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Abstract

In this paper we extend the notion of perfect, 0-continuous, irreducible and ^-perfect mappings
to bitopological spaces. The main result is the following: the (small) image of an (i, y)-canonical
open sets is an (i, y)-canonical open set under a pairwise 0-closed irreducible surjective map-
ping. Also we extend the notion of 0-proximity spaces to quasi 0-proximity spaces and point
out the interrelation between it and separated quasi-proximity spaces by means of a pairwise
0-perfect irreducible mappings.

1991 Mathematics subject classification (Amer. Math. Soc): 54 C 10, 54 E 05, 54 E 55.

1. Introduction

The notion of bitopological spaces was introduced by Kelly [10]. In this paper
we investigate a less restrictive definition of pairwise perfect maps than that
given by M. C. Datta [2] and study some of its properties. Then we introduce
and study the concepts of pairwise 0-continuous, pairwise irreducible and
pairwise ©-perfect mappings. Furthermore, we introduce the notion of a
quasi ©-proximity space and prove the following.

(1) The (small) image of an (/, ^-canonical open set is an (i, ^-canon-
ical open set under a pairwise 0-closed irreducible mapping.

(2) Every separated quasi-proximity space is a quasi 0-proximity space.
(3) A bitopological space admits a maximal quasi 0-proximity if the

space is pairwise Hausdorff.
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(4) If / is a pairwise 0-perfect irreducible mapping from a pairwise Ty-
chonofF space (X, T{ , x2) onto a pairwise Hausdorff space (Y, A t ,
A2) and if 5 is a compatible separated quasi-proximity on {X, xl ,
T2) , then there exists a quasi 0-proximity 9 on (Y, Ax, A2), asso-
ciated with / and 6 .

Finally, we like to remark in the context of the present paper that, by
i > j , i, ^ 7 . we mean that i is either 1 or 2 for instance if / = 1 then j — 2.
Also we will use P— to denote pairwise and "bts" to denote bitopological
space.

2. Preliminaries

Let (X, T, , T2) be a bts and A a subset of X. The closure and interior
of A with respect to T( are denoted by t^-cl^) and T(-int(^), respectively.
The family of all T .-closed sets will be denoted by T| . When the appropriate
topology is clear from the context, OA (respectively Ox) denotes an open set
containing A (respectively an open neighbourhood of x).

DEFINITION 2.1 [10, 14]. A bts {X ,-cx, x2) is called

(1) PTX «- (V* 6 *)(Vi 6 {1, 2})({x} = T,-cl{x})
(2) PT2 or P-Hausdorff & (VJC, y e X, x / y)(3Ox e T,-)(3Oy e xj)

(Ox noy = 0)
(3) PT2x or P-Urysohn & {Vx, y € X, x £ y)(3Ox e T,.)(3Oy € xj)

(4) PR2 or P-regular «• (Vx e X)(VOx G T,)(3O* € T.)(T;-C1(O*) C

(5) PU i or P-completely regular «• (Vx € Z)(VJF € T' JC £ F) (3
22

a mapping / : X -> [0, 1])(/ is T(-lower semicontinuous, and / is
T;-uppersemicontinuousand /(JC) = 0 and f(F) = 1),where [0,1]
is the closed unit interval

(6) PT^i or P-Tychonoff if and only if it is PR^ and PTX.

DEFINITION 2.2 [10]. A mapping / : (X, T, , T2) -»• (Y, A,, A2) is called
P-continuous (respectively P-open, P-closed) if the induced mappings / :
{X, T.) —> (Y, At), z" = 1, 2 , are continuous (respectively open, closed).

DEFINITION 2.3 [8]. A cover ^ of a bts (X, T, , T2) is called a rlx2-open
cover if ^ c Tj U T2 . If in addition % contains at least one nonempty
member of T, and at least one nonempty member of T2 , then % is called
a P-open cover.

