

v(tk−1) = uk(tk−1), v(tk) = uk(tk) (k = 2, . . . , n).

Thus, u′
k+1(tk) ≥ v′(tk) and u′

k(tk) ≤ v′(tk) (k = 1, . . . , n). Therefore

u′
k+1(tk) − u′

k(tk) ≥ v′(tk) − v′(tk) = 0 (k = 1, . . . , n).

This means G(V ) ≥ 0. Analogously, from the properties of w in (3) and part 2 of
Theorem 1, we obtain G(W ) ≤ 0.
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(2) It is trivial that G(x) = 0 if u is a solution of (1). Now let G(x) = 0, that is

u′
k+1(tk) = u′

k(tk) (k = 1, . . . , n).

Thus, u is C1 on [0, 1] and u is C2 on each interval [tk−1, tk] (k = 1, . . . , n + 1). From
the differential equation, we obtain

(u′)′−(tk) = (u′)′+(tk) (k = 1, . . . , n).

Therefore, u ∈ C2([0, 1], E) and solves u′′(t) + f (t, u(t)) = 0. Since u(0) = α, u(1) = β

anyway, u is a solution of (1). �

4. Application of an intermediate value theorem. For qmi mappings, several
intermediate value (or equivalently fixed point) theorems are known; see [5, 8, 12, 15],
and the references given there. Note, that a cone K ⊆ E is called regular if each
increasing and order bounded sequence is convergent (if dimE < ∞ each cone is
regular). A suitable intermediate value theorem for our purposes is the following:

THEOREM 3. Let D be an open subset of a Banach space E ordered by a regular cone
K, let ξ, η ∈ E be such that ξ ≤ η and [ξ, η] ⊆ D. Let g : D → E be Lipschitz continuous
and qmi, and let g(η) ≤ 0 ≤ g(ξ ). Then the equation g(x) = 0 has the smallest solution x
and the greatest solution x in [ξ, η].

Theorem 3 follows from the results and methods in [5] and [15].
Now, let E be ordered by a regular cone K (then Kn is a regular cone in En) and

let f , v, w and G be as assumed in Section 3. Under these assumptions, Theorem 2
proves that Theorem 3 applies to G, V and W . Thus, the equation G(x) = 0 has the
smallest solution x and the greatest solution x in [V, W ]. The corresponding functions
u, u : [0, 1] → E are solutions of (1). Moreover if u : [0, 1] → E is a solution of (1) with

v(t) ≤ u(t) ≤ w(t) (t ∈ [0, 1]),

then for x = (u(t1), . . . , u(tn)) we find V ≤ x ≤ W and G(x) = 0. Thus x ≤ x ≤ x and
part 2 of Theorem 1 once more prove

u(t) ≤ u(t) ≤ u(t) (t ∈ [0, 1]).

Summing up we have proved.

THEOREM 4. Let E be ordered by a regular cone, and let f , v and w be as assumed in
Section 3. Then the BVP (1) has a smallest solution u : [0, 1] → E and a greatest solution
u : [0, 1] → E between v and w.

REMARKS: (1) Theorem 4 applies if dimE < ∞. In this case, we have no restriction
to the cone, and, as it is to our knowledge, this general case was unknown. In the infinite-
dimensional case, further intermediate value theorems can be applied to G under special
assumptions on f . For example, [15, Theorem 4.1] can be applied whenever λG + id
restricted to [V, W ] is γ -condensing for some λ > 0, with respect to Hausdorff’s or
Kuratowski’s measure of non-compactness (compare also [5, Theorem 1]).

(2) Of course, we have the restriction that f is Lipschitz continuous in its second
variable. We have chosen this global assumption to avoid technical notations occluding
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the idea of the method. Let Br(0) denote the open ball with center 0 and radius r in E.
For example our method works in the same way in the following case:

Let f : [0, 1] × Br(0) → E be continuous, qmi and Lipschitz continuous in its
second variable. Let v and w be lower and upper solutions of problem (1) with v ≤ w

on [0, 1], and

[v(t), w(t)] ⊆ Br(0) (t ∈ [0, 1]).

Then, by choosing Z sufficiently fine, we obtain a Lipschitz continuous and qmi
function G : D → En on an open set D ⊆ En containing [V, W ]. Thus, we have the
following generalization of Theorem 4 which, if dimE < ∞, is applicable to locally
Lipschitz continuous functions.

THEOREM 5. Let E be ordered by a regular cone, and let f : [0, 1] × E → E be
continuous, qmi and Lipschitz continuous in its second variable on each set [0, 1] × Br(0)
(r > 0). Let v and w be lower and upper solutions of problem (1) with v ≤ w on [0, 1].
Then the BVP (1) has the smallest solution u : [0, 1] → E and the greatest solution
u : [0, 1] → E between v and w.

5. Example. Let E = �3 be ordered by the ice-cream cone

K = {(x, y, z) ∈ �3 : z ≥
√

x2 + y2}.

The linear qmi mappings in this case were characterized in [14]. It follows by
linearization that the following mappings are qmi:

(x, y, z) → ±(2zx + y, 2zy − x, x2 + y2 + z2).

Hence, if c : [0, 1] → � is continuous, then f : [0, 1] × �3 → �3 defined by

f (t, (x, y, z)) = c(t)(2zx + y, 2zy − x, x2 + y2 + z2)

is continuous, qmi and Lipschitz continuous in its second variable on each set [0, 1] ×
Br(0) (r > 0).

Now, assume that λ,μ : [0, 1] → � satisfy λ ≤ μ on [0, 1] and

λ′′(t) + c(t)λ2(t) ≥ 0 ≥ μ′′(t) + c(t)μ2(t) (t ∈ [0, 1]).

Then v(t) = (0, 0, λ(t)) and w(t) = (0, 0, μ(t)) are lower and upper solutions for
problem (1) with v ≤ w on [0, 1] whenever

α ∈ [(0, 0, λ(0)), (0, 0, μ(0))], β ∈ [(0, 0, λ(1)), (0, 0, μ(1))],

and according to Theorem 5, problem (1) has the smallest and the greatest solution
between v and w in this case.
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