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Abstract

In this paper we extend the notion of perfect, #-continuous, irreducible and 8-perfect mappings
to bitopological spaces. The main result is the following: the (small) image of an (i, j)-canonical
open sets is an (7, j)-canonical open set under a pairwise f-closed irreducible surjective map-
ping. Also we extend the notion of 6-proximity spaces to quasi #-proximity spaces and point
out the interrelation between it and separated quasi-proximity spaces by means of a pairwise
B-perfect irreducible mappings.

1991 Mathematics subject classification (Amer. Math. Soc.): 54 C 10, 54 E 05, 54 E 55.

1. Introduction

The notion of bitopological spaces was introduced by Kelly [10}]. In this paper
we investigate a less restrictive definition of pairwise perfect maps than that
given by M. C. Datta [2] and study some of its properties. Then we introduce
and study the concepts of pairwise 6-continuous, pairwise irreducible and
pairwise @-perfect mappings. Furthermore, we introduce the notion of a
quasi @-proximity space and prove the following.

(1) The (small) image of an (i, j)-canonical open set is an (i, j)-canon-
ical open set under a pairwise 6-closed irreducible mapping.

(2) Every separated quasi-proximity space is a quasi f-proximity space.

(3) A bitopological space admits a maximal quasi @-proximity if the
space is pairwise Hausdorff.
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(4) If f is a pairwise #-perfect irreducible mapping from a pairwise Ty-
chonoff space (X, 7,, 7,) onto a pairwise Hausdorff space (Y, A,
A,) and if & is a compatible separated quasi-proximity on (X, 7,,
7,) , then there exists a quasi @-proximity 6 on (Y, A, A,), asso-
ciated with f and ¢&.

Finally, we like to remark in the context of the present paper that, by
i,j,i,# j,wemeanthat i iseither 1 or 2 for instanceif i =1 then j=2.
Also we will use P— to denote pairwise and “bts” to denote bitopological
space.

2. Preliminaries

Let (X, t,,7,) beabtsand 4 asubset of X. The closure and interior
of 4 with respect to 7, are denoted by 7,-cl(4) and 7;-int(A), respectively.
The family of all 7;-closed sets will be denoted by ‘t:. . When the appropriate
topology is clear from the context, O, (respectively O, ) denotes an open set
containing A (respectively an open neighbourhood of x).

DErFiNITION 2.1 [10, 14]. A bts (X, 7, 7,) is called

(1) PT, & (Vx € X)(Vie {1, 2})({x} = t-cl{x})

(2) PT, or P-Hausdorff & (Vx,y € X, x # y)(30, € ‘ti)(EIOy € ‘rj)
(0,N0, = 2)

(3) PTz% or P-Urysohn & (Vx,y € X, x # y)(30, € ‘ti)(BOy €71))
(1;-cl(0,) N 1,-¢l(0,) = @)

(4) PR, or P-regular & (Vx € X)(VOx € 1,)(30; € 1,)(1,-cl(0;) €
0,)

(5) PR, L or P-completely regular « (Vx € X)(VF € 1;, x ¢ F) (3
a mapping f: X — [0, 1])(f is t,-lower semicontinuous, and f is
7,-upper semicontinuous and f(x)=0 and f(F)=1), where [0, 1]
is the closed unit interval

(6) PT3 1 or P-Tychonoff if and only if it is PR2 and PT,.
3

1
2

DEFINITION 2.2 [10]. A mapping f: (X, 7,,1,) = (Y, A, 4A,) is called
P-continuous (respectively P-open, P-closed) if the induced mappings f:
(X,t)—(Y,A), i=1,2, are continuous (respectively open, closed).

DEeFINITION 2.3 [8]. A cover Z ofabts (X, 7,, 1,) iscalled a ©,7,-open
cover if % C t,Ut,. If in addition # contains at least one nonempty
member of 7, and at least one nonempty member of 7,, then # is called
a P-open cover.