Although there are several different notions of /"-compactness in the
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literature [1, 8, 11], we use the definition given in [8]. An equivalent concept
of P-compactness has been introduced by Y. M. Kim [11].

DEFINITION 2.4 [8]. A bts (X, T, , T2) is called P-compact if every P-
open cover of X has a finite subcover.

We make use of the following results from [8].

RESULTS 2.5 [8]. (1) P-compactness is P-continuous invariant.
(2) In a P-Hausdorff space, a x ̂ compact subset is Xj-closed.
(3) If (X, Tj, T2) is P-compact, then a proper inclosed subset is T -

compact.

DEFINITION 2.6. A subset A of a bts {X, T, , T2) is called (/, j)-canonical
open (or ( i , j)-regular open) if A — T(-int(T;-cl(^)). Specifically, (V̂ 4 C
X)(Ti-iat(tj-cl(A)) is always (i, ./)-canonical open).

DEFINITION 2.7 [5]. If / : X —> Y is a mapping from X into Y and
A C X, then we define a mapping / * : 2X —> 2Y by

f{A) = {y\y G Y and f~\{y}) Q A},

and f*(A) is called the small image of A under the mapping f.

THEOREM 2.8 [5]. The mapping f* has the following properties:

(1) f(A)Cf(A);
(2) f*(A) = co(f(coA)), where co denotes complementation;
(3)
(4)

DEFINITION 2.9 [13]. A mapping 8: 2X x 2X -> {0, 1} is called a
proximity on X if it satisfies the following axioms:

(P,) d(A,B) = O^A^0 and Bjt0;
(P2) d(A,B\JC) = S(A, B) • 8{A, C) and,

5{A U B, C) = 8(A, C) • d{B, C);

(P4) 8{A,B) = 1 =>(3UCX)(S(A, U) = S(coU,B)= 1).
The pair (X, S) is called a quasi-proximity space. A quasi-proximity

is said to be separated if it satisfies the following axiom:
(P5) 6({x}
If 8 is a quasi-proximity, then 8~ , defined by d~1(A, B) = S(B, A), is

also a quasi-proximity and it is called the conjugate of 6.
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DEFINITION 2.10 [12]. If (X, 5) is a quasi-proximity space, then two
topologies r(S) and T ( £ ~ ' ) are defined on X if for arbitrary AQX we let

x{d)-c\{A) = {x G X: S({x}, A) = 0} ,

and
x{d~l)-cl{A) = {xeX: S(A, {x}) = 0}.

DEFINITION 2.11. A quasi-proximity space (X, 5) is called compatible
with a bts (X, xx , z2) if x(d) = T, and x(d~l) — T2 .

LEMMA 2.12. The axiom (P4) implies the following axiom:

(P4*) S(A,B) = 1 =* (31/ = T ^ - ' H n t t T W - c K C / ) ) ) ^ , ^ ) =
J(co(T(5))-cl(t/)),5) = 1).

DEFINITION 2.13. A bts (X, xx , T2) is said to be P-extremally discon-
nected if the T,-closure of each reopen sets is xyopen.

3. Pairwise perfect mappings

DEFINITION 3.1. A P-continuous, P-closed mapping / from a bts (X, xx,
T2) into a bts (Y, A{, A2) is called P-perfect if it satisfies

(Vj> G r)(W G {1, 2})(/~'({y}) is T,-compact subset in X).

Our definition of P-perfect mappings differs from the definition given by

Datta [2] in that we do not insist that point inverses by P-compact.

LEMMA 3.2. Every P-continuous mapping from a P-compact-bts (X, xx,
T2) into a PT2-bts ( y , A , , A 2 ) is P-perfect.

PROOF. Let A G x\\{X, 0} . Since (X, xx, x2) is P-compact, by 2.5(3),
A is a T;-compact subset of X. Hence by 2.5(1), f(A) is a Ty-compact

subset of y . So by 2.5(2), f(A) G A) and hence / is P-closed.
To prove (iii), consider y eY. Since (Y, A,, A2) is PT2 , then it is PTX

and hence {y} G A'j. By P-continuity of / it follows that f~\{y}) G x'j

and hence by 2.5(3), f~\{y}) is a T(-compact subset of X.

