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CONNEXIONS AND PROLONGATIONS
LEIF-NORMAN PATTERSON

I. CONNEXIONS AS MAPs ON TANGENT BUNDLES

1. Introduction. Computation of the velocity of a given motion depends on
measurement of nearby position changes only. Computation of acceleration,
on the other hand, depends on measurement of nearby changes in velocity.
But since velocity vectors are attached to positions so that even nearby ones
are not a priori comparable, acceleration is not computable until a rule for
comparison of vectors along a curve is given. Such a rule— parallel translation
or linear connexion — exists automatically in Euclidean spaces. For motions
in more general manifolds, for example (semi-) Riemannian ones, parallel
translation is a less obvious consequence of the metric properties.

If £(¢) is a motion in a manifold M then its velocity field ¢ (¢) can be viewed
as a motion in the tangent manifold 7'M and the iterated velocity field £ (¢)
as a motion in the iterated tangent manifold 7(TM) = T?(M). We can speak
of acceleration in M only when we have a way of converting ¢’ (¢) to a motion
in TM. This leads naturally to the idea that a linear connexion is a way of
reducing second order data to first order data, in effect a map from the second
order tangent bundle to the first order tangent bundle (P>. Dombrowski [1]).
In preference to equivalent standard definitions of connexions as operators on
pairs of smooth vector fields (covariant derivatives), as distributions on the
frame bundle, as horizontal maps and splittings of the tangent bundle [2]—
this seems like the alternative best suited to any categorical theory such as
that of prolongations which concerns higher order properties of manifolds and
maps. (See Part I1.)

The view that a linear connexion (given in terms of a covariant derivative
operator V) is a map C from T2M to T M depends very simply on the relation-
ship C(x'Y) = V., Y where ' ¥ means the second order tangent vector which
describes the change of the vector field ¥ on M in the direction of the tangent
vector x’. In Theorem 1 we characterize such maps and so must recognize
explicitly the two natural and isomorphic, yet distinct vector bundle structures
on the pair of spaces 72M, T M. Formally it is easier to keep them apart when
we deal with general vector bundles over the manifold M rather than just the
tangent bundle, and this is why we treat connexions in the setting of vector
bundles. One of the two structures on 72M, T'M is in fact more than just a
vector bundle: the fibres are 7-modules where 7" is a two-dimensional real
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algebra. Because this extra bit of structure seems unusual we have spelled it
out in local coordinates as well.

The isomorphism between the two vector bundle structures on the space of
second order tangents is caused by the well known symmetry of T°M [4].
This symmetry reflects a much more general situation, namely the equivalence
of iteration of higher order operations [8] which appears explicitly in Part II.
We show how this symmetry helps produce a simple, intrinsic formula for the
torsion tensor of any linear connexion, and likewise how it exhibits the curva-
ture tensor as a map on the third order tangent bundle (Theorems 3 and 2).
Beyond these particular formulas obtained, the methods of computation may
have some interest because we refer to the elements of 72M in a geometric way.

The author is pleased to thank S. Kobayashi for bringing his attention to
A. Weil’s work [8] many years ago, and also the National Research Council
of Canada for financial support.

2. Notation. We will stay entirely within the category of C” maps and
manifolds. (B, M, p, F, G) will mean that the map p: B — M gives B the
structure of a fiber bundle space over the manifold M, with standard fiber F
and group G. Usually we suppress the mentioning of F and G, and just write
(B, M, p) for brevity. If x;,(z = 1,2, .. .d) are local coordinate functions in M
and if m € M then the notation m <> (m,) is just shorthand for: the d-tuple
(m;) is a list of the local coordinates x;(m). If f: M — N is a map then T:
TM — TN will be its differential (rather than df or fy).

In keeping with the functorial view of the second part of this paper we will
regard tangent vectors as prolongations. Let T be the two-dimensional real
algebra spanned by 1 and 7 where 1 is unity and 72 = 0. Thus 7T is a local
algebra in the sense that it is the direct sum R + I where R is the real numbers
and [ is a maximal ideal. (Henceforth T will therefore have two meanings:
as this algebra or as the tangent functor, with context deciding between them.)
A tangent vector x' at m in the manifold M is an algebra homomorphism from
the algebra DM of C” functions on M to the algebra T subject to the additional
condition that for any f € DM the real component of x'(f) is f(m). Thus
x'(f) = f(m) + Lx'(f )r where Lx'(f) is the component of x'(f ) along .
The linearity of x" on DM implies that Lx’ is a linear functional and the
multiplicative property x'( fg) = «'(f )x’'(g) that Lx’ is a derivation on DM.
In this way we recapture from x’ a tangent vector Lx’ in the usual sense.

Remarks. (1) The isomorphism between the set of tangent vectors as pro-
longations and the set of real derivations is not natural because it depends on
the choice of a basis for the maximal ideal of T. We fix one such choice, 7,
once and for all.

(2) During most of the first part of this paper the reader may interpret
tangent vectors as usual, but in the discussion of the structure of the iterated
tangent bundle and in Lemmas 5 and 6 our interpretation is significant.
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3. Vector bundles. There are two distinct though isomorphic ways of
viewing the iterated tangent vectors in a manifold as a bundle over the tangent
vectors. Firstly, if #: TM — M takes any tangent vector to its point of attach-
ment in the manifold (basepoint projection), then the differential 7w makes
the iterated tangents 7(TM) = T2?M into a vector bundle (72M, TM, Tr)
where addition + 7, and scalar multiplication L, in the fibers are essentially
the differentials 7(+) and 7'(L) of addition and scalar multiplication in
(TM, M, w). Secondly, the basepoint projection from T(T'M) to T M, also
denoted w, yields the usual tangent structure (72M, TM, =). To reduce the
effort of distinguishing two different bundle structures on the same pair of
spaces (T2M, T M) we generalize slightly. Thus (E, M, p) will be a real vector
bundle over the manifold M. Then (TE, E, 7) is a vector bundle, but the
‘“differentiated”” bundle (TE, TM, Tp) has fibers which are in fact modules
with respect to the two-dimensional algebra T. How this T-module structure
comes about is implied in Lemma 2, Part II, and below we describe it in local
coordinates. The two bundles are connected via the commutative diagram

- TE Tp
E/ \TM
N, o

Let x;(6 =1, 2, ... d) be local coordinates in M. Then (x;, x41) =
(%10, - - -, Xa0, %11, - - - , xa1) are local coordinates in T M defined by x’'(x,) =
x0(x") + xu(x’)r for any " € TM. If (x;0p, y;) are local coordinates in
E(G=1,2,...,c¢), induced local coordinates in TE will be ((x;0 $)o, ¥;j0,

(x;0p)1, ¥;1). With these conventions we list explicitly:
(@) v & (my, v, a, b;) in TE implies

(@) & (m;v;) in E
Tp@) < (mia;) in TM.
(b) If #(v") = w(w’) and hence
v & (my, 5, a4 b;), w > (my, v Cqy dy)
then in (TE, E, 7)

v +.w o (miy v;,a; + €y bj + dj)
ay < (m4,v; aa,, ab,).

