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Abstract. Current understanding of the stability of gas and stellar disks suggests very strongly that local 
stability to axisymmetric modes is not sufficient for global stability. A global instability to a bar mode will 
develop unless the rotational kinetic energy is sufficiently small compared with the random kinetic energy 
for the system as a whole. A disk as cool as the galactic disk near the Sun can survive only if most of the 
mass of the Galaxy is in a 'hot' component, such as a central bulge and/or an extended halo. We review the 
theoretical evidence for this conclusion coming from analytic results for simple gas and stellar disks, from 
numerical simulations of stellar disks, and from numerical calculations of the stability of gas disks. Some 
new results on the precise form of dynamic bar instabilities of gas disks with and without halos are re­
ported. 

1. Introduction 

An understanding of the structure and dynamics of spiral galaxies depends in an 
important way on questions of global stability. Conventional fits to rotation curves, 
based on the observed light distribution, assume all the mass outside the 'central 
bulge' type of spheroidal component lies in a 'cool' disk with only enough velocity 
dispersion to satisfy the Toomre criterion for local stability against axisymmetric 
ring modes. However, attempts to simulate the stellar dynamics of these cool disks 
have consistently found strong instabilities to bar modes. The non-linear effect of the 
bar is to increase the velocity dispersion until it is comparable with the circular 
velocity over much of the disk. The final state is typically characterized by a ratio t 
of kinetic energy of rotation to gravitational potential energy of only 0.14 or so, com­
pared with the value 0.5 for a zero velocity dispersion disk (Ostriker and Peebles, 
1973). Ostriker and Peebles argue that a cool disk is stable against bar modes only 
if a substantial part of the mass of the galaxy is in the form of a more or less spherical 
halo, so that for the system as a whole t has an upper limit in the range 0.1-0.2. 

No direct observational evidence for such halos has been found (Freeman, 1975). 
They must be composed of objects with very large mass to light ratios, such as ex­
treme M dwarfs or black holes. Ostriker et al. (1974) have assembled some indirect 
evidence for very massive halos extending to many times the radius of the visible 
galaxy. Of course, only the mass within the outer edge of the disk is relevant to our 
discussion of stability. One should also keep in mind that the observational evidence 
for disks being cool is rather meagre; in the vicinity of the Sun the galactic disk is at 
best only marginally stable according to Toomre's criterion (see Schmidt, 1975), but 
in other galaxies one must appeal to the apparent small ratio of thickness to radius 
or argue that spiral density waves are only possible in rather cool disks. 

My discussion will focus on the theoretical arguments and results of numerical 
simulations as they affect questions of global stability. The most directly relevant 
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calculations are the numerical simulations of stellar disks carried out by Miller et al 
(1970), Hohl (1971, 1975), and Ostriker and Peebles (1973). I will only mention some 
of the general implications of HohPs calculations, since he will describe them in 
detail in his review paper. The analytic results of Kalnajs (1972) on stability are of 
great help in checking and interpreting the simulations, but so far they have not 
been extended to realistic galaxy models. 

Bar instabilities seem to be a general property of rapidly rotating, self-gravitating 
systems, with many qualitative and some quantitative similarities between stellar 
disks and gaseous disks. Furthermore, the only obvious way for a stellar disk to form 
is from a gas disk at least as thin as the final stellar disk. Therefore, this review will 
include some discussion of gas disks; in particular, I will present the results of some 
of my calculations of the instability of two-dimensional gas disks to bar and two-
armed spiral modes. The linearized equations for dynamical perturbations are 
integrated in time until, if the disk is unstable, one mode dominates and gives a steady, 
uniform pattern speed and growth rate. 

I will begin by reviewing the known analytic results on the stability of gas and 
stellar disks, both for global and local instability and then discuss the numerical 
calculations. 

2. Analytic Results 

Only for very special configurations can one solve analytically for the gravitational 
potential, both for the axisymmetric equilibrium and for general perturbations. The 
classic example is the sequence of Maclaurin spheroids, uniform density and uni­
formly rotating spheroids of incompressible perfect fluid, along with the associated 
sequences of ellipsoids which have various combinations of internal motion and 
uniform rotation (see Chandrasekhar, 1969). For a given density and mass the 
eccentricity of a Maclaurin spheroid goes form zero to one and the ratio t of kinetic 
energy of rotation to gravitational potential energy goes from zero to one-half as the 
angular momentum increases from zero to infinity. 

In the gas case one distinguishes between secular instability and dynamic insta­
bility. In the absence of any dissipative mechanism such as viscosity both the total 
angular momentum and the circulation (j vdl around a closed curve comoving with 
the fluid) are conserved in any dynamic process. Furthermore, an axisymmetric per­
turbation conserves the angular momentum of each ring of matter. 

A perturbation in which one of the dynamic constraints is violated is a secular 
perturbation. For instance, with only viscosity present the circulation need not be 
conserved and angular momentum can be transferred between neighboring rings of 
matter even when the perturbation is axisymmetric, but the total angular momentum 
still remains constant. On the other hand, gravitational radiation reaction by itself 
preserves the circulation but allows the total angular momentum to change. The 
time scale for growth of a secular perturbation is governed by the amount of dissi­
pation present and often is large compared with the characteristic dynamic time scale 
of the system. The concept of secular instability is meaningful only if the original 

https://doi.org/10.1017/S007418090001562X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090001562X


GLOBAL INSTABILITIES OF DISKS 299 

equilibrium configuration is not affected by the dissipation. One expects secular 
instability to set in before dynamic instability, since a neighboring lower energy 
configuration may not be reachable by a perturbation consistent with all the dynami­
cal constraints. 