Although there are several different notions of P-compactness in the
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literature [1, 8, 11], we use the definition given in [8). An equivalent concept
of P-compactness has been introduced by Y. M. Kim [11].

DEFINITION 2.4 [8]. A bts (X, 7, 7,) is called P-compact if every P-
open cover of X has a finite subcover.

We make use of the following results from [8].

REesuLTs 2.5 [8]. (1) P-compactness is P-continuous invariant.

(2) In a P-Hausdorff space, a t;-compact subset is t;-closed.

(3) If (X, 1,,1,) is P-compact, then a proper t;closed subset is 1 i
compact.

DEFINITION 2.6. Asubset 4 ofabts (X, t,, 7,) is called (i, j)-canonical
open (or (i, j)-regular open) if A = 7-int(7;-cl(4)). Specifically, (V4 C
X)(t,-int(z ;- cl(A4)) is always (i, j)-canonical open).

DeFiniTION 2.7 [5]. If f: X — Y is a mapping from X into Y and
A C X, then we define a mapping f“ 2% L 0Y by

f(a)={plyeYand /7 ({y}) C 4},
and f* (A) is called the small image of A under the mapping f.

THEOREM 2.8 [5]. The mapping f* has the Jollowing properties .
(1) ) € f4);

(2) 1*(4) = co(f(co A)), where co denotes complementation;
3) fAnB)=)nrB);
@ i ca.

DEFINITION 2.9 [13]. A mapping §: 2 x 2% 5 {0, 1} is called a quasi-
proximity on X if it satisfies the following axioms:

(P)) 6(4,B)=0=>A4+#@ and B # 2;

(P,) 6(A,BUC)=6(4,B)-d(4, C) and,

0(AUB,C)Y=6(4,C)-6(B,C);

(P;) ANB#@=6(A,B)=0;

(P,) 6(4,B)=1=3UCX)d(4,U)=0d(colU, B)=1).

The pair (X, d) is called a quasi-proximity space. A quasi-proximity &
is said to be separated if it satisfies the following axiom:

(P5) 6({x}, {yhH=0ex=y.

If 6 is a quasi-proximity, then 67!, defined by 5_‘(A ,BY=6(B, A),is
also a quasi-proximity and it is called the conjugate of & .
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DerFiniTION 2,10 [12]. If (X, d) is a quasi-proximity space, then two
topologies 7(d) and 1(5—1) are defined on X if for arbitrary 4 C X we let
7(0)-cl(4) = {x € X: 6({x}, A) =0},
and
(67 ")-cl(4) = {x € X: §(4, {x}) = 0}.
DEFINITION 2.11. A quasi-proximity space (X, d) is called compatible
witha bts (X, 1,,1,) if 7(d) =7, and 7(6"") =1,.

LEMMA 2.12. The axiom (P,) implies the following axiom:
(P)) 6(4,B) =1 = (JU = (6™ - int(z()-l(U)))(6(4, U) =
d(co(1(d))-cl(U)), B) =1).

DEFINITION 2.13. A bts (X, 7,, 7,) is said to be P-extremally discon-
nected if the t,-closure of each 7 j-oben sets is 7 ,~open.

3. Pairwise perfect mappings

DEFINITION 3.1. A P-continuous, P-closed mapping f from abts (X, 1,
7,) into abts (Y, A, A,) is called P-perfect if it satisfies
(Vy € Y)(¥i € {1, 2})(f " ({»}) is 7,-compact subset in X).

Our definition of P-perfect mappings differs from the definition given by
Datta [2] in that we do not insist that point inverses by P-compact.

LeMMA 3.2. Every P-continuous mapping from a P-compact-bts (X, t,,
1,) into a PT,-bts (Y, A,, A,) is P-perfect.

Proor. Let 4 € T)\{X, @}. Since (X, 1, 7,) is P-compact, by 2.5(3),
A is a 7,-compact subset of X. Hence by 2.5(1), f(A) is a 7;-compact
subset of Y. So by 2.5(2), f(4) € A:. and hence f is P-closed.