(c) If TP(¥') = TpHp(w') and hence
v e (my,v5,a4b;), w' & (my, w;, ay, dy)
then in (TE, TM, T9p)

v dppw & (my, v+ wy, aq b+ d;)
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and for any t =a +0r €T
W' pp & (my, avy, ay, aby + by;).
In particular if ¢ = a is real,
A & (my, avj, ay, ab;),
and if ¢t =
TV & (my, 0, ay, vy).
Next we restate in bundle language how any vector space is naturally iso-

morphic to its tangent space at 0 (when given the differentiable structure
which includes its linear coordinate systems).

Lemma 1. If (E, M, p) is a vector bundle there is a natural identification map v
from E into TE which for each m € M 1is a linear isomorphism from the fiber E,,
to the tangent space to this fiber at 0.

Explicitly if for any v € E,,, p is the ray t~fo in E,, then the tangent p’(0)
to p at 0 is »(v).

If the local coordinates of v are (m;, v;) then the corresponding local co-
ordinates of »(v) are (m;, 0, 0, v,).

Because there are two fiber structures on the space TE there are also two
kinds of zero vectors. We clarify the relationship between them and at the
same time obtain a different view of »(E) as precisely those tangent vectors
to E which project to 0 by both 7 and T'p. Firstlet0,: M — T M and 0p: M —
E be the zero cross-sections in (T'M, M, =) and (E, M, p) respectively. Then
the differential 705: TM — TE is the zero cross-section in (TE, TM, Tp).
The various zero cross-sections are related by the commutative diagram

'\TOE
o'\ .

LEmMA 2. (1) 71 (0zM) = v(E) +- TOE(TM).

2) Tp=2 (0 M) = v(E) + 1, 0,(E).

B) v(E) = 7Y 0xgM) N\ Tp~(0,M).

Proof. (1) The meaning of this formula is that every o' € TE such that
w(v') = 0 is, in the standard tangent structure (TE, E, v), the unique sum
u' +,w whereu' € v(E) and w' € TO0z(TM). T0g is as usual the differential
of the zero cross-section O0z: M — E. Note first that w’ = T0z(x’) if and only
if in the usual local coordinates with « = 0, 1,

(xi0p)a(@) = (T0g(x")(x10p))a = (¥ (x:0p00g))a = (¥ (%x())a
Via(w') (T0r(x")(¥,))e = (¥ (y;008))a = 0.
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Hence w’ € T0g(TM) if and only if w’ <> (1, 0, a4, 0). (1) now follows by the
observation that #(v') = 0 if and only if ¥’ & (m;, 0, a;, b,), so that if ' <
(my, 0,0,b;) and w’ < (m,, 0, a;, 0) then w’ € »(E) and w’ € T0x(TM) and
v = ' 4+, ' uniquely.

The proofs of (2) and (3) are analogous.

4. Connexions. Recall that a connexion in the vector bundle (E, M, p) is
a map which associates with every vector field X on M and every cross-section
Y: M — E another cross-section VY in E subject to these conditions:

(1) Vx(Y + 2) = VxV + VxZ

(2) Vx4u(Y) = VxV + V¥V

(3) Vx(fY) = LX(f)Y + fVxY

(4) VixY = fVxY,
where f is any real valued function on M. Note that if tangent vectors are
understood in the usual sense, formula (3) will read Vx(fY) = X(f)V +
fVxY.

The possibility of viewing a connexion as a map from TE to E depends on
giving geometric life to the tangent vectors to E.

Definition. If x’ is tangent to M, if V: M — E is a cross-section and TV
its differential then we will denote by x’Y (or at times x’(Y)) the element
TY(x') of TE.

Thus, if £ is any curve in M tangent to x’ then x’ Y is tangent to the curve
Y ot in E, so that ¥’ Y depends only on Y restricted to any neighborhood of
the basepoint m of x’.

Further,

m(x'Y) = Y(m), Tp(x'Y) = «'.
In local coordinates,
x'Y & (my,n;(m), ay, Lx' (n,))

when
x> (m;a;) and Yo (x4 n;).

Remark. In the special case that E = T'M, x’ Y can be given a direct meaning
as a functional when T(TM) is identified with (" ® T)M in the sense of
prolongations. Namely, for any function f: M — R, 'Y (f ) is the element
(Yf)inT @ T.

LEMMA 3. Ifx'" € TEand if x' = Tp(x'") # 0 then there exists a cross-section
Y: M — E (not unique) such that x'’ = x'Y.

Proof. The local coordinate formula for x’Y above shows that if x" <
(my4, v;, ay, b;) is given, a desired cross-section Y <> (x4, ;) can be determined

locally by finding functions #; so that n;(m) = v; and Lx'(y;) = b,. Choose
therefore any function g in a neighborhood of m so that g(m) = 0 and Lx'(g) =
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1, which is possible since we assume x’ = Tp(x'') # 0. Then define n; = v; +
b,g. Thus we obtain Y in a neighborhood of m and we can extend it to all of M
by any smoothing function.

Now we show that the lack of uniqueness in the geometric realization of
elements of TE does not matter for our purpose. First recall that if ¥ is a
connexion in (E, M, p) and if X(m) = x’ # 0 then VxV(m) depends only
on the value of X at m, not on the rest of X. Hence it makes sense to write
Vo Yifor VyV(m) when x' # 0.

LEMMA 4. If two cross-sections YV and Z of M in E satisfy "' = x'Y = «'Z
with x' # 0, then for any connexion V in (E, M, p)

V¥V =V, 2.

Proof. Let (x;) and (x; 0 p, y;) be local coordinates in M and E. This means
that if ¥ < (x4, n;) there are (pointwise) linearly independent cross-sections
Y;: M — E such that ¥ = 2Z9,Y, locally.

Then

1) VoV =2nmVy Y, + XL (n)) ¥V;(m).

Since x'Y = «'Z if and only if 9,(m) = ¢;(m) and Lx'(y;) = Lx'(¢;) when
Z & (x4 ¢;), Lemma 4 follows from (1).

For any fixed tangent vector x’ € T M the pair of mapsf~ x'(f): DM —» T
and V ~» «x'V: T'(M, E) — TE defines a homomorphism from the D M-module
I'(M, E) of cross-sections of M in E to the T-module Tp~1(x"), the fiber of TE
above %’ in the bundle (TE, TM, Tp). We state this more plainly.

LeMMA 5. For any function f: M — R, tangent vector x' € TM and cross-
sections YV, Z of M in E

S (YV+2Z)=xY +r,x2Z, X (fY) =x'(f)rx'Y.

Proof. Both formulas follow from the fact that the bundle structure on
(TE, TM, Tp) is essentially the differential of the bundle structure (E, M, p).
Precisely, if L: R X E— E: (a, v) ~ av is scalar multiplication in E, the
corresponding 7-multiplication in TE is simply the differential 7L: 7" X TE —
TE as TR =~ T. (Part II, Lemma 2). Then if g: E - R is any
function, &' (f ) r,x' Y (g) = TL(x'(f ), #'Y)(g) = (Tf(x'), TY(x'))(go L) =
x(goLofXYoA)=x'(gofY)=T(fV)x'(g) = x'(fY)(g), proving the
second of the formulas above. Here A: M — M X M: m -~ (m, m) is the
diagonal map.