The first instability along the Maclaurin sequence is a secular instability to a bar 
mode at r ^ 0.1376. As excited by viscosity the marginally unstable mode is an ellip­
soidal deformation which corotates with the matter (a Jacobi ellipsoid). As excited 
by gravitational radiation reaction the ellipsoidal shape remains fixed in space, a 
Dedekind ellipsoid (Chandrasekhar, 1970). The non-linear evolution of the secular 
instability for t a little greater than 0.1376 has been solved by Press and Teukolsky 
(1973) for viscosity and by Miller (1973) for gravitational radiation. 

Only for t> 0.2738 are the Maclaurin spheroids dynamically unstable. The mar­
ginally unstable mode is a bar which rotates at one-half the angular velocity of the 
matter. At t = 0.3589 the spheroid first becomes secularly unstable to an axisym-
metric redistribution of angular momentum and matter, either in the direction of a 
'central bulge' surrounded by a thin disk or in the direction of a ring-like distribution 
of matter. Finally, the first onset of an axisymmetric dynamic instability is at t = 0.4574 
(see Bardeen, 1971). 

A class of stellar dynamic analogues to Maclaurin spheroids has been studied by 
Kalnajs (1972), who was able to separate the normal modes and solve for their 
characteristic frequencies. The models are infinitesimally thin disks with the same 
surface density as a function of radius as the Maclaurin spheroids and with a range 
of possible velocity distributions in the plane of the disk which are obtained by 
superimposing a particular type of distribution function with only one free param­
eter, the mean angular velocity of rotation Q. The stability to the two-armed bar 
mode analogous to the mode that dominates the non-axisymmetric instability of the 
Maclaurin spheroids, Kalnajs shows, depends only on the weighted average of Q in 
a composite model. The bar mode is unstable if <(2> exceeds (125/486)1/2 = 0.507, in 
units such that the angular velocity Q0 of the zero velocity dispersion disk with the 
same mass and radius is one. Since <&> is the mean angular velocity of the matter 
in the composite model, the parameter t at marginal instability has the unique value 
t = 0.1286. Thus t ^ 0.1286 is a necessary condition for overall stability of this class 
of models. Unfortunately, the velocity distribution has some peculiar properties, and 
even aside from the question of the importance of shear, one should be cautious in 
extrapolating this result to more realistic stellar disks. 

Kalnajs also considers how a halo which supplies a rigid component to the poten­
tial modifies the stability of the disk. For instance his model Bx without a halo has 
t = 0.1735 and is unstable to three modes; the most rapidly growing instability is 
to the (2, 2) bar mode. With a halo corresponding to a uniform density sphere equal 
in radius to the disk, the model which has the same distribution of stellar orbits as 
B1 is marginally stable when the halo mass is 0.199 of the disk mass or 0.166 of the 
total mass. For the system as a whole t = 0.145. His model £3 , which without a halo 
has t = 0.271, is stabilized by a halo mass equal to f the mass of the disk or 40% of the 
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total mass. The effect of the halo is to multiply the response by a factor equal to the 
fraction of the equilibrium gravitational force due to the disk. 

There is no distinction between secular and dynamic instability in a collisionless 
stellar system. The conservation of density in phase space is a constraint on the 
evolution of the system, but one which can allow a considerable amount of relaxation 
and conversion of bulk motion into random motion to occur (see Lynden-Bell, 1967). 
There are no macroscopic constraints analogous to conservation of vorticity of a 
perfect fluid. It is perhaps not surprising, then, that the bar instability for the stellar 
disk occurs at about the same value of t as the secular instability of the Maclaurin 
spheroid. The pattern angular velocity of the marginally unstable mode is 0.4564, 
roughly equal to the mean angular velocity of the stars, so the marginally unstable 
mode of the stellar disk resembles the Jacobi mode of the Maclaurin spheroid. 

Typical galactic disks are highly centrally condensed and are far from uniform 
rotation. The only generally applicable analytic stability criteria are the 'local' 
criteria which apply to axisymmetric ring modes or tightly wound spiral modes in 
which the radial wavelength of the perturbation is small compared with the scale of 
radial inhomogeneities. In this limit one treats a local region of the disk as an infinite 
plane sheet. 

The Toomre criterion (Toomre, 1964) was derived for infinitesimally thin stellar 
disks with a Gaussian radial velocity dispersion cr It predicts instability when cr 

falls below 

_3.36G<7 
V^rJcrit — ? 

K 

where K is the local epicyclic frequency and a is the local surface density. The wave­
length of the marginally unstable mode is 

4rit = 3.5(cr)c
2
rit/G(7 

= 40G<r//c2. 

For a completely self-gravitating disk /lcrit is comparable with the radius of the disk 
unless the surface density in the region being considered is small compared with the 
average surface density. Therefore, the conditions necessary for the local criterion 
to be used with confidence will not be satisfied unless the disk contains a relatively 
small part of the total mass of the system. The bulk of the mass could either be in a 
'central bulge' or 'spheroidal' component or in an extended halo component. This 
point has also been made by Vandervoort (1970) in connection with a study of non­
linear density waves. 

A local stability criterion for gas disks was derived by Goldreich and Lynden-Bell 
(1965). If a measure of the mean density in the disk, 

<?= U 2 d z / gdz, 
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exceeds a numerical coefficient times K2/G the disk is unstable. The numerical 
coefficient ranges from 0.23 for an isothermal equation of state to 0.56 for an incom­
pressible fluid equation of state. The critical wavelength at marginal instability is a 
few times the mean thickness of the disk W = O/Q. The ratio XJW ranges from 4.5 
for an isothermal equation of state to 10.4 for an incompressible fluid equation of 
state. 

The exact result for marginal instability of a Maclaurin spheroid to axisymmetric 
modes is g = 0.61 K2/G when W is 0.0465 times the diameter of the disk. However, 
it seems likely that the local criterion will work less well when G and K2 vary strongly 
with radius. 

Even when such a local criterion does apply it gives at most a necessary condition 
for stability. It says nothing about the stability of modes which are not tightly wound, 
particularly the bar modes which are the dominant instabilities of the uniformly 
rotating disks, both gas and stellar. 