To prove (iii), consider y € Y. Since (Y, A, A,) is PT,, thenitis PT,
and hence {y} € A;.. By P-continuity of f it follows that f~'({y}) € r;.
and hence by 2.5(3), f_l({y}) is a 7,-compact subset of X .

THEOREM 3.3. Let (X, ,1,) be a PR,-bts and let A be t,-compact.
Then (VB € r;)(A NB=2=(30,€1,)(30; € rj)(OA N0y =2)).

PrOOF. Since (X, 7,, 1,) is a PR,-bts, it follows that (Vx € 4)(30, €
ri)(EiO}(;‘) € 1,)(0, N 01(;) = @). Clearly (O,),., is an 7;-open cover of
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A, so there exists a finite subcover (O_),_, of 4. One readily verifies that

0,=U;_, 0, and Oy =J,_, 0 have the required property.

THEOREM 3.4. If (X, 1,,1,) isa PT,-bts, x € X and B is t-compact
such that x ¢ B, then (30, € 1,)(30; € 1,)(0, N Oy = @). Moreover, if
A is t,-compact and B is t;-compact such that ANB = &, then (30, €
1,)305 € 1,)(0,N Oy = 2).

PrRoOOF. Theorem 3.4 can be proved similarly to Theorem 3.3.

THEOREM 3.5. The axioms PT,, PR, and PR, are invariant under a
P-perfect surjective mapping.

PROOF. Let f be an P-perfect mapping from a PT7,-bts (X, 7,, 7,) onto
an arbitrary bts (Y, A, A,). Let y,,y, € Y such that y, # y,. Then
we have f_l({yl}) nf_l({yz}) = @. Moreover, since f is P-perfect,
S ({»,}) and f'({»,}) are 7,-compact. Hence by Theorem 3.4, we have

301y € TEOf-1qyy) € TN Oy, })”Of (ts,y) = 9)- Putting
U—Co(f(CO(Of o })))) and V = CO(f(CO( o ))), we obtain the fol-
lowing.

(i) ¥, € U and y, € V. Indeed, from f_1 (") < Of (,p Ve obtain

S 1 HNC0(Op1q, 4,) = 2. Then £~ ({9, NS (c0(Oy-1;, ) = @ and
hence, since f is surjective, y; ¢ f(co(O - ({yl}))) or equlvalently, y,eU.

(ii) Ue A, and V €A s since f is P-closed.

(i) UnV =o2.

Thus (Y, A, A,)) isa PT,-bts.

The invariance of the axioms PR, and PR, is proved in a similar way.

THEOREM 3.6. P-compactness is inverse invariant under P-perfect map-
ping.

ProOF. Theorem 3.6 can be proved similarly to [2, Lemma 5.2].

4. Pairwise O-continuous mappings

DEFINITION 4.1. A mapping f fromabts (X, 7,, 7,) intoabts (Y ,4A,
A,) is said to be P - 6-continuous if

(Vx € X)(VO,,, € A)30, € 1))(f(1;-cl(O,)) S A;-cl(Op ).
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It is obvious that a P-continuity is a P - @-continuity. The converse is not
true in general as the following example shows.

EXAMPLE 4.2. Let X = {a, b} and 7,={X, &,{a}}, 1, ={X,2,{b}},
A ={X,o,{a}, {b}}, A, ={X,2}. Let f: (X, 1,,7,) = (X,4,4,)
be the identity mapping. Then f is P -6-continuous but not P-continuous,
since for b € X and for each Oﬂb) € A, , there does not exist any O, € 1,
such that f(Oy) C Oy, .

THEOREM 4.3. If f is a P - 0-continuous mapping from an arbitrary bts
(X,t,,1,) intoa PR,-bts (Y, A, A,), then f is P-continuous.