The first formula is proved analogously.

Remark. The linearity of the differential in this context translates to

& +ay)Z =x'Z 4+ra-yv2Z
for any real number a.

We now have what we need to prove
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THEOREM 1. There is a one-to-one correspondence between conmexions in the
vector bundle (E, M, p) and maps C: TE — E satisfying

(1) Cinduces a vector bundle map from (TE, E, w) to (E, M, p);

(2) C induces a vector bundle map from (TE, TM, Tp) to (E, M, p);

(8) C o s the identity map of E. (v is the natural identification of fibers of E
with their tangent spaces at 0.)

Remark. (1) and (2) amount to saying that these diagrams are commutative

ES E ES B

e owm
E— M TM — M
p T

and that C is linear on fibers.

COROLLARY. When E = T M we obtain that a linear connexion in the tangent
bundle is a map from T*M to T M, subject to the three conditions above.

Before we give the proof of Theorem 1 we show more explicitly how the
connexion map C is tied to the T-module structure on (TE, TM, Tp).

LemmMmA 6. Let C: TE — E satisfy the two first conditions of Theorem 1. Then
the third condition C o v = identity is equivalent to C(rp0') = w (') for all
o' € TE. Here 7 1s the basis element of T such that * = 0.

Remark. The second formula of this lemma depends absolutely on a choice
of 7 as basis for the maximal ideal of 7. However, in linking prolongations
with real derivations we already had to fix such a choice (see Remark 1,
section 2). This choice is implicit also in the definition of v: E — TE. Namely,
if v € E and p(¢t) = tv then v(v) = p’'(0), where p'(0) = Tp(Dy) and D, is
linked to ordinary differentiation by D,(f) = f(¢) 4+ f'(¢)7 for any function
f: R—>R.

Proof of Lemma 6. In local coordinates let v* <> (m, v;, ay, b,). Then 74,0" <
(m,0,a4 ;). Hence 77,0" = v(v) 4+, 705 (x") where v = 7(v') & (my, v;) and
x' = Tp@®') <> (my a;). The double linearity of C therefore implies C(7p,2') =
C(v(w(v'))), proving our lemma since  is surjective.

Proof of Theorem 1. First assume that a connexion V in (E, M, p) is given.
We construct a map C: TE — E by the formula
Cl') = V.Y, when Tp(x'") =« # 0
= v1(u'), when Tp(x’) = 0.
Here Y: M — E is any cross-section such that x”/ = 'Y, which exists by

Lemma 3 when Tp(x”’) # 0, and Lemma 4 guarantees C(x’") is well defined
in this case. #’ is defined uniquely by the equation "’ = ' + r, @' € v(E) + 1,
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07(E) when Tp(x'’) = 0 by Lemma 2. Thus C will automatically have
Property 3. That C is smooth and a vector bundle map in both structures
follows by direct application of local coordinates.

Conversely, if a bundle map C is given with the three listed properties then
a connexion operator for (E, M, p) can be retrieved by defining

VxVY(m) = C(X(m)Y) or more briefly VxV = CoTVYoX
for any vector field X in M and any cross-section ¥: M — E. Lemmas 5 and 6

imply that ¥V has the right properties.

Remark. If we use the same local coordinates as before in M, E and TE, so
that D; are the partial derivative vector fields in M and V; are pointwise
linearly independent cross-sections in E, and if we define T,/ : M — R by

C(Di(m)Y,) =22 Ti'(m) Y (m)
then the local coordinate expressions for the connexion map C: TE — E are

() #i0C==%n, y0C= 2 Zayn(Tx’0po ) + yu.

1,7

Here x; = x, 0 p.

5. Curvature. The curvature is tied to the connexion map C in a very simple
and pleasing way, which depends on the symmetry map of any iterated
tangent bundle. The intrinsic reason for the existence of this symmetry map
is discussed in Section 2, Part I1 of this paper. Here all we need to know is that
this symmetry map S(= Sr7): T2M — T2M in the usual induced local co-
ordinates takes

x> (my, ay, by, cq) to S(') & (my, by, ay, ¢4),

i.e., X448 0 S = x4, This means that S = S~'and Tr oS = x. Sis in fact a
linear isomorphism between the bundles (72M, TM, r) and (1M, T M, TT).
In our application S will act on T2E rather than 7%M. Finally recall that TC
is the differential of the map C.

THEOREM 2. The map K: T?E — E given by
K=ColTC—-CoTCoS

is the curvature for the connexion C in the following sense. If R is the usual
curvature tensor, if x', y' are tangents to the manifold M at m, and if z is in the
fiber over m of the bundle space E, then

R, y)z = K(x'YZ) = K(T?Zo TY(x")).

Here Y is any vector field on M such that Y(m) = y' and Z is any cross-section
in E such that Z(m) = z. T*Z is the iterated differential of Z.

Before proving Theorem 2 we inject further geometric life into T2E, in
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analogy to what we did for TE. If Z: M — E is any cross-section and x’’ €
T2M define x''Z = T2Z(x'') = x''(TZ). If also x”” = x'Y we obtain in this
way the element (x'¥)Z in T2E. On the other hand YZ is a cross-section of M
in TE and hence defines an element x' (YZ) of T2E. Since x'(YZ) = T(YZ) (x")
=T(TZoY)(x') =T Z0TY(') = T?2Zx'Y) = (' Y)Z the following de-
finition makes good sense.

Definition. Given a tangent vector &’ to M, a vector field ¥ on M and a cross-
section Z of M in E. Put

x'YZ =TZo0TY).

Remark. This notation is meant to be suggestive. YZ is a derivative function
which incorporates the change of Z in the direction of any vector of Y. x’'VZ is
a double derivative incorporating the change of YZ with respect to the vector
x’. We now state and prove the analog to Lemma 3 though this is not needed
in the sequel.

LEMMA 7. Given any 3"’ € T2E,definex’ = T(pow)(Z")andy = Tpox(s").
Suppose either

(a) ' and v’ are linearly independent tangent vectors to M, or

(b) T'w(z"") and w(2"") are linearly dependent tangent vectors to E, but x’ # 0
and y' # 0.

Then there exist a vector field Y on M and a cross-section Z of M in E (neither of
them unique) such that
7 =x'YZ.