T H E O R E M 3.3. Let (X,xx, x2) be a PR2-bts and let A be x^-compact.
Then (Vfi G x'MA n B = 0 => (30- G T)(36>B G T , ) ( O . n O s = 0) ) .

PROOF. Since {X ,XX,T2) is a P/?2-bts, it follows that (VJC G •^)(3OX G

J ) G 1^(0,. n O^x) = 0 ) . Clearly ( O J ^ is an T,-open cover of
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A, so there exists a finite subcover (Ox )"=1 of A . One readily verifies that

°A = U"=i °x
 a n d °B = U"=i °(BS) h a v e t h e required property.

THEOREM 3.4. If (X, T, , x2) is a PT2-bts, x e X and B is xrcompact
such that x i B, then (3OX e Xj){3OB e ^t){Ox n OB = 0). Moreover, if
A is Xj-compact and B is x ̂ compact such that An B = 0 , then (3OA e

€ xt){OA nOB = 0).

PROOF. Theorem 3.4 can be proved similarly to Theorem 3.3.

THEOREM 3.5. The axioms PT2, PR2 and PR3 are invariant under a
P-perfect surjective mapping.

PROOF. Let / bean P-perfect mapping from a Pr2-bts (X, x{, x2) onto
an arbitrary bts (Y, A{, A2). Let yl, y2 e Y such that yl / y2. Then
we have f~l({yx}) n f~l({y2}) = 0 . Moreover, since / is P-perfect,
/"'({}>,}) and f~l({y2}) are xi-compact. Hence by Theorem 3.4, we have

(3O/-({,,}) G T / ) ( 3 O / - (W) e "jWr'ayJ) n ° / -«M> = 0 ) - P u t t i n g

U = co(f(co(Oj~i,, •.,))) and V = co(/(co(Oy-i(, })))), we obtain the fol-
lowing.

(i) yl € U and y2 e V. Indeed, from /"'({>»,}) c Of-i{{y }) we obtain

/~1({>'1})nco(0/-1({!,i})) = 0 . Then / / - ' ( { y J j n / C c o ^ - ^ j , ) ) = 0 and

hence, since / is surjective, yx £ f(co(Oj~i,,y ,>)) or equivalently, y, ef / .
(ii) U e A( and V eAj, since / is P-closed.
(iii) UDV = 0.
Thus (y,A,,A2) is a PT2-bts.
The invariance of the axioms PR2 and P^?3 is proved in a similar way.

THEOREM 3.6. P-compactness is inverse invariant under P-perfect map-
ping.

PROOF. Theorem 3.6 can be proved similarly to [2, Lemma 5.2].

4. Pairwise ^-continuous mappings

DEFINITION 4.1. A mapping / from a bts (X, xx, x2) into a bts (Y, A,,
A2) is said to be P • ^-continuous if

(Vx e X)(VOf(x) e At)(3Ox € T.)(/(T rcl(Ox)) C A.-cl(O/ w)).
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It is obvious that a P-continuity is a P • ^-continuity. The converse is not
true in general as the following example shows.

EXAMPLE 4.2. Let X = {a, b} and T, = {X, 0, {a}}, T2 = {X,0, {b}},
A, = {AT, 0 , {a},{&}}, A2 = {X,0}. Let / : (X, T, , T2) - (X, A,, A2)
be the identity mapping. Then / is P • 0-continuous but not P-continuous,
since for b € X and for each O,,fc. G A,, there does not exist any Ob e T{

such that f{Ob) c Of(b).

THEOREM 4.3. /f / is a P • 6-continuous mapping from an arbitrary bts
{X, Tj, T2) j/ito a PR2-bts (Y, A{, A2), f/ie« / w P-continuous.