PrOOF. Since (Y, A, A,) is PR,, we find that (Vx € X)(VOy,, €A)-
(30}(): € A)(Of(x) C A- cl(Of() C Oy,)- By P - O-continuity of f,
(30, € ‘r,)(f(rj cl(0,)) € A] cl(Of(x))) Hence we have

£(0,) € £(1-¢(0,)) € A-cl(0} ) € O, -

THEOREM 4.4. The composition of two P - 0-continuous mappings is P - 0-
continuous.

ProokF. This is straightforward.

THEOREM 4.5. The P-Urysohn axiom is inverse invariant under a P - 6-
continuous injective mapping.

PROOF. Let f bea P-6-continuous injective mapping froma bts (X, 7,

7,) intoa PT -bts (Y,A[,4,). Let x,, x, € X suchthat x; # x,. Hence
flx)) # f(xz) Since (Y, A, A4,) is PTé-bts we obtain (30, , € A;)
~(30fx) € A, )(A -cl(0 x)) NA;:- cl(O ) = o). By P- 9-contmu1ty of
f, we obtaln (EiO1 € r)(EO € T, )(f(t cl(0, )) - Aj-cl(Of(xl)) and
f(ri-cl(Oxz)) CA- cl(O( ). Hence f(‘r cl( l))ﬂf(ri-cl(Oxz)) =@ and
SO Tj'd(ox,)nTi cl(0, ) @. Thus (X, 1,,1,) 18 PTZ%-bts.

THEOREM 4.6. Let [ be a P - 8-continuous and P-closed mapping from a
bts (X, 1,,1,) ontoabts (Y,A,A,). Then (VU € A;) we have
ST A e(U)) = T-dl(f T (U)).

PrROOF. Let x ¢ rj-cl(fl(U)). Then f(x) ¢ f(rj-cl(f_l(U)) and
hence f(x) ¢ Aj-cl(U ) since f is P-closed and onto. So x ¢

S (Aj-cl(U)). Thus [~ (A cl(U)) € 7;-cl(f (D).
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To prove the converse inclusion, let x ¢ f _I(Aj-cl(U )). Then f(x) ¢
A-cl(U). From / being onto we obtain that ffl(Aj-cl(U)) = A;-cl(U)
and hence (EIOf(x) € Aj)(Of(x) NU = @). From U € A,, we find that
Ai-cl(Of(x)) NU = @. By P . f-continuity of f, (30, € T;) -
(f(r-¢cl(0,)) C A,.-cl(Of(x))) and hence f(7-cl(0,))NU = @ which im-
plies that 7;-cl(O,) ﬂf_'(U) = @ and so x ¢ 'cj-cl(f_l(U)). Thus,
T~/ (U) € A A(U)).

5. Pairwise f-perfect irreducible mappings

DEFINITION 5.1. A mapping f fromabts (X, 7,, 7,) ontoabts (Y, A,
A,) is called P-irreducible if (VF = F,UF,, F, € t;\{X} and F, € T)\{X})
(f(F)#Y).

We omit the proofs of Lemma 5.2 and Theorem 5.3, which are straight-
forward.

LEMMA 5.2. A mapping [ fromabts (X, 1,,1,) ontoabts (Y, A, A,)
satisfies: f is P-irreducible if and only if (VU =U,nU,, U, € 1\{@} and

U, € t,\{e})(f/*(U) # 2).

THEOREM 5.3. Let f be a P-closed mapping from a bts (X , 1, 1,) into
abts (Y,A ,A) and Uer,, i=1,2. Then

(1) AUy ea,
) H(U) C A-int(f(U)).

DEFINITION 5.4. A P - @-continuous map is called P - 8-closed irreducible
if it is both P-closed and P-irreducible.

LEMMA 5.5. If f isa P-0-closed irreducible mapping from a bts (X, 1,, 1,)
ontoabts (Y,A,A,), then (VU € t\{@}) we have

7 int(f~ (A U)))) € 7j-dl(U) € ST Al (O)).