Proof. In case there did exist ¥ and Z such that 2"/ = x’YZ it would follow
that ¥ (m) = ' where m is the basepoint of x’, and also that T (") = x'Z,
w(z"") = y'Z and T?p(z"") = x'Y. Further, given a local coordinate system in
M some computation yields that the induced local coordinates for 2’/ will be
(4) x, YZ « (mir g‘k(m)) bi) Ly’({k)y ag, Lx’({k)y Lx,(ni)y Lx/(L Y(g‘k)))
when

m e (my), 8" e (my,ay),y & (myby), Yo (x5,0:), Z o (x4, 8)-
Now we prove Lemma 7 in case (a). We choose a local coordinate system (x;)
in M centered at m such that x* = D;(m) and y’ = D.(m) are the first two
coordinate tangent vectors at m. Relative to this coordinate system

m <> (0)» x,H (07611)y y,H (0,6{2), and
Z” g (O) Aky 51’21 Cky 5111 Bl‘y Eiy Fk)

Comparing this with (4) we see that if we can find ¥ and Z so that the following
six equations hold

Y(im) =9, &e(m) = Ay, Lx'(§) = By, Ly (¢x) = Cx, L' (n;) = E;,

Lx' (LY (¢r)) = Fi
when Y & (x4, 7;) and Z < (x;, i), then 3/ = x’'YZ.
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If we now prescribe ¥ and Z locally (and extend in any smooth way to all
of M) by n; = Ex; + 8,2 and

$e = Ay + Bixy + Cixs + (Fk — E\B; — E2Ck)xlx2

the six equations are indeed satisfied, and hence 2’/ = x' VZ.

In case (b) the assumptions that Tw(z"") and 7 (2'’) are linearly dependent
together with x’ # 0 and y’ £ 0 imply that 7(3”") = aIr(2"") and y' = ax’ for
some non-zero constant a. We choose a local coordinate system centered at m
such that ¥’ = D;(m). Then

2" & (0, Ay, ady, aBy, 84, By, Ei, Fy).
Again, if we can choose YV «» (x;, ;) and Z < (x;, {;) such that

Y(m) = ax’, tx(m) = Ay, Lx'({x) = By, Lx'(n:) = E4y L' (LY (4)) = Fy
then 2" = x’YZ. But this is the case when

ne = Ex1 + adpand ¢ = Ay + Buxn + (1/2a) (Fr — E1Bp)x,2

The following four lemmas will help us avoid much routine computation in
local coordinates to prove Theorem 2, and additionally provide more insight.

LemMa 8. If X and Y are vector fields on M with X (m) = x' and Y(m) = '
then

SE'Y) =y X = v([X, Y](m)) + - 0.

Here S: T*M — T*M is the symmetry map mentioned above. vi: TM — T*M 1s
the usual identification which maps a vector to the tangent at zero of the ray it
determines. 0, 1s the zero tangent vector to x' in T*M.

Proof. In the usual local coordinates S(x'Y) —, v'X < (my, a4, 0, Lx'(n;) —
Ly'(¢;)) whenx' & (m;, a;), X e (x4, &) and V & (x4, 9,). Since [ X, V](m) &
(my, Lx'(n;) — Ly’ (£:)) so that

v([X, YI(m)) & (my, 0,0, Lx'(n:) — Ly'(§)),

and since 0, < (m,, ay 0, 0) the lemma follows by the explicit coordinate
formula for addition in the fibers of the bundle (T2M, TM, Tx).

LEMMma 9. If ¢: M — N is any map, then So T?*p = T?p 0 S.

Proof. For any local algebras 4 and B the corresponding iterated functor AB
is isomorphic to BA. S is this isomorphism when 4 = B = 7. (See Part II,
Lemma 7).

LemMma 10. If C: TE — E is a connexion map and if uw'', v € T°E such that
Tr@') = Tn(@') then TC(W"' + 1. v"") = TCW") 4+ 7, TC@").

Proof. + « refers to addition in fibers of the bundle (72E, TE, T'r) and
+ 7, to addition in the fibers of (TE, TM, Tp). Lemma 2 of Part II implies

https://doi.org/10.4153/CJM-1975-085-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-085-4

776 LEIF-NORMAN PATTERSON

that the addition + 7, is the differential 7(+,) of addition in fibers of (TE, E,
7). Since C is a connexion map it is linear on the fibers of (TE, E, =), that is

Co+,=+4,0(C X C).Hence
TCW' +7:0") =TCo (Fp)W,v") =TCoT(4,) (@, v")
=T(4+,) 0 (TCX TCYW', ') = TCW’) + 4, TC@").

LemMma 11. Let ¢: E — F be a vector bundle map from (E, M, p) to (F, N, q).
Then

Toov =vooe.

Proof. We have called both the identification maps v. Let p, be the ray in E
determined by z. Because ¢ is linear on the fibers of E, ¢ 0 p, = p,(,y = the ray
determined by ¢(z) in F. Hence To 0 v(2) = To(p,/(0)) = py»' (0) = v 0 o(z).

COROLLARY. If C: TE — E is a connexion map, then
TCov =voC.
Proof. Cis a vector bundle map from (T'E, E, ) to (E, M, p).

Proof of Theorem 2. Choose any vector fields X and ¥ on M and cross-section
Z of M in E so that X(m) = &', Y(m) = 3y and Z(m) = z. In terms of co-
variant derivatives the standard expression for the curvature tensor is

R(x', y’)z = (]e(X, Y)Z)(m) = {VvaZ e VYVXZ —_— V[X,y]Z}(m).
Since covariant differentiation is linked to the connexion map via
VxZ =CX(Z) =CoTZoX,
and since therefore
(VxVyZ)m) = CoT(CoTZoY)x') =CoTCoT*Zo0TY()
=CoTlTC(x'YZ)),
we obtain for the curvature tensor
R, y)z=CoTlTCYZ)—CoTCWXZ)— C(X, YIm)Z).
We intend to show that the difference
R y)z — K&'YZ) = ColTCoSWYZ) - CoTCWXZ)
— C(X, YI(m)Z)
is zero in E. The two first terms in this expression are
8 =CoTCoSKYZ) —CoTCHWXZ)
ColTCSK'Y)Z) —CoTC(H'XZ) (by Lemma 9)
CoTCSK'YVYZ — vXZ)

Il

because both C and 7T°C are linear with respect to the ordinary tangent bundle
structures and because both S(x’ ¥)Z and y’ XZ have the same base point x'Z.
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Further the linearity of 72Z = T(T'Z) with respect to +, implies that
d=CoTCU(SK'Y) —=y'X)Z) = CoTC((v(t) +1:0,)2)
by Lemma 8 when ¢’ = [X, V](m).
Lemma 2 of Part II tells us that + 7 = 7°(+.) so that

CoTCoT*ZoT(+) (), 0,)

=CoTCoT(TZo+.) (), 0,)

=CoTCoT(+-0(TZ X TZ)) (), 0;)
=CoT(Co+4+-0(TZ X TZ))(»(),0,)
=CoT(4+,0(CXC)o(TZ X TZ))(('),0,), because Cis

linear with respect to =+

)

Cv({')(CoTZ) +17,0,,(CoT2))
Cr(t")(CoTZ)) +,C(0,-(CoTZ)), because Cis

. linear with respect to =+ r,.
But 0,,(C0o7TZ) = T(CoTZ)(0,) = O¢orzwn. Hence C(0,-(CoTZ)) =0

in E since C is linear with respect to (TE, E, ). As +, means addition in the
bundle space E we have therefore shown that

8§ =CoTCoT*2Z(»({')) = CoTCovoTZ(t') by Lemma 11
= CovoCoTZ() by Corollary to Lemma 11
= Co TZ() since C is a connexion map.