Nevertheless, it is the local type of analysis which has formed the basis for the 
density wave theory of spiral structure developed by Lin and Shu (1964, 1966). They 
and coworkers have obtained dispersion relations and included effects of resonances. 
Results of Toomre (1969) on the group velocity of density waves have raised serious 
question as to whether they can be considered persistant normal modes of the stellar 
system. Further discussion of density waves as such seems outside the scope of this 
review. 

3. Numerical Simulations of Stellar Disks 

Direct Af-body calculations are impractical for N larger than 500. It is questionable 
whether 500 stars are adequate to represent a galaxy, since the two-body relaxation 
time is not too much larger than the dynamical time scale. Certainly 500 stars are not 
enough to represent any detailed structure in the galaxy. These considerations have 
prompted the development of approximate schemes which allow calculations with 
much larger numbers of stars. 

For instance, Miller and Prendergast (1968) devised an approximation based on a 
discrete phase space in which stars jump between integer values of position and 
velocity. A fast Fourier transform technique was used to solve for the gravitational 
potential. Miller, Prendergast, and Quirk (1970) applied this method to infinitesimally 
thin disks made up both of 'stars' and 'gas', with about 105 total particles. The gas 
component was kept cool by reducing the relative velocities of the gas particles or 
'clouds' at each point in configuration space at every time step. Without 'gas' present 
the stars formed a 'hot' pressure-supported system. With gas some moderately per­
sistent spiral patterns developed which were much less prominent in the stars than 
in the gas. In some cases bars developed as transient phases in the evolution of the 
system. No attempt was made to look in detail at the conditions necessary to stabilize 
the disk, but typically there was a substantial background of hot stars once things 
settled down to a steady state. Ostriker and Peebles (1973) quote a range of 0.130-0.135 
for the final value of t in the MPQ simulations. 
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More elaborate and more accurate simulations of infinitesimally thin two-dimen­
sional purely stellar disks have been carried out by Hohl over the last several years 
(Hohl, 1971, 1975). The configuration space is broken up into cells and the mass 
density averaged over each cell before the potential is calculated. However, unlike 
MPQ the equations of motion for the individual stars are solved exactly for an 
infinitesimally thin disk with velocity dispersion only in the plane. The simulations 
have been tested against the Kalnajs analytic models. Most of the models calculated 
have contained 105 stars, which is large enough for two-body encounters to have a 
negligible effect (Hohl, 1973). Hohl found that an initially uniformly rotating disk 
with just enough velocity dispersion to satisfy the Toomre stability criterion was 
violently unstable to a bar. Outside the corotation radius, where the pattern speed 
of the bar equaled the circular velocity of the stars, the stars were pushed outward; 
inside the corotation radius the stars drifted inward. In the final steady state the 
surface density was a steep exponential function of radius inside the corotation radius; 
outside the corotation radius the disk was also exponential, but with a considerably 
larger scale length. The ratio Q of the radial velocity dispersion to the Toomre critical 
velocity dispersion in the final state varied from about 2 near the center to 5 or 6 
in the outer part of the disk. Ostriker and Peebles (1973) quote a final value of r~0.14. 
Any transient spiral patterns quickly decayed as the velocity dispersion increased, 
but a bar did persist indefinitely. 

In an attempt to generate a cooler stable disk Hohl symmetrized this final steady 
state to remove the bar and then tried artificially reducing the velocity dispersion of 
a certain fraction of the stars peroidically. However, this caused a new bar instability. 
With steady cooling an open spiral pattern did persist in the outer part of the disk 
surrounding a central bar. Heating of the disk by Landau damping of the spiral 
pattern compensated for the cooling and kept the disk rather hot. 

The most striking feature of these calculations (Hohl, 1971) was the relaxation to 
an exponential type of disk structure, somewhat like that observed in many spiral 
galaxies (Freeman, 1970). This suggests that the exponential surface density reflects 
an epoch of dynamic relaxation in the disk, rather than the initial angular momentum 
distribution in the gas cloud out of which the disk formed. A phase of bar instability 
may also greatly increase the central condensation of the disk and assist in the for­
mation of a condensed nucleus of the galaxy. 

More recently Hohl has run experiments with rigid background potentials repre­
senting 'halo' populations superimposed on the self-gravity of the disk (Hohl, 1975). 
A halo potential corresponding to the mass distribution in the Schmidt (1965) model 
of the Galaxy seemed to suppress the bar instability if the halo mass was comparable 
to that of the disk, but substantial heating of the disk still took place if the initial Q 
was one, suggesting that less prominent instabilities were still present. The steady-
state Q was in the range 2-3. A less centrally condensed halo of comparable mass 
allowed a bar to develop, but the heating was less with a final Q of 1.5-2. At present 
these results are only suggestive, but combined with my results on gas disks reported 
in Section 4, one can conclude that a halo less centrally condensed than the disk 
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seems to be more effective in stabilizing the disk than a halo corresponding to a 
massive 'central bulge' component. 

Hopefully in the near future it will be possible to make more realistic simulations 
of this type which allow for a finite thickness of the disk and the presence of a genuine 
gas component. However, it seems unlikely that the results on global stability will be 
altered significantly. 

An attempt to model a galactic disk with a finite thickness has been carried out by 
Ostriker and Peebles (1973). Their A/-body calculation has N in the range 150-500 
and usually N = 300. The forces are calculated by summing over particle pairs; force 
is cut off at an interparticle distance about 0.05 times R, the initial radius of the disk. 
The initial conditions typically have all the stars in the equatorial plane evenly divided 
between intervals of 0.1 R in radius and distributed randomly in each interval. The 
stars are given an initial radial velocity dispersion scaled to satisfy the Toomre 
criterion by a margin of 20% everywhere except near the centre. The initial z-velocity 
dispersion was set equal to the initial axial-velocity dispersion obtained from the 
epicyclic approximation. Finally, the total velocity, including the circular velocity, 
was rescaled to satisfy the equilibrium virial theorem. 