ProoF. Let x ¢ 7;-cl(U). Then we obtain successively
f(x) ¢ f (t;-cl(U)) (monotonicity of direct image)
f(x) ¢ Ai-cl(f(U)) (f is P-closed)

f(x) ¢ A-cl(f*(U)) (property (1) of Theorem 2.8)
x¢f _I(Aj- cl( ﬁ (U))) (monotonicity of inverse image)
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x ¢ T-int(f~ (A~ cl(H(D)))
Thus, 7,-int(f~ (A,-cl(/*(U)))) € 7;-cl(V).

Now, it is required to prove that t-cl(U) C f'(A-cl(/*(U))). Let
x € 7;-cl(U). Then we obtain successively:

(VO, €1)(0,NU # 2)

)
(YO, € rj)(/* o.NU)# z) (Lemma 5.2)
(VO, € 7,)( f# n f* (property (3) of Theorem 2.8)
(VO, € 7,)( (f(0o, ) N f# (property (1) of Theorem 2.8)
Now, since f is P- 0-cont1nuous
(YO, € A)(f(O,) € f(1,-¢l(0,)) € A-l(Oy))-

Hence, A-cl(O,,,) N f" U) # @ and since f#(U) € A;, we have O\ N
fluy # o and so f(x) € Aj-cl(f(U)) which implies that x €
F @A (U). Thus, ©-cl(U) € £~ (A;-cl(/*(U)))

Now we are ready to prove the main theorem in this section.

THEOREM 5.6. The (small) image of an (i, j)-canonical open set is an
(i, j)-canonical open set under a P - 0-closed irreducible surjective mapping.

PrROOF. Let f bea P-f-closed irreducible mapping fromabts (X, 7, 7,)
onto a bts (Y,A,,A,) and U C X be a (i, j)-canonical open set (U =
ri-int(rj-cl(U))). We have to prove that Ai-int(Aj-cl(f#(U))) = j#(U).
Let y € Ai-int(Aj-cl(f#(U))). Then (30, € A)(O, € Aj-cl(f#(U))) and
hence (A cl(0) cCA --cl( ﬂ U))). Since f is P - #-continuous, we ob-
tain (30f wh € T )(f( Y ) C f(rj-cl(O _1({y}))) C A-cl(0,)), where
Or-v oy = Uxef—x({y}) OX. Hence f(O_ ) - A.-cl(f#(U)) and so

Oy © S (A,-CI(f*(U))) . Then O {y})C‘L’ mt(f“(A A ).

From Lemma 5.5, we have Of_l({y} c 1 -cl(U) and so Of Wwh C
t,-int(7;-cl(U)) = U .. Hence f'l({y}) cvU which implies that y € f#(U .
Thus, Ai-int(Aj-clx(ﬂ(U))) c f”(U). The converse inclusion ﬂ(U) -

A;-int(A ;- cl( #(U))) follows directly from Theorem 5.3(1).

DEFINITION 5.7. A P - f-continuous, p-closed mapping f from a bts
(X,7,,7,) ontoabts (Y,A ,A,) is called P - 0-perfect if it satisfies the
following condition: (Vy € Y)(Vi € {1, 2})(f ‘1({y}) is 7,-compact subset
in X). If f is also P-irreducible then it is called P - @-perfect irreducible.

https://doi.org/10.1017/51446788700035059 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700035059

330 A. Kandil, E. E. Kerre, M. E. EL-Shafei and A. A. Nouh 9]

It is direct consequence of Definitions 4.1 and 5.7 and Theorem 4.3 that
every P-perfect map is P - 8-perfect and every P - f-perfect mapping from
an arbitrary bts into a PR,-bts is P-perfect.

6. Quasi O-proximity spaces

In this section the concept of @-proximity spaces [4] is extended to bitopo-
logical spaces.