This means that indeed

R, y)z— K@&'YZ) =6 — C(X, Y](m)Z) = C(Z) — C(/'Z) = 0in E.

6. Torsion and geodesics. In case the vector bundle (E, M, p) is the tangent
bundle (T'M, M, =) we can also give a nice formula for the torsion of any
linear connexion in terms of the symmetry map S: 72M — T2M.

THEOREM 3. Let C: T*M — T M be the connexion map of a linear connexion in
the manifold M. Then the map

06=C—-—CoS:T?°M—->TM

1s the torsion of the connexion in the following sense. If 6 1s the usual torsion tensor
and if x' and y' are tangents to the manifold M at m, then

6(x',y") =0(x'Y) =0(TY(x))
for any vector field Y on M such that Y (m) = y'.

Proof. Choose another vector field X so that X (m) = «’. Recall that in
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terms of covariant derivatives the torsion is
0(x',y') (VxV — VX — [X, Y])(m)
C'Y) — CyX) — [X, Y](m)
=CY)—CoSWY)+ CoSEY) —CHyX)— [X, Y](m)
0('Y) + Cv([X, Y](m)) + 7.0,+) — [X, Y](m) by Lemma 8

=0(x'Y) because C is a connexion map.

Remark. The fixed points of the symmetry map .S form a submanifold. 7 M
of T?M characterized by Tx|J M = |9 M. The fibers of this submanifold
are not linear subspaces of the fibers in either of the bundle structures (12M,
TM, Tw) or (I?M, TM, =). But, any connexion map is uniquely determined
modulo torsion once it is known on this submanifold 7" M. Physically this
means that if we know how to compute accelerations we also know how to
compute changes in any vector fields along a curve (not merely velocity vector
fields) provided we know the torsion (and in particular, if the torsion is zero).
The reasons are firstly, that .7 M consists essentially of elements realizable
geometrically as x’X and never includes any elements of the form x’Y with
Y(m) # «’; secondly, that every argument except that of the torsion term
in the right side of the formula

20('Y) = C((y — &) (Y — X)) + COr([X, Y](m)))
— CX) = CO'Y) +0(y'X)

lies in.7” M.
Finally we point out that { is a geodesic of the linear connexion C if and
only if
Cot’"=00¢

where 0 = 0, is the zero cross-section of M in TM.
II. PROLONGATIONS OF CONNEXIONS

1. Introduction. In this part we utilize the functorial approach to pro-
longations taken by A. Weil [8].

The main result is that any given linear connexion in a manifold prolongs
in a natural way to a linear connexion in any of the prolongations of the mani-
fold (Theorem 2).

This means for example that a linear connexion in the manifold M gives rise
to a linear connexion in the space of k-jets from R* to M with source 0, in-
cluding in particular the well known ‘‘tangent’’ connexion [3; 4] in the tangent
bundle space T M.

We take advantage of the view that a connexion is merely a certain map,
established in Part I. Hence we may expect to prolong a given connexion only
by applying the appropriate prolongation functor to the connexion map. For
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example, to get the tangent connexion we may expect only to apply the tangent
functor to (in effect take the differential of) the connexion map. But this is
not quite enough, and for good formal reasons we must make some ‘‘correc-
tions” via the symmetries which link iterated prolongation functors. In the
case of the tangent connexion the symmetry which occurs is the usual one of
T2*M with itself.

In Theorem 4 we give curvature and torsion of the prolonged linear con-
nexion, which turn out to be nearly, but not quite, the prolongations (for
the tangent functor: differential) of the curvature and torsion of the given
linear connexion.

We want to emphasize that we are dealing with the concept of connexion in
its standard sense only. (For generalizations to higher order differential geo-
metry, compare P. Libermann [6], W. Pohl [7], S. Kobayashi [5].) Asin Part I,
it seems easiest to use the context of connexions in vector bundles. First we
show that any such connexion extends to a connexion in the prolonged vector
bundle (Theorem 1). Then, if the starting connexion is linear, this is modified
by symmetries to yield the prolonged linear connexion.

2. Notation and review of ‘‘prolongations’’. We continue the conventions
of Part I. Let 4 be a local, real commutative algebra of finite dimension with
unity. That is to say 4 is a direct sum R + I of the real numbers and a maximal
ideal I, so that A4 is essentially a quotient of a ring of formal real power series
in several variables by a co-finite ideal. The prolongation-space 4 M is a
fiberspace over the manifold M. Its fiber over a point m is the collection of all
algebra homomorphisms x’ from the differentiable functions on M, DM, to
the algebra A4, subject to the ‘“‘local’”’ condition:

For any function f in DM the real component of ' (f) in 4 is f(m).

If A = A4,%is the formal power series in # variables modulo terms of order
greater than k then the fiber of 4,*M over m consists of the k-jets from R" to M
with source 0 and target m. The fibers of 4 M are not generally vector spaces;
in fact they carry a natural linear structure if and only if A = 4,! which is to
say if and only if 4 M is the n-fold Whitney sum of the tangent bundle TM
in fact they carry a natural linear structure if and only if 4 = 4, which is to
say if and only if A M is the n-fold Whitney sum of the tangent bundle TM
A =T).

The dimension of the bundle space 4 M is the product of the dimensions of
the algebra 4 and the manifold M.

The map m: A M — M which collapses fibers will be referred to as the base-
point projection. There is also an opposite cross-section map 0: M — AM in
analogy to the zero cross-section for the tangent bundle. Namely, for any
m€E M and f € DM O(m)(f) = f(m), which is to say the component of
0(m)(f ) along the maximal ideal I in 4 is 0. By this cross-section 0 we can
regard M as a submanifold of 4 M, or AM as a prolongation of M. But it is
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slightly misleading to refer to this cross-section 0 as ‘‘zero” in the general case
when the fibers of 4 M are not vector spaces.

If the maps 7: M — M’ and j: N — N’ are imbeddings of M and NV as sub-
manifolds of M’ and N’ and if F: M — N is any map, then a prolongation or
extension of F is any map ¢: M’ — N’ making the following diagram com-
mutative

M4 N

It

M— N
F

In this sense every map F: M — N between manifolds prolongs to a bundle
map AF: AM — AN by the formula AF(x')(g) = x’(go F) forany x’ € AM
and g € DN, when the cross-sections 0 imbed M and N as submanifolds of 4 M

and AN:
AM—A—iAN
A
M—s N
F

The assignment (M, F) into (AM, AF) is a functor from the category of C”
manifolds and maps to the category of C” bundles and bundle maps. As is
already apparent in our notation we call this functor 4 too, so that in what
follows context will decide when we mean the functor 4 or the algebra 4.