PROOF. Since ( 7 , A,, A2) is PR2 , we find that (Vx e X)(VO/(;c) e A,.) •
(3O}{X) e A,.)(O;(X) C A r c l ( O ; w c O/(jc)). By P • ^-continuity of / ,
(30^ G ^ ^ ( / ( T ^ C K O ^ ) ) C A;-cl(O*f{x))). Hence we have

f(Ox) C / ( t . - c l (OJ) c A.-cl(O;(jc)) c O / w .

THEOREM 4.4. The composition of two P • 6-continuous mappings is P • 6-
continuous.

PROOF. This is straightforward.

THEOREM 4.5. The P-Urysohn axiom is inverse invariant under a P • 6-
continuous injective mapping.

PROOF. Let / be a P-0-continuous injective mapping from a bts (X, T1 ,
T2) into a PTi -bts (Y, A,, A2). Let x{, x2e X such that xx ^ x2 . Hence

f(xx) ^ f(x2). Since (Y, A,, A2) is P r ^ - b t s , we obtain ( 3 0 ^ , € A.)

• (3O/(JC} € Ay.)(A_/-cl(O/(jc}) n A.-cl(O/(;<;}) = 0 ) . By P • ^-continuity of
/ , we obtain (3OX e T.')(3<^ G Tj){f(Tj-d(Ox )) C A r d (O / ( j c ) ) and
/(T.-cl(O^))CArcl(O/( ;C2))). Hence / ( r . -c l (O X i ) )n/ ( V cl (O X 2 )) = 0 and
so T,.-cl(<9 ) n r,-cl(Or ) = 0 . Thus (X, T, , T,) is PT , -bts.

J -*1 ' *2 ' Z 2 2

THEOREM 4.6. L ^ f be a P • 6-continuous and P-closed mapping from a
bts (X, T, , T2) o«ro a to ( y , A,, A2). Then (Vt/ G A.) we

PROOF. Let x £ Tj-d(f~\U)). Then f(x) f / (T ; -C1( /~ \u ) ) and
hence /(JC) ^ A -cl(t/) since / is P-closed and onto. So x £
r\Arc\(U)). Thus /-'(A 1
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To prove the converse inclusion, let x $ f~l(Aj-cl(U)). Then f{x) $

Aj-cl{U). From / being onto we obtain that ff~\Aj-d(U)) - Aj-c\{U)
and hence (3Oy(jc) e Aj){Of{x) n U = 0 ) . From U e A., we find that
Arcl(Of[x)) n U = 0 . By P 0-continuity of / , [3OX € Xj) •
{f{xrc\(Ox)) C Arc\{Of(x))) and hence f(xrcl(Ox)) C\U = 0 which im-

plies that xrc\{Ox)r\ f~x{U) = 0 and so x £ ^ . - ^ / " ' ( t / ) ) . Thus,

5. Pairwise ^-perfect irreducible mappings

DEFINITION 5.1. A mapping / from a bts (X, T, , T2) onto a bts (Y, A,,
A2) is called P-irreducible if (VF = F, UF2, F, e T ' , \{X} and F2 e T2\{Z})

We omit the proofs of Lemma 5.2 and Theorem 5.3, which are straight-
forward.

LEMMA 5.2. A mapping f from a bts (X, xx, x2) onto a bts (Y, A,, A2)
satisfies: f is P-irreducible if and only if (VC/ = Ul n U2, U{ e x{\{0} and
t/2et2\{0})(/([/)/0).

THEOREM 5.3. Let f be a P-closed mapping from a bts (X, T{ , x2) into
a bts {Y, A,, A2) and U e xi, i = 1, 2. Then

(1) / ( £ / ) € A,.
(2) / (C/)CArint( / (C/)) .

DEFINITION 5.4. A P • 0-continuous map is called P • 6-closed irreducible
if it is both P-closed and P-irreducible.