Such a system developed a strong bar instability. The velocity dispersion increased 
rapidly in the plane, but after an initial adjustment the vertical velocity dispersion 
and the root mean square value of z for the disk as a whole increased more slowly. 
The parameter r, initially about 0.35, seemed to approach an asymptotic constant 
value of about 0.14. 

Some runs included a rigid halo potential corresponding to a spherical mass distri­
bution with about the same central concentration as the disk, 

MH(r) = ( l . l ) 2 — ^ — — - r O O ^ K H W V ; R{r + 0AR)2 

= MH r>R. 

A halo mass MH greater than or equal to the mass of the disk was sufficient to remove 
the violent bar instability, but the velocity dispersion still did increase slowly. For 
the system as a whole the parameter t seemed to level off at about 0.17 for MH/MD = 0.5 
and 1.0. Once the halo mass dominates that of the disk t becomes very insensitive to 
the velocity dispersion of the disk; a better measure of the velocity dispersion neces­
sary for stability would be the Toomre parameter g. It does seem that with MH/MD > 2 
or 3 the initial disk is basically stable. 

Ostriker and Peebles claim their results are insensitive to the value of N in the 
range 150-500 and therefore that two-body relaxation effects are not important. 
While this probably is true for the violent bar instability of the cool disk without a 
halo, the precise point at which the halo stabilizes the initial disk is unclear because 
a slow increase of velocity dispersion could be due either to a mild instability or to 
two-body relaxation. The cut-off of the halo at the initial radius of the disk is rather 
artificial, particularly since the radius of the disk increases substantially during the 
dynamical evolution. The value of t is very sensitive to the amount of mass in the 
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outer part of the halo, but the stability is not likely to be sensitive to the halo mass 
outside the great bulk of the mass of the disk. For this reason, Ostriker and Peebles' 
claim that t~ 0.14 is a universal number for marginal bar instability, even with a halo, 
should not be taken too seriously. 

Taken together the numerical stimulations and the Kalnajs analytic results con­
stitute a very strong, even overwhelming case that without a massive halo a stable 
stellar disk must have a much higher velocity dispersion in the plane than that 
required for local axisymmetric stability. The numerical simulations generally have 
not used self-consistent stationary solutions to the Liouville equation as initial condi­
tions, so they are not true stability calculations. However, the stationary final states 
presumable do correspond to stationary solutions of the Liouville equation and 
attempts to gradually cool these differentially rotating disks did not succeed in 
reducing the total velocity dispersion by a large amount Therefore, it seems unlikely 
that single-component stellar disks can be globally stable with t much greater than 
0.14 or a mass-weighted average of Q~1 greater than 0.3 or so. However, it is still very 
important to extend the exact stability analysis to at least some differentially rotating 
disks and to construct good equilibrium stellar dynamical models of disks with 
various degrees of central condensation to serve as initial conditions for numerical 
simulations. The one possibility that has not been ruled out by the numerical simu­
lations to date is that a very hot 'central bulge' in which Q is much larger than one 
could allow a surrounding disk containing the bulk of the mass (as observed from 
rotation curves) to be stable with Q^l. My experiments with gas disks make this 
alternative seem unlikely. 

A less realistic version of a stellar disk, but one which is susceptible to a fairly com­
plete stability analysis, uses a modified gravitation interaction potential, 

mimj 
hj = -tfj + a2yi2> I1) 

to soften the gravitational interaction. The stars move in circular orbits in the equa­
torial plane of the unperturbed disk. Miller (1971) first noticed that the modified 
gravity, which with small values of a is often used in iV-body calculations to prevent 
large accelerations in close encounters, can by itself stabilize the axisymmetric ring 
modes of a zero-velocity-dispersion disk. The WKB dispersion relation relating 
frequency co and radial wave number k is 

co2 = K2-2nGake-ak. (2) 

This is qualitatively similar to the dispersion relation of Lin and Shu (1966) in that 
CD2-+K2 in the high wave number limit as well as at zero wave number. The dispersion 
relation (2) predicts local axisymmetric stability if 

2nGc 
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Miller (1974) and Erickson (1974) have found this WKB estimate agrees rather well 
with more exact numerical stability calculations for the axisymmetric modes of some 
simple disk models. Erickson also looks in detail at the whole spectrum of axisym­
metric modes. However, the modified gravity fails to stabilize against some non-
axisymmetric modes even when a is comparable with effective radius of the disk 
(Erickson, 1974); global stability does seem to require a real velocity dispersion. 

4. Global Instabilities of Gas Disks 

Gas disks are simpler to work with than stellar disks in that fewer dynamic variables 
describe the response of the matter. As mentioned in the introduction, they also have 
a direct relevance to the existence of disk galaxies. A stellar system cannot relax into 
a disk. Therefore, the disk stars must have formed from gas that was already in a thin 
disk. The original gas disk must not have been too unstable or it would not have 
lasted in a quiescent state long enough to form stars with small velocity dispersion. 

A completely realistic gas disk would still require an elaborate computer simulation 
to follow its dynamical evolution, since it would involve two or three-dimensional 
hydrodynamics depending whether the calculation is restricted to small perturbations 
of an equilibrium configuration or follows the full non-linear development of in­
stabilities. 

A relatively simple type of approximate stability analysis is based on the tensor 
virial equations developed by Chandrasekhar and Lebovitz (1962) and adapted for 
use on rapidly rotating stellar models by Tassoul and Ostriker (1968). The fluid 
displacements are constrained to be linear functions of the Cartesian spatial coordi­
nates, 

Zi = Ai}®xf (4) 
Assuming a harmonic time dependence, one can derive a set of algebraic equations 
for the coefficients Atj which has solutions for certain characteristic frequencies cok. 
The modes which have an angular dependence corresponding to a /=2, m= ±2 
spherical harmonic are the 'bar' modes and in fact are the exact bar modes of a 
Maclaurin spheroid. 