Whereas it looks like a shortcoming that prolongation spaces in general are
not vector bundles with respect to their base manifolds, repeated application
or iteration of prolongations is particularly simple. If 4 and B are two local
algebras then so is their tensor product 4 ® B, and for any manifold M the
iterated prolongation space 4 (BM) is naturally isomorphic to (4 ® B)M
(A. Weil [8]). This implies in particular that there is a natural isomorphism
or symmetry map S5 from A (BM) to B(AM). When A = B = T this sym-
metry map becomes a well-known endomorphism of the iterated tangent
bundle space 72M = T (M) (Kobayashi [4]).

For the purpose of describing local coordinates in A M we must choose a
linear basis for the algebra 4. It is often convenient to do this by first selecting
Ti, To, ..., T, in the maximal ideal I of 4 so they form a linear basis of I
modulo I2. Together with unity these elements generate the algebra 4. Since
I*+1 = {0} for some least positive integer & = order of 4, we then fix among
all ordered n-tuples a = (44, 72, - . ., 7,) of non-negative integers a finite sub-
set ay, g, . . ., ag such that ro1, 7#2, . .., 7% form a linear basis for 4. Here 7=
means 7,792 . . . 7, with the understanding that 7,° = 1.
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Now suppose x1, X3, . .., Xz are a system of local coordinate functions in
the manifold M. The appropriate version of Taylor’'s theorem implies that
any x' € AM is determined if and only if x’ (x,), % (x2), . . . , " (x4) are known.
Therefore we obtain a system of local coordinate functions x4;(z =1, ...,
d,j =1,...,a) by defining

%4a;(x") = component of «’(x;) along 7/ in 4.

Note that the basepoint projection n: A M — M satisfies

Assume that bases 7¢i and ¢f* have been chosen for the algebras 4 and B
respectively. In the corresponding induced local coordinates the symmetry
map Sap: A(BM) — B(4 M) amounts to

X 1ajBk oS4 = X 18-

For the case 4 = B = T = the two-dimensional algebra {1, 7} this means
that if "/ <& (my, a;, by, ¢;) in T2M then Sy (x"") = S&"") < (my, by, ay, cy).

For any local algebra 4 the corresponding prolongation functor conserves
all sorts of pleasant properties. For example, if M X N is a product manifold
then so is 4 (M X N) because it is naturally isomorphic to AM X AN and
will be identified with 4 M X AN in the following. We will also identify AR
with the local algebra 4, because any x’ € AR is completely determined by its
value x’(7) on the identity map of the reals.

The functor A prolongs vector spaces, algebras and vector bundles to struc-
tures of the same kind. We state this precisely in Lemmas 1 and 2 below
without giving the routine proofs. Note that when 4 = T which produces the
tangent functor, Lemma 2 gives a little more structure to the tangent bundle
of a vector bundle than may be obvious in other contexts, namely that the
fibers are T-modules.

LeMMA 1. Let V be any finite-dimensional real vector space and A any local
algebra as above.

(1) Then the prolongation space AV becomes an A-module, when addition and
module multiplication in AV are merely the A-prolongations of addition and
scalar multiplication in V.

(2) There is a canonical isomorphism n: AV — A ® V. If {v*} is a basis for
V and {f.} a dual basis, then

n(@) = 20 (fo) @ v* foranyv € AV.

3) If u: VX V — V is an algebra structure on V, then Ap: AV X AV —
AV is an algebra structure on AV. In this case the isomorphismn: AV -4 Q@ V
becomes an algebra isomorphism when A @ V is given the algebra structure in-
duced by (a @ v) (b @ w) = (ab) ® (u(v, w)).
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(4) If j: V—> A ® V is the injection which takes v to 1 ® v then the following
diagram is commutative:

n
AV —— AQ V

NI

Remark. Lemma 1 implies that if #(q) is the algebra of ¢ X ¢ real matrices
then 4.#(q) is isomorphic to the algebra of ¢ X ¢ matrices with entries in 4.
In particular AGL(q) is the set of ¢ X g matrices with entries in 4 such that
their real component matrices (= base points) are non-singular.

LeMMA 2. Let A be a local algebra of linear dimension a and (E, M, p) a vector
bundle with fiber R and group GL(q).

(1) Then (AE, AM, Ap) is an A-module bundle with fiber AR? (R4 ® R?)
and group AGL(q)(C GL(aq)).

(2) (AE, AM, Ap) is a prolongation of (E, M, p) in the sense that

4L B

o

AM«b—M

is commutative.
3) If (E*, M, p*) denotes the Whitney sum of the bundle (E, M, p) with
atself, then (AE*, AM, Ap*t) is the Whitney sum of (AE, AM, Ap) with itself.
(4) If addition and scalar multiplication in the fibers of E are viewed as maps
+: Et - Eand L: R X E — E, then addition and A-module multiplication are
merely the prolongations

A+: AEt —-AE and AL: A X AE — AE.

We list below a series of technical lemmas needed en route to our goals. Part
of the purpose in giving the simple proofs is to show how it is possible to operate
computationally in this formalism.

LeEMMA 3. Let O denote either of the zero cross-sections in the vector bundles
(E, M, p) or (AE, AM, Ap). Then A0 = 0.

Remark. This means that the zero cross-section of AM in AE is the A4-
prolongation of the zero cross-section of M in E, so that the diagram

av S 4k

OI IO

M?E

is commutative.
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Proof. The zero vectors in E are uniquely characterized by
240 =2
for all z in the same fiber as 0. This can be formulated as a functional equation
+o0@X0o0p)oA =1

where 7 is the identity map of E, A the diagonal map of E in E X E and +
the addition in E conceived as a map from the Whitney sum E* to E. Applying
the functor 4 we get

(A4+) 0 (472 X A0 o Ap) 0 AA = Aa.
Lemma 1 implies that the addition in (AE, AM, Ap), + 4, is A+, and since
AA = Aand 47 = 1 we get

+40(EXA004p)o A =1
which means that A0 satisfies the same functional equation which uniquely
characterizes the zero cross-section in AE. Hence A0 = 0.

LeEmMA 4. If ¢: E — F is a vector bundle map from (E, M, p) to (F, N, q) then
Ag: AE — AFisan A-module bundle map from (AE,AM,Ap)to (AF,AN, Aq).

Proof. This is similar in principle to Lemma 2 and in fact to most of our
arguments regarding prolongations. Namely, the given properties are stated
functionally and then the A-functor is applied. For example, if Lz denotes
scalar multiplication in E then ¢ being a vector bundle map implies in particu-
lar the commutativity of the diagram

RXEMXOR%F
LE LF.

E—— L F
Applying the functor A we obtain commutativity of

AR X AEAEXAC 4p s aF
ALp AL

AE ——(———— > AF

Ao

Since AR ~ A, A7 = i and since ALz = L, by definition, this tells us that
A¢ commutes with scalars from the local algebra A. The proof that A¢ is
linear on fibers of AE is similar, with the aid of Lemma 1.

LEMMA 5. For any local algebras A and B the symmetry map S p: ABM —
BA M satisfies

AWOSBA =7 and SBAO():AO.
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Here = is the usual base point projection, while 0 is the standard imbedding
of a manifold into its prolongation space.