LEMMA 5.5. If f is a PQ-closed irreducible mapping from a bts (X, xv x2)
onto a bts (Y ,AX, A2), then (VC/ e T ( \ { 0 } ) we have

xi-mt(f-i(Aj-cl(f(U)))) C xrcl(U) c / - 1 ( A r

PROOF. Let x £ T-C1(C7) . Then we obtain successively
f(x) £ f(Xj-cl(U)) (monotonicity of direct image)
f{x) I A.-cl(/(C/)) ( / is P-closed)
f(x) i Aj-cl(f*(U)) (property (1) of Theorem 2.8)
x $ f~l(Aj-c\(J*(U))) (monotonicity of inverse image)
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Thus, xrirA{f-\^-c\{f{U)))) C T.-cl(t/).

Now, it is required to prove that Tj-cl(U) C /"1(A>-cl(/#(t/))). Let
x e T - cl( U). Then we obtain successively:

(VOX e T . ) ( O X n u ^ 0 )

{VOX € Tj)U*(Ox nU)?0) (Lemma 5.2)

(V0X e tj)(f{Ox)r\J*(U) # 0 ) (property (3) of Theorem 2.8)

(V0, e T ; . ) ( / ( O X ) n /*(£ / ) ) ^ 0 ) (property (1) of Theorem 2.8)
Now, since / is P • 0-continuous,

Hence, A.-cl(0/(jt)) n /*(!/) / 0 and since /*(!/) G A., we have O/(jc) n

/*([/) / 0 and so f(x) e A;-cl(/(C/)) which implies that x e

r\Afc\(f(U))). Thus, T.-cl(C/)C/-1(A.-cl(/(t/))).

Now we are ready to prove the main theorem in this section.

THEOREM 5.6. The (small) image of an (i, j)-canonical open set is an
(/, j)-canonical open set under a P • 8-closed irreducible surjective mapping.

PROOF. Let / be a P-0-closed irreducible mapping from a bts (X, x{, T2)

onto a bts (Y, A{, A2) and U C X be a (i, y')-canonical open set (U =
T,.-int(T,-cl(£/))). We have to prove that Arint(Aj-c\(f(U))) = f{U).
Let y € A,-int(A;-cl(/(C/))). Then (3Oy e A,.)(0y C Arcl(/#(C/))) and

hence (A .̂-cUC )̂ C A;-cl(/#(C/))). Since / is P • 0-continuous, we ob-
tain (3Or.({y}) € T, ) ( / (O / - 1 ( { ) ; } ) ) C /(T; . -d(Or , ( W ))) C A.-cl(Oy)), where

° r ' (M) = U , € / - ( { y } ) ^ . Hence / ( O , - ^ ^ ) C Afc\{f{U)) and so

°r'({y}) g /~1(AJ-cl(/([/))). Then O / - . ^ ^ C T,.-int(r 1(A.-cl(/#(C/)))).

From Lemma 5.5, we have Oj-\,, ,, C t-cl(C/) and so Oy~«(r i) ^

T,-int(Trcl([/)) = t / . Hence f~\{y}) c [/ which implies that j^ e /*(£/).

Thus, A.-int(A;-clx(/*([/))) C /*({/). The converse inclusion / ( [ / ) c

A.-int(A7-cl(/#([/))) follows directly from Theorem 5.3(1).

DEFINITION 5.7. A P • ̂ -continuous, /?-closed mapping f from a bts
(X, T, , T2) onto a bts (7 , A,, A2) is called P • 6-perfect if it satisfies the
following condition: (V> e F)(V/ e {1, 2})(/~1({y}) is T(-compact subset
in X). If / is also P-irreducible then it is called P • 6-perfect irreducible.
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It is direct consequence of Definitions 4.1 and 5.7 and Theorem 4.3 that
every P-perfect map is P • 0-perfect and every P • 0-perfect mapping from
an arbitrary bts into a Pi?2-bts is P-perfect.

6. Quasi 0-proximity spaces

In this section the concept of 0-proximity spaces [4] is extended to bitopo-
logical spaces.