The tensor virial equations predict dynamical instability when the characteristic 
frequencies of the bar modes become complex. Since in general one does not expect 
the exact eigenfunction for a differentially rotating, centrally condensed star to have 
the form of equation (4), one does not expect the tensor virial estimate of, say, the 
value of t at the point of marginal dynamical instability to be exact. There is no 
minimum principle for non-axisymmetric modes (Lynden-Bell and Ostriker, 1967), 
so the sign of the error is not known. 

As far as secular stability goes, Ostriker and Tassoul (1969) argue that any sta­
tionary, non-axisymmetric, differentially rotating configuration with triplanar sym­
metry must satisfy virial relations which in the limit of axisymmetry make one of 
the bar mode frequencies of the axisymmetric star calculated with the tensor virial 
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equations equal to zero. In other words, there must be a zero frequency tensor virial 
mode at any point of bifurcation to a sequence of triplanar configurations along a 
sequence of axisymmetric rotating stars. One can show from the variational principle 
for differentially rotating stars of Lynden-Bell and Ostriker (1967) that secular in­
stability will set in when a certain energy integral first becomes negative for some 
trial displacement and furthermore (see Friedman and Schutz, 1975) that a zero-
frequency Dedekind-type mode does exist when some non-trivial trial displacement 
corresponding to an axial eigenvalue m = 2 minimizes the energy integral at a value 
of zero. There is no guarantee that a Jacobi-type mode with a non-zero pattern an­
gular velocity exists at this point. Taken together, these arguments imply that the 
tensor virial method locates the point of marginal secular instability exactly. 

The tensor virial stability analysis has been applied by Ostriker and various col­
laborators to a variety of rapidly rotating stellar models calculated by the self-con­
sistent field method of Ostriker and Mark (1968). The most systematic study has been 
carried out for the differentially rotating polytrope models of Ostriker and Boden-
heimer (1973). At the point of marginal secular instability they find £~0.138 for all 
their models, while dynamical instability seems to set in at t ̂ 0.26. The models cover 
a fairly wide range of central condensation and angular momentum distribution. 

None of the Ostriker-Bodenheimer models are as thin as typical galactic disks and 
the general validity of the tensor virial estimate of t ~0.26 for dynamical instability 
is open to question. Also, the effect of halos on the instability of gas disks deserves 
attention. Therefore, I have developed a simplified treatment of the dynamics of gas 
disks perturbed away from axisymmetry in which the vertical structure of the disk 
is suppressed, either by assuming the disk is infinitesimally thin and the 'pressure' 
only acts in the plane of the disk or by solving for the vertical structure of the disk 
analytically and inserting this into the horizontal equilibrium and dynamics. 

In the case of the infinitesimally thin disk we further simplify things by assuming 
that the horizontal stress per unit length p is a universal function of the surface den­
sity (7 both in the equilibrium disk and in the dynamics of a given fluid element, 
p=zp(a). Then the dynamical equations governing motions in the plane of the disk 
can be written. 

f£=V(C/-*(a)), (5) 
where 

a 

\l>{o)= la-1 (dp/da) da (6) 
o 

and U is the (positive) gravitational potential in the plane of the disk obtained by 
solving the Laplace equation outside the disk with boundary condition 

= -2nGa. (7) 
2 = 0 + 

dU 
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Equation (5), linearized about the equilibrium disk, has been used by several authors 
as a simple context in which to discuss local density waves (e.g. Hunter, 1972, 1973; 
Feldman and Lin, 1973). 

To first order in the thickness of an ordinary isotropic-pressure gas disk in which 
there is a polytropic relation between pressure and volume gas density the equation 
governing the horizontal dynamics has the same form as Equation (5), if in Equation 
(5) U = U0, the potential in the plane of an infinitesimally thin disk with the same 
surface density as the finite thickness disk. To zeroth order in the thickness the ver­
tical acceleration is small compared with the vertical gravitational potential gradient, 

z = 0[(GM/K3)z] = 0(z/K)G<7. 

Assume vertical equilibrium, then, and also assume that the thickness is small com­
pared with the scale of horizontal variations in the surface density. The vertical equi­
librium gives 

p 

Q(P) 
U(r,4>,z)=\^+Ul(r,<f>), (8) 

where Ul is the value of U at the surface of the disk, z = zx(r,(t)). In the equation 
governing horizontal dynamics, the net horizontal gravitational and pressure force 
per unit mass is VL^ (r, <x), independent of z. To first order in z the potential at z — zx 

is the same as the potential at z = zx outside the zero thickness disk, 

dU 
L/X (r, 0)=l/o(r, (/>) + — z 1 = 

= (7o(r,0)-27rGaz1. (9) 

For a polytrope of the form 
n 

8 = Kpn+1, (10) 

Harrison and Lake (1972) find that zx for an infinite plane sheet is 

a (KG \ -n / ( n + 1) 

where (1 is a numerical coefficient depending on n. The equation for motions in the 
plane then has the form of Equation (5) with ^oc(72/(n+1). The pressure forces and 
the reduction in U due to the finite thickness contribute to \\i in comparable amounts. 

The correction to the horizontal dynamics second order in z requires taking into 
account vertical accelerations as well as the second order corrections to Ul(r,cf>) 
which depend on the radial variation of U. Equation (5) can represent a thin iso-
tropic pressure gas disk only as long as the scale of radial variation of both the equi­
librium and perturbed surface density is large compared with the thickness. A local 
stability analysis based on Equation (5) will give only roughly the same result as the 

https://doi.org/10.1017/S007418090001562X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090001562X


308 J. M. BARDEEN 

Goldreich-Lynden-Bell local axisymmetric stability criterion, since the wavelength 
at marginal stability is only a few times the thickness. 