Proof. Our claim is that for any manifold M these are commutative diagrams:

B A

BAM ————> ABM BAM ——> ABM

N N

The equations are quickly verified in local coordinates.
LEMMA 6. The symmetry map Spa: TAM — AT M is a vector bundle isomor-
phism from (TAM, AM, «) to (ATM,AM, Ax).

Proof. Let (%4, yx) be local coordinates in the vector bundle (E, M, p) such
that &; = x; 0 p and «x; are local coordinates in M. Lemma 1 then implies the
following local coordinate formulas for addition and 4-module multiplication
in the prolonged bundle (AE, AM, Ap):

qularO‘I_Ap = &iaowly ykaO+A1) = ykao"rl"l_ykaow‘b

(s 4p3’) = Xia(3'), Yra(s -ap3’) = [s(z/(yk))]m
Here m: AE X AE — AE is the projection on the first factor, s € 4 and
z' € AE. Note that if s € R then yia(s ‘4p 2’) = $Yra(z’).

We apply these formulas when (E, M, p) is the tangent bundle ("M, M, «).
Thus local coordinates in TM will be (x4) = (x4, 1), in ATM (X4aq), in
AM (%4) and in TAM (%,,). Then for any '/, y"’ tangent to x’ € AM and
any real number s,

X400 0 S7a (X" Fr $:Y") = Ziao(&" +1 55Y") = Fiao(x"'),
X {la OSTA(x” +7r Swy”) = i{al(x” +7r Sw}’”) = D_Cial(x”) + Sxial(y”)'
On the other hand

xiOa(STAx” + ar STAy”) = xiOa(STAx”) = xiao(x”)v
xﬂa(STAxN tar S tur STAy”) = xila(STAx”) + xila(s 'AWSTAy”)

= X1 (x"") + ¥ .1(y’") because s is real.
We have thus proved that

Sra (x” +x Swy”) = Srax” +4r S an STAyN

which is the claim of Lemma 4.

LEMMA 7. If A and B are local algebras, denote also by Sp the algebra isomor-
phism from AB to BA induced by the isomorphism n: AB — A @ B and the sym-
metry of the tensor product. Let (E, M, p) be a vector bundle. Then:

(1) (ABE, ABM, ABp) is an AB-module bundle.
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(2) The symmetry maps Sip induce an isomorphism from the AB-module
bundle (ABE, ABM, ABp) to the BA-module bundle (BAE, BAM, BAp) in
the sense that

SAB(Z/, +ABp w”) = SAB<ZII) +BA11 SAB('w”)
SAB(b’ ‘ABp Z”) = SAB(b,) ‘BAp SAB(Z”)

for any 2", W' in the same fiber of ABE and any b’ € AB.

(3) Inthe same sense the A B-module bundle (ABE, ABM, ABp) is isomorphic
tothe A @ B-module bundle (A ® BE,A @ BM,A ® Bp).

(4) (ABE, ABM, ABp) may in particular be considered o« B-module bundle
when B is viewed as a subalgebra of AB wia the cross-scction 0: B — AB.
Then Ssp is a B-module bundle isomorphism from (ABE, ABM, ABp) to
(BAE, BAM, BAp).

Proof. (1) and (2) depend on the fact that addition and module multiplica-
tion in the fibers of (ABE, ABM, ABp) are just the iterated prolongations of
addition and scalar multiplication in E. (3) is essentially Weil’s observation
that iterating the functors corresponding to the local algebras 4 and B is
equivalent to applying the functor corresponding to 4 ® B. (4) depends on
the commutativity of the diagram

AB 548 B4
0 I Im
B ~ BR

Here & is the isomorphism identifying B and BR, and 72: R — A4 is the in-
clusion map.

Lemwma 8. If (E, M, p) s a vector bundle then
STA OoOv = AV.

Proof. v is the identification which maps any element of a vector bundle to
the tangent to zero of the ray it determines. We use local coordinates in TAE
and ATE as in the proof of Lemma 6. Then Lemma 1, Part I, implies that

x_:iay o = 0

0, o=1

0, o=0
j—’ka, 0'=1.

Xira 0S40V = Kiq OV ={

ykaaOSTA OV = Yrag OV = {
On the other hand

Xioa O Av(x') = [¥' (x5 0V)]a = {[xl(xi)]ay =0

[ (0)]s, o =1

_ JxuE'), o=0
10, o =1.
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Hence

— xlay g = 0
X i6a O AV = {0, o = l
Similarly

ykmoAv={o, c=0

}-’ka, o =1.

Thus the coordinate components of the maps S, 0 v and Av are equal which
proves Lemma 8.

3. Connexions.

THEOREM 1. Suppose that a connexion C: TE — E is given in the vector bundle
(E, M, p). Then the map C,: TAE — AE defined as

CA = ACOSTA

1is a connexion in the A-module bundle (AE, AM, Ap). C4 is a prolongation of
the connexion C in the sense that the diagram

TAE—%AE
TO T I 0

is commutative. Here Sp4: TAE — ATE 1s the symmetry map, and 0: E — AE
1s the ‘‘zero’’ -cross-section (1mbedding) of E in AE.

Remark 1. By stating that C4 is a connexion in the 4-module bundle (4E,
AM, Ap) we mean that not only does C4-parallel-translation along curves in
A M preserve the linear structure of the fibers of 4E, but indeed the 4-module
structure of these fibers. This is to say that C, is A-linear on the fibers of
(TAE, TAM, TAp).

Remark 2. The facts that C,4 is a connexion map and a prolongation in the
sense stated imply the commutativity of these diagrams:

Ca > AE TAE Ca » AE
TAEW y w 0
C C
TE— E TE—E
T ™ lP Ap TAp Tpl lp Ap
E—M —_—
% o o TM—> M 5
\4 p v v
AE 17 — AM TAM p- —> AM
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Proof of Theorem 1. The following two diagrams are commutative by Lemma
5 and because C is a connexion map.

C
TAE———»AE TAE——— 3 AE
TA AV %‘4 Iy
ATE ATE
/W r4p |y |ar
AE——————> AN ATM
P / s
v
TAM - X AM

Thus C4 takes fibers in the bundles (TAE, AE, 7) and (TAE, TAM, TAp) to
fibers in the bundle (AE, AM, Ap). Next we show

(1) C4 islinear on the fibers of (T'/AE, AE, 7): Referring to the left diagram
above we see that this claim holds because AC is a vector bundle map by
Lemma 4 and S;, is a vector bundle map by Lemma 6.

(2) C4 is A-linear on fibers of (TAE, TAM, TAp): Lemma 7 (4) shows
how (TAE, TAM, TAp) is an A-module bundle isomorphic to the 4-module
bundle (ATE, ATM, ATp). By Lemma 4, AC is an A-module bundle map
from the latter to (AE, AM, Ap), and hence the right commutative diagram
above implies that C, is 4-linear.