DEFINITION 6.1. A quasi 6-proximity space is a pair (X, 0), where X
denotes a Pr2-bts and 0 a mapping from 2X x 2X onto {0,1} satisfying
the following axioms:

(0,)
(02) 6(A,B\JC) = 6(A,B)-6(A, C) and,

6(AuB,C) = 6(A,C)-6(B,C);

(03) 6({x} ,A) = 0^ (VOX € T{)(\/OA e T2)(OX n O , / 0 ) , and

6(A, {x}) = 0 =• (VOX e T2)(VO^ G T , ) ( O X n O ^ a ) ;

((?4) (9(v4, 5) = 1 => (3£ c X)(E is (2, l)-canonical open and 6(A,

(65)

LEMMA 6.2. The quasi 6-proximity space (X6) has the following proper-
ties.

(1) If 0(A, B) = 0 and ACA^BCB^ then 6(Al,Bl) = 0.
(2) AC\BjL0=>d(A,B) = O.
(3) 0{A,B) = \=> (3OA G T,)(3<9B G T2)(OA nOB = 0).
(4) 0{A,B) = l=> e{inl(d(A)), i

PROOF. Statement (1) follows from (02), statement (2) follows from (02)
and (05), statement (3) follows directly from (2), (03) and (04) and state-
ment (4) follows directly from (2) and (04).

THEOREM 6.3. Every separated quasi-proximity space is quasi 6-proximity
space.

PROOF. Since the axioms (P,), (P2), (P*) and (P5) are (0,), (02),
(04) and (05) respectively, then it suffices to verify the axiom (03). Let
6({x} ,A) = 0. Then by Definition 2.10, we have x G r{d)-cl(A) and hence
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(VOx e x(S)){Ox f)A^0) which implies that (V0, e z(d~x)){Ox nOA^0).
The proof of the second part of the axiom (03) is proved in a similar way.

THEOREM 6.4. On a P-extremally disconnected space, every quasi 8-prox-
imity space is a separated quasi-proximity space.

PROOF. Theorem 6.4 follows directly from Definitions 2.9, 2.13 and 6.1.

THEOREM 6.5. If (X, T, , T2) is a PR2-bts, then the axiom (03) is equiv-
alent to the following axiom:

(61) 6{{x},A) = 0^xe rrcl(A) and
0{A, {x}) = 0^xeT2

PROOF. It is clear that (d*3) => (03). To prove the converse, let 6({x, }, A)
— 0 and suppose x £ t y c l ^ ) . Since (X, T, , T2) is PR2, then (3OX e
xl)(3OA 6 TjJfOj n Oj = 0 ) , which contradicts the first part of the axiom
(03). The second part of the axiom (03) is proved in a similar way.

DEFINITION 6.6. Let 0, and 62 be two quasi 0-proximities on X. Then
we say that

0, < 02 & {VA, B Q X)(dx(A, B) < 62{A,B)).

THEOREM 6.7. Let (X,xl,t2) be a PT2-bts. Then, the mapping
6:2* x2x ->{0, 1} defined by

, K X)(0(A,B) = 1 & (3OA € ri)(3OB G T2)(O^ <lOB = 0)) ,

« fAe maximal quasi 6-proximity on X.

PROOF. The verification of the axioms ( 0 J , s e { 1 , 2 , 3 , 5 } , being
straightforward, we only need to prove (04). Let A, B be, two subsets of
X such that 6(A,B) = 1. Then (3OA e T1)(3OB e x2)(OA n OB = 0 ) .
Putting £• = 12-^1(1,-01(0^)), we have that E is a (2, l)-canonical open
set satisfying OAC\ E = 0, which implies that 0(^4, E) = 1. On the other
hand CO(T,-C1(£)) n OB = 0 holds and hence 0(CO(T,-C1(.E)) , 5) = 1.