My numerical analysis of global instabilities has been applied to disks whose 
horizontal dynamics is described by Equation (5). Only some of the results will be 
discussed here; the details will be published elsewhere. 

From now on all equations and quantities will be written in units such that the 
outer radius of the disk R=l, the mass of the disk M D = 1 , and the gravitational 
constant G = l . 

Only first-order perturbations of equilibrium models will be considered. The 
models discussed in most detail will have a I//((T) of the form 

<A=/?Ma. (12) 

The potential U in the plane of the disk is found by separating variables in oblate 
spheroidal coordinates (Hunter, 1963, 1965), so it is convenient to make the square 
of the angular velocity of the zero-pressure equilibrium model, QQ, a polynomial in 
rj2, where 

rj = (l-r2)112. (13) 

The corresponding potential UD in the plane of the disk is found by integrating 

rj drj 

the surface density derived from UD is a polynomial containing only odd powers of 
rj. The Ql polynomial is adjusted to make accrj3 as rj->0 at the rim. Then the an­
gular velocity of the 'warm' disk Q, given by 

0 * = i l ( l / - ^ ) ) , (15) 
rjdrj 

is a regular function of rj2 at the rim if a in Equation (12) equals § or f, corresponding 
to a finite thickness disk with polytropic index n—2 or \, respectively. The potential 
U in (15) may include a contribution UH from a 'halo', 

U = UD+UH. (16) 

If the halo is spherical, the halo mass inside radius r is 

A remarkable property of the choice a = f in Equation (12) is that for reasonable 
disk models in which G is roughly exponential over a substantial fraction of the 
radius, the fractional correction to Q\ produced by the finite pressure is remarkably 
uniform as the surface density changes by a couple of orders of magnitude. This 
allows a choice of /? which gives a substantial average reduction in Q2 from Ql with-
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out Q2 becoming negative near the center or near the rim. Only for a = f was I able 
to increase the pressure enough to stabilize the disk without a halo. 

The structure of one standard disk model, Model C, is shown in Figure 1. The 
central surface density is 16.61 times the average surface density. The disk is roughly 
an exponential disk with a scale height of 0.16 in radius. The velocities of rotation 
for the zero-pressure disk and for the disk with a = § and /? = 0.4601 are also plotted. 

1.5 

1.0 

t> 0.5 

f 0.0 

-0.5 

- i r> 

I I I 1 

r^ 

/ z' 

r i i i i 

i i i i i 

MODEL C 

v(0.50) 

X V v(0.27) 

1 1 1 \ 1 

-

A 

A 

^ \ 

A 

H2.5 

H2.0 

-H-5 

HI0 

H0.5 

.2 .3 .6 .8 1.0° 

Fig. 1. The surface density a and rotational velocity of Disk C are plotted. The rotational velocity 
i;(0.50) is for the zero pressure disk and the rotational velocity y(0.27) is for a disk almost dynamical stable 

to the bar mode. 

The ratio of kinetic energy of rotation to gravitational potential energy, f, labels the 
velocity curves; it is the value estimated for an isotropic pressure, finite thickness 
disk. The infinitesimally thin disk with 0 = 0.4601 has t=0.2341. 

The equations governing dynamic perturbations are obtained by expanding Equa­
tion (5) to first order in the deviation from equilibrium. It is instructive to consider 
harmonic time dependence and, of course, a particular axial harmonic; so the per­
turbed quantities all contain a factor e

im<t>~i<ot. Then the perturbations in the velocity 
are algebraically related to the perturbations in the force per unit mass, 

d 2imQ 
\K2-{a)-mQ)2~\ 5vr=-i(co-mQ) — (<5l/eff) + (SUeff) dr r 

and 

where 

[^-(co-mQf^dv^ 

do­

ze2 d , v m(a> — mQ) / 

(18) 

(19) 

(20) 

https://doi.org/10.1017/S007418090001562X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090001562X


310 J. M. BARDEEN 

These equations are supplemented by the conservation of mass equation 

1 d imo 
i(co — mQ)d(T = --r(arSvr)-\ Sv^. (21) 

r dr r 

In Equations (18) and (19) the 'epicyclic frequency' K is defined by 

K2 = 2Ql2Q + r— J; (22) 

it is not the epicyclic frequency for a circular test particle orbit. 
A special cancellation on the right-hand side of one of the above equations is nec­

essary to avoid a singularity in the eigenfunction at a radius where the pattern an­
gular velocity of the perturbation Qp = a>/m equals the local angular velocity of the 
gas Q (corotation resonance) or at a radius where 

o/m = Qp = Q + KJm (outer Lindblad resonance) 
or 

o/m = Q— KJm (inner Lindblad resonance). 

These resonances act like extra boundary conditions on the eigenfunction. One 
boundary condition is already used up in requiring regularity at the center (the rim 
is a free boundary), so more than one resonance makes it difficult for any regular 
real-frequency modes to exist. 

The non-local relation between the surface density perturbation da and the po­
tential perturbation 5U0 prevents the direct integration of Equations (18)—(20). How­
ever, if the radial wavelength of the perturbation is small compared with the radial 
scaleheight of surface density and small compared with r/m (a tightly wound spiral), 
there is an approximate local relation 

SU0^2nd<j/k, (23) 

where k is the radial wavenumber. In this limit Equations (18)—(21) combine to give 
a dispersion relation (see Hunter, 1972) 

((o - mQf = K2- Inak + cr-^k2. (24) 
dc 

The minimum of (a> — mQ)2 is at a wavenumber 

/ ^ [ d ^ / d M ] " 1 (25) 

or a wavelength 

Ac = 2d^/d<r. (26) 

The minimum value is less than zero, implying local instability, if 

Q2 = — ~~<l. (27) 
TIG ayno) 
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The parameter Q is the analogue of Toomre's local stability parameter for stellar 
disks. 