(3) C4 ov = i when 7 is the identity map: By Lemma 8 and the fact that C
is a connexion map we get

Ciov=ACo0Srs0v=AC0Avr =A(Cov) = AQr) =

Together, these three facts imply that C4 is a connexion map.
Finally Lemma 5 implies commutativity of

TAE——2 ____, AE

QA /y
ATE
T0 0
lo
TE —E—'* E

which in turn shows that C, is a prolongation in the sense of Theorem 1.

We wish to make a slight simplification of notation. It is the symmetry of
the tensorproduct B ® 4 with 4 ® B induced by b ® a ~» a ® b which is
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responsible for the functorial symmetry Sy, of iterated prolongations. Simi-
larly the symmetry B ® B ® A with 4 ® B ® B induced by b; ® bs @ a ~»
a ® by @ by is responsible for the functorial symmetry Sg4 0 BSp4. Therefore
it is sensible to call the latter Sg2y4.

Definition. For any local algebras 4 and B and integer £ > 1 put
SBkA = SBA O BSBk—lA

with the understanding that B! = B.

Next we state formally a consequence of the fact that isomorphic vector
bundles are “‘indistinguishable’ within the category of C® vector bundles and
maps.

LEmMMA 9. If o: (E, M, p) — (F, N, q) is a vector bundle isomorphism, and
if C: TF— F is a connexion map, then C°* = ¢'oCoTe: TE—E is a
connexion map. In particular the curvature of C* is

K =¢10KoT%
when K s the curvature of C.

If C defines a linear connexion in the manifold M in the usual, but restricted
sense that C is a connexion map for the tangent bundle (7'M, M, =), then the
prolongation C, does not define a linear connexion in the prolongation manifold
AM. That is to say, C, is a connexion map for the bundle (ATM, AM, Ax)
and not for (TTAM, AM, ©). As expected a small modification of C, via the
symmetries relating iterated prolongations does yield a linear connexion in 4 M.

THEOREM 2. Suppose a linear connexion in the manifold M 1is given. Let
C: T*M — TM be the corresponding connexion map for the tangent bundle
(T'M, M, w). Then the map C*: T°AM — TAM defined as

Ct=854720C,0TSr, =Sa704C0Sr24

is a linear commexion in the manifold AM, in effect a connexion map for the
tangent bundle (TAM, AM, «). C* 1s a prolongation of the connexion C in the
sense that

A

TAM =5 TAM
Tzo{ [ 70

*M —- ™

1S commutative.
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Remark. This theorem implies commutativity of the following diagrams,
which further illustrate the sense in which C* is a prolongation.

Cc4 c4
T2AM >TAM T:AM > TAM
720 70 720 V
C c
T2 —> TM TM——>TM

o I T A L N I A
| o N ot

TAM »AM TA > AM

Proof of Theorem 2. C, is a connexion map for the bundle (ATM, AM, Ar).
Lemma 6 says that Sy, is a vector bundle isomorphism from (TAM, AM, «)
to (ATM, AM, Ax). Hence Lemma 9 yields that C* = S,70C,0 TSy, is
a connexion map.

The following diagram is commutative by Lemma 5 and Theorem 1.

CA

TeAM » TAM
NESar S5/
%0 ratM-5 4”10
ﬁo Vo\
C
M > TM

This completes the proof of Theorem 2.

THEOREM 3. The curvature of the prolonged connexion C4 in the vector bundle
(AE, AM, Ap) is

KA = AK (o] STZA
where K 1s the curvature of the connexion map C.

Proof. From the definition of the curvature K (Part I, Theorem 2) it
follows that

AKoSpy = A(CoTC — CoTCo0S) oS,
=ACoATCoSr4—apAC0 ATC0AS0S2, byLemmad
=ACo0ATCo0S;,0TSry —4p ACOATCo0 AS 0 Sy,
=AC0S740TACoTSrs —4pAC0Sr,40TACOS70AS0Sr,
=C,0TCy —4,Cq0TC 0S8
= K,.
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The next to the last step holds true because S = Sy, and
TSTA OSTT = SAT (o] ASO STZA.

THEOREM 4. If C is a linear connexion in the manifold M with curvature K
then the prolonged linear connexion C* in A M has curvature

K4 =S,704K 0Srs4.
1Its torsion is

04 =S,7,0400 TSr4
when the torsion of C is ©.

Proof. By Theorem 3 the curvature of the connexion C* for the bundle
(ATM,AM, Ar) willbe K, = AK 0.S724. By Lemma 9

KA*=S8S,,0K,07T%5;, =Sir0AK oS0 TS,
=S5,704K0S;,0TSr40T2574
=S4704K0S7,0T(Srsa0TSr4) =Ss704AK0Sp40T(Sp24)
=S,704K 0Sps,.

The torsion formula is really a consequence of the same reasoning which led
to Lemma 9.

Remark. The theorems above show that corresponding to a given linear
connexion in the manifold M there are two distinct prolongations of it to the
tangent manifold 7M. One is C; which is not a linear connexion but neverthe-
less gives rise to parallel translation of second order tangent vectors along
curves in 7 M because it is a connexion in the vector bundle (T2M, T M, Tr).
In fact it preserves the 7-module structure of this bundle. The other is CT
which is indeed the usual linear ‘‘tangent’’ connexion [4]. These two con-
nexions are of course isomorphic in the sense of Lemma 9, so that C, =
S0 CTo TS where S = Sy is the symmetry of T2M.

The Jacobi fields of the linear connexion C in M are the geodesics of the
tangent connexion CT in M [3]. A nice intrinsic proof of this fact can be made,
using our characterization Co ¢’ = 0 o0 ¢ of geodesics, by regarding Jacobi
fields as “infinitesmal variations” (= transverse vector fields generated by
one parameter families of geodesics) and then applying the tangent functor T,

REFERENCES

1. P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962),
73-88.

2. W. Greub, S. Halperin, and R. Vanstone, Connections, curvature and cohomology, Vol. 2,
Ch. 7, (Academic Press, New York, 1973).

3. S. Ishihara and K. Yano, Tangent and cotangent bundles, (Marcel Dekker, Inc., New York,
1973).

4. S. Kobayashi, Theory of connections, Ann. Mat. Pura Appl. 43 (1957), 119-194.

https://doi.org/10.4153/CJM-1975-085-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-085-4

CONNEXIONS AND PROLONGATIONS 791

5.

Canonical forms on frame bundles of higher order contact, Proc. of the Symposia in
Pure Mathematics 111, Amer. Math. Soc. (1961).

6. P. Libermann, Calcul tensoriel et connexions d'ordre superieur, 3° Coloquio Brasileiro de
Matematica, Fortaleza, Brazil (1961).

7. W. Pohl, Connexions in differential geomeiry of higher order, Applied Mathematics and
Statistics Laboratory, Stanford University (1963).

8. A. Weil, Théorie des points proches sur les variétés differentiables, Colloques Intern? CNRS,
Strassbourg (1953), pp. 111-117.

University of Tromsg,
Troms¢g Norway

https://doi.org/10.4153/CJM-1975-085-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-085-4