DEFINITION 6.1. A quasi 6-proximity space is a pair (X, 0), where X
denotes a PT,-bts and 6 a mapping from 2% x 2% onto {0, 1} satisfying
the following axioms:

(6,) 6(A,B)=0=>A#@and B+#a;

(6,) 6(4,BUC)=6(4,B)-6(4,C) and,
0(AUB,C)=0(A4,C)-6(B, C);

(0;) 6({x},4)=0= (YO, €1,)(VO,€1,)(0O,N0O,# @), and
0(4, {x})=0=> (VO, € 1,)(VO, € 1, (O, N O, # 2);

(6,) 0(4,B)=1=3ECX)(Eis(2, 1)-canon1cal open and 6(A, E)
= @(co(t,-cl(E)), B) = 1);

(65) 0({x},{yh=0ex=y.

LEMMA 6.2. The quasi 0-proximity space (X0) has the following proper-

ties.
(1) If 6(A4,B)=0 and ACA,,BCB,, then 6(4,, B;)=0.
(2) AnNB#2=6(A4,B)=0.
(3) 6(4,B)=1= (30, € 1)(305 € 1,)(0, N0y = 2).
(4) 6(4,B)=1=> 0(int(cl(A)) , int(cl(B))) =1.

ProoF. Statement (1) follows from (6,), statement (2) follows from (6,)
and (6;), statement (3) follows directly from (2), (6,) and (6,) and state-
ment (4) follows directly from (2) and (6,).

THEOREM 6.3. Every separated quasi-proximity space is quasi 6-proximity
space.

Proor. Since the axioms (P)), (P,), (P, ) and (P;) are (6,), (6,),
(8,) and (6,) respectively, then it suﬁices to verify the axiom (6,). Let
0({x} A) = 0. Then by Definition 2.10, we have x € 7(d)-cl(4) and hence
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(VO, € 1(6))(0, N 4 # @) which implies that (VO, € 1(6_1))(0x No, #9).
The proof of the second part of the axiom () is proved in a similar way.

THEOREM 6.4. On a P-extremally disconnected space, every quasi 0-prox-
imity space is a separated quasi-proximity space.

ProoF. Theorem 6.4 follows directly from Definitions 2.9, 2.13 and 6.1.

THEOREM 6.5. If (X, 7,, 7,) is a PR,-bts, then the axiom (0,) is equiv-
alent to the following axiom:
(63) 6({x}, A)=0= x € 7,-cl(4) and
6(4, {x}) =0=x € 1,-cl(4).

PrOOF. Itis clear that (0;) = (6,) . To prove the converse, let 0({x, }, 4)
= 0 and suppose x ¢ t,-cl(4). Since (X, 7,,7,) is PR,, then (30, €
7,)(30, € 1,)(0, N O, = &), which contradicts the first part of the axiom

6,) . The second part of the axiom (6;) is proved in a similar way.

DEFINITION 6.6. Let 6, and 6, be two quasi f-proximities on X . Then
we say that

6, <6, ¢ (YA, BC X)(0,(4, B) < 6,(4, B)).

THEOREM 6.7. Let (X, t,,1,) be a PT,-bts. Then, the mapping
6: 2% x 2¥ - {0, 1} defined by

(VA, BC X)(8(4, B) = 1 & (30, € 1,)(30, € 1,)(0, N O, = 2)),

is the maximal quasi 6-proximity on X .

Proor. The verification of the axioms (6,), s € {1, 2,3, 5}, being
straightforward, we only need to prove (6,). Let A, B be two subsets of
X such that 6(4,B) = 1. Then (30, € 1,)(30; € 1,)(0, N Oy = ).
Putting E = 7,-int(7,-cl(Og)), we have that E is a (2, 1)-canonical open
set satisfying O, N E = &, which implies that 6(4, E) = 1. On the other
hand co(z,-cl(E)) N Op = @ holds and hence 6(co(z,-cl(E)), B) =1.