The actual method used to study the global stability of these disks was to solve 
numerically the initial value problem. For a particular angular eigenvalue m (m = 2 
for all cases discussed here) the radial dependence of the perturbations are repre­
sented by sums over associated Legendre functions PT(rj), in such a way that the 
boundary conditions at the center and at the rim are automatically satisfied. The 
dynamic equations then reduce to an infinite set of ordinary differential equations 
for the coefficients Cx of the Legendre functions, 

dC, 
~dt 

= I MXVC{ V' (28) 

The coefficients of the matrix Mlv depend only on the equilibrium structure of the 
disk. In practice the Legendre expansion was truncated at about 20-30 terms (count­
ing only even values of / -m), enough to represent a moderately complicated eigen-
function accurately. 

Starting from arbitrary initial conditions one mode, the most rapidly growing un­
stable mode, will eventually dominate if the disk is in fact unstable. By first choosing 
a small value of /?, so the growth rate is large, then using the eigenfunction obtained 
as the initial condition for a model with a somewhat larger value of jS, and so on, 
one can find the value of ft required for marginal instability and the marginally un­
stable eigenfunction without an inordinate expenditure of computer time. 

Table I shows the approach to stability for the Disk C whose structure is shown 
in Figure 1 and for a Disk B which has the same radial variation of surface density 

TABLE I 
Unstable modes of two disks without halos 

Model 

C 

B 

P 

0.3336 
0.3708 
0.3891 
0.4072 
0.4250 
0.4427 
0.4514 
0.4601 
0.4636 

0.4352 
0.4543 
0.4619 
0.4657 
0.4694 
0.4732 

/ 

0.34 
0.32 
0.31 
0.30 
0.29 
0.28 
0.275 
0.270 
0.268 

0.30 
0.29 
0.286 
0.284 
0.282 
0.280 

<G> 

2.804 
2.722 
2.680 
2.638 
2.595 
2.552 
2.530 
2.508 
2.500 

_ 
-

2.338 
2.329 
2.320 
2.312 

OP 

2.24 
1.81 
1.58 
1.42 
1.32 
1.24 
1.21 
1.17 
1.13? 

1.272 
1.20 
1.169 
1.154 
1.134 
1.06? 

Growth 
rate 

0.82 
0.55 
0.44 
0.44 
0.40 
0.31 
0.217 
0.08 
0 

0.463 
0.32 
0.229 
0.158 
0.076 
0 

r 
' corot 

0.56 
0.65 
0.71 
0.76 
0.79 
0.81 
0.82 
0.84 
0.86? 

0.80 
0.83 
0.84 
0.85 
0.85 
0.89? 

rLind 

0.75 
0.83 
0.88 
0.92 
0.96 
1.00 
-
-
-

0.96 
1.00 
-
-
-
-
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in the outer half of the disk but a central surface density only 9.26 times the average 
surface density. Both disks have an exponent a = f, corresponding to a polytropic 
index n = 2 in the finite thickness interpretation. The parameter t is calculated as­
suming a finite thickness. The quantity <£> is the angular momentum divided by 
the moment of inertia, the tensor virial prediction for the frequency of the marginally 
stable bar mode. The pattern angular velocity Qp is one-half the real part of the fre­
quency (since m = 2) and the growth rate is the imaginary part of the frequency. The 
radii of the corotation resonance and the (outer) Lindblad resonance are in the last 
two columns. 

Both disks become stable at roughly the point predicted by the tensor virial method. 
The form of the dominant unstable mode is a moderate trailing spiral which straight­
ens into a bar in the limit of marginal stability. The displacements at marginal sta­
bility are close to linear functions of the Cartesian coordinates out to r^0.6, the part 
of disk containing the bulk of the mass, but deviate by a large amount in the vicinity 
of the corotation radius. The Eulerian perturbations bo, bvr, bv^ vary smoothly 
through the corotation radius near marginal stability. For Disk C there is an indi­
cation that the existence of a Lindblad resonance tends to keep the disk unstable. 
This effect might not be expected to carry over to stellar disks, since there one ex­
pects strong Landau damping near a Lindblad resonance. 

The influence of a halo on the stability and on the form of the dominant unstable 
mode has been studied most thoroughly for Disk C. One interesting point is the 
degree of central condensation of the halo which is most effective in stabilizing the 
disk. Models C1-C5 combine Disk C with halos all of same Mass MH = 1.433. The 
distribution of mass in each of the halos and in the disk is shown in Figure 2. The 
properties of the dominant unstable modes are listed in Table II for certain values 
of)?. In particular, note that the growth rate compared at the same value of /?, /? = 
= 0.2605, is smallest for a halo considerably less centrally condensed than the disk, 
Model C2. 

Some additional properties of Model C2 with /? = 0.2605 are shown in Figure 3. 
The local stability parameter Q is substantially greater than one everywhere. It is 
smallest in the center of the disk, partially due a substantial reduction of Q2 below 
Qo + Qjj there. The wavelength at the minimum of the local dispersion relation, Ac, 
increases strongly outward, and even at the center of the disk it is somewhat larger 
than the characteristic scale of radial variation of the surface density. 

The angular patterns of the dominant unstable modes of Models C2 and C3 at 
/? = 0.2605 are depicted in Figure 4. The trailing spiral rather clearly will persist at 
marginal stability, since the growth rates are so small, as will the presence of a Lind­
blad resonance. The amplitude of the fractional perturbation in the surface density 
has a large peak at r~0.21, well within the central bar. Model C2 has a secondary 
maximum in bo jo near the corotation radius, down by a factor of 1.7. This probably 
becomes a pole at marginal stability, associated with the sharp break in the pattern 
there in Figure 4. The mode is strongly dominated by the central bar, and is not 
even qualitatively similar to a local density wave. 
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Fig. 2. The mass distribution of the halo as a function of radius is shown for Models C1-C5 along with 
the mass distribution of Disk C. 