Now, we shall that, 0 is the maximal quasi 0-proximity on X. Let 6{ be
another quasi 0-proximity on X and 6 <0x. Let 6(A, B) — 0 and suppose
0,(,4, 5) = 1. Then, 0(A, 5) = 0 =• (VO^ e xx)^OB e T2)(OA n O ^ / 0 ) .
But, by Lemma 6.2(3), 6{{A, B) = 1 =• (30^ G T1)(3OB e i j ^ n O j = 0 ) ,
which gives a contradiction.
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THEOREM 6.8. Let 6 be a compatible quasi-proximity on a PT \-bts (X,
32

t j , T 2 ) . If A is a xx-compact and B is xx-closed, then A n B = 0 =>
S(A,B)=l.

PROOF. For each x £ A, x £ B = x(S)-cl(B) which implies that S({x},
B) = 1. By axiom (J>4) we find (3U c X)(d({x}, U) = S{coU, B) =
1). Then x $ xx-c\{U) and hence x e CO(TJ-C1(C/)) = Ox (say). Hence,
we have S(OX, B) — 1. Clearly {Ox: x € A} is an tyopen cover of the
xx-compact set A, and so A C |j"=i Ox . Now by axiom (P2), we have
S(\J" Ox , B) = 1 and hence 3{A, B) =' 1.

THEOREM 6.9. Let f be a P • 6-perfect irreducible mapping from a PT 1 -
32

d
2

bts (X, Tj, T2) onto a PT2-bts (Y, At , A2) a«rf ^ be a compatible separated
quasi-proximity on X. A map 6: 2Y x 2Y —• {0, 1} defined by

is a quasi 6-proximity on Y.

PROOF. The verification of axioms (0,) and (02) is straightforward.
(03). Let y e Y and 4̂ C Y. Consider Oy e A, and OA e A2 such

that OynOA = 0 and so A2-cl(Oy) r\A = 0 . From f is P • ^-continuous,
we obtain ( 3 0 ^ - 1 ^ e t J^^ -cKC^- i^^ j j ) ) c Ay.-cl(Oy)). Hence we have
/ (T 2 -c l (O / - , ( M ) ) )n^ = 0 and so f-\{y})nrrd(f-l(A)) = 0 . By Theo-
rem 6.8, we have S(f~\{y}), r\A)) = 1 and hence 6{{y), A) = 1. The
proof of the second part is proved in a similar way.

(04). Consider A, B QY and d(A, B) = I. Then ^ ( / ~ ' ( ^ ) , / " ' ( £ ) ) =
1, and so by Lemma 2.12, (3E C X, E is a (2, 1)-canonical open and
d{f-\A),E) = d(co(xrc\(E)),rl(B)) = 1), where T, = T(<5) and r2 =
r(S~l). Putting V = f(E), we find by Theorem 5.6 that V is a (2,1)-
canonical open set in Y with f~l(V) C E. It follows from Lemma 5.5 that
xrcl(E) c f~l{Arc\(f(E))) and so by Theorem 4.6 we have
/ - ' ( c o ^ - c K F ) ) ) = coCT'tA.-cKF)) = co(/-1(A1-cl(/(£)))) C
co(T,-cl(£)). Then d(f-l(A), f~l(V)) = ^(/-1(co(A1-cl(K))), f-l(B))
= 1 and hence 6{A, V) = 0(co(A,-cl(F), B) = 1.

(05). Consider yx, y2 e Y such that 0({y,}, {y2}) = 1. Then

and hence /~1({>'1}) n f~l({y2}) = ® which implies that yx ^ y2- Con-
versely, let yx ^ y2. Then we have f~l({yl})n f~l{{y2}) = 0 . Since /

https://doi.org/10.1017/S1446788700035059 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035059


[12] Quasi 0-spaces 333

is P • 0-perfect, then both f~\{yl}) and f~l({y2}) are r;-compact subsets
in X. By 2.5(2), we find that Vc lCT 1 ^ ,} ) ) n tx-c\{f~\{y2})) = 0 and
hence by Theorem 6.8 we have S(f~x({yx}), f~\{y2})) = 1 which implies
that
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