Now, we shall that, @ is the maximal quasi §-proximity on X . Let 6, be
another quasi f-proximityon X and 6 < @, . Let 6(4, B) = 0 and suppose
6,(4, B) =1. Then, 6(4, B) =0= (VO, € 1,)(VO, € 1,)(0,N Oy # 2).
But, by Lemma 6.2(3), 6,(4, B) =1 = (30, € 1,)(30; € 1,)(0,N0p = @),
which gives a contradiction.
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THEOREM 6.8. Let & be a compatible quasi-proximity on a P T l-bts (

7,,%,). If A is a t,-compact and B is t -closed, then A nB =
5(4,B)=1.

Proor. Foreach x € A, x ¢ B = 1(d)-cl(B) which implies that §({x},
B) = 1. By axiom (P,) we find (U C X)(6({x}, U) = d(coU, B) =
1). Then x ¢ t,-cl(U) and hence x € co(r,-cl(U)) = O, (say). Hence,

we have (0, B) = 1. Clearly {Ox: X € A} is an t,-open cover of the
7,-compact set 4, and so 4 C |J._, O, . Now by axiom (P,), we have

(UL l0 B) =1 and hence 6(4, B)_l

THEOREM 6.9. Let f be a P-0-perfect irreducible mapping from a PT 1—

bts (X, t,,1,) ontoa PT,-bts (Y, A, A,) and 6 be a compatible separated
quasi-proximityon X. A map 0: 2¥ x 2y — {0, 1} defined by

(VA, BC Y)(0(4,B) =0 5(f'(4), [(B)=0)
is a quasi O-proximity on Y .

PRrOOF. The verification of axioms (6,) and (6,) is straightforward.

(6,). Let y e Y and 4 C Y. Consider Oy € A, and O, € A, such
that O,N O, = @ and so A,-cl(0,)N A4 =o. From f is P - 6-continuous,
we obtain (30f wh € 7,)(f(z,- cl(Of_l({y}))) - Aj-cl(Oy)). Hence we have
S(1y-cl(Op-1,y))NA =2 and so [~ ({y})N1,-cl(f~'(4)) = . By Theo-
rem 6.8, we have 6(f ' ({y}), /~'(4)) =1 and hence 6({y}, A)=1. The
proof of the second part is proved in a similar way.

(6,). Consider A, BCY and 6(4, B)=1. Then (5(f_l(A), f_l(B)) =
1, and so by Lemma 2.12, (3F C X, E is a (2, 1)-canonical open and
8(f'(4), E) = 8(co(t,-cl(E)), f~'(B)) = 1), where 7, = 7(¢) and 1, =
7(6™"). Putting ¥V = f*(E), we find by Theorem 5.6 that V isa (2, 1)-
canonical open set in ¥ with f _I(V) C E . It follows from Lemma 5.5 that
T,-cl(E) C f_l(Al-cl(f#(E))) and so by Theorem 4.6 we have
S eold-al(V) = co(f'(A-d(V)) = colf T (B-cl(f(E)) <
co(t,-cl(E)). Then 8(f~'(4), /' (V) = (/™ (co(A-cl(V))), f~'(B))
=1 and hence (4, V) = 0(co(A,-cl(V), B)=1.

(65). Consider y,, y, € Y such that 6({y,}, {y,}) = 1. Then

ST D, T =1

and hence f_l({yl}) nf_l({yz}) = @ which implies that y, # y,. Con-
versely, let y, # y,. Then we have fl({yl}) nf_l({yz}) = @. Since f
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is P-@-perfect, then both f _l({yl}) and £~ ({»,}) are t,-compact subsets
in X. By 2.5(2), we find that tz-cl(f_l({yl})) n rl-cl(f_l({yz})) =@ and
hence by Theorem 6.8 we have 5(f_1({yl}) , f_l({yz})) = 1 which implies
that 0({}’1}, {yz}) =1.
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