TABLE II 
Unstable modes of a = f Disk C with halo 

Model 

Cl 

C2 

C3 

C4 

C5 

P 

0.2605 

0.2605 

0.2605 

0.2605 

0.111 
0.1760 
0.2605 

t 

0.2076 

0.2121 

0.2179 

0.2252 

0.2658 
-
0.2437 

<0> 

3.569 

3.839 

3.921 

4.003 

4.640 
4.557 
4.446 

G, 

3.03 

2.75 

2.68 

2.862 

5.7 
4.3 
3.365 

Growth 
rate 

0.42 

0.09 

0.16 

0.266 

0.8 
0.5 
0.34 

^corot 

0.53 

0.63 

0.64 

0.61 

0.36 
0.46 
0.56 

r Lind 

0.86 

0.92 

0.93 

0.88 

0.55 
0.67 
0.79 

The nature of the dominant instability changes substantially if the distribution of 
pressure in the disk is changed to make Q and kc larger in the center of the disk than 
in the middle part of the disk. This is accomplished by changing the exponent a in 
Equation (12) to f from §. Now at least some halo is necessary to approach stability 
while Q2 is still positive at the center. Models Cl 1 and C12 still have the zero-pressure 
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Fig. 3. The local stability parameter Q, the rotational velocity v, and the local characteristic wavelength 
JLe for Model C2 at 0 = 0.2605. 

Fig. 4. The pattern of the maximum in surface density as a function of radius for Models C2 and C3 
close to stability. 
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structure of Cisk C, but a = f. The halo mass of Cl l is the same as Models C1-C5 
and is distributed in radius like Model C2 in the outer part of the disk. A strongly 
centrally condensed component of the halo is adjusted to keep Q2 reasonably large 
at the center. Some properties of Model Cl l are shown in Figure 5. Model C12 has 
a halo mass MH = 2.149, but except for a smaller centrally condensed component to 
the halo is otherwise identical to Model Cll. 

2.5 

2.0 

'•5 

1.0 

0.5 

r\ 

!_ 1 1 1 1 

_ yr ^ ^ 

/ ^ 

/ 1 1 1 1 
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1 1 

1 1 1 / _ 

/ — 

-\ 
MODEL Cll 

£=.050 1 

1 1 ?* 4 
'0 .1 .4 .5 .6 

r 
.7 .8 1.0 

Fig. 5. The local stability parameter g, the rotational velocity v, and the local characteristic wavelength 
Xc for Model Cll at 0 = 0.50. 

Table III lists some of the properties of the dominant unstable modes of these 
models. Again, t is estimated from the finite thickness interpretation of the disk and 
includes the halo, which is truncated at the outer edge of the disk. The minimum 
value of Q for each value of /? is given in the third column. In all the models the 
radius of the minimum Q is r = 0.66. My numerical methods were stretched to or a 
little beyond their limit in the case of Model C l l A spurious numerical instability 

TABLE III 
Unstable modes of a = f Disk C with halo 

Model Qn Growth 
rate 

Cll 0.030 
0.040 
0.050 

0.2408 
0.2327 
0.2225 

0.994 
1.150 
1.289 

3.8 
3.2 
2.74 

0.7 
0.5 
0.328 

0.50 
0.58 
0.66 

0.74 
0.84 
0.94 

C12 0.023 0.1839 0.984 3.3 <0.3 0.60 0.90 
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of very short wavelength was present, but did not obscure the overall properties of 
the pattern, which maintained itself with little change in the region where the am­
plitude was largest for a couple of rotation periods. 

The amplitude of the dominant mode, as measured by the fractional perturbation 
in the surface density, has a broad maximum in the vicinity of the corotation radius 
in these models and is very small in the central bar and outside the Lindblad res­
onance. The absolute value of da is largest near the inner edge of the spiral pattern. 
Therefore, these modes are genuine spiral modes. The pattern for Model Cll is 
shown in Figure 6 and that for Model C12 in Figure 7. The mode at /? = 0.023 for 

MODEL Cll (3 =.050 
Fig. 6. The pattern of the surface density perturbation for Model Cl 1 at /? = 0.050. 

Model C12 corresponds roughly to a local density wave. The spacing of the spiral 
pattern is roughly comparable with kc (0.68 times the kc plotted in Figure 4), and the 
fairly smooth behavior near the corotation radius is consistent with the density wave 
prediction, since 6m i n~ 1 there. The inner radius of the spiral pattern is roughly where 
kc becomes comparable with the radius. 

The relatively large value of Q near the center does make it easier to get a spiral 
pattern, but a substantial halo is still required to damp the global instability of the 
disk to the point that a local density wave analysis has some validity. The spiral 
pattern in Models Cl l and C12 is outside most of the mass in the disk, so in effect 
these models rely on a 'central bulge' as well as the halo to stabilize the part of the 
disk with Q near one. 

Models with Q and Xc roughly independent of radius over most of the disk have 
also been studied, with results intermediate between the extremes quoted here. The 
fractional surface density perturbation has comparable amplitudes in a central bar 
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and an outer spiral pattern; the latter at comparable halo masses is more open than 
the spiral pattern of Models C l l and C12 near marginal stability. 

The spiral patterns indicate that the antispiral theorem of Lynden-Bell and Ostriker 
(1967), which does apply to these disks, is not a severe restriction in practice. With a 
substantial halo it takes only a small imaginary part in the frequency to produce a 

Fig. 7. The pattern of the surface density perturbation for Model C12 at/? = 0.023. The pattern is not well 
defined inside r = 0.3 and outside r = 0.8. 

fairly tightly wound spiral without a noticeable singularity in the eigenfunction. In 
a stellar disk Landau damping associated with the spiral pattern can be expected to 
limit the growth of the instability to small amplitudes. 

5. Summary and Conclusion 

All lines of theoretical evidence lead to the same conclusion. Any disk which remotely 
resembles the disk of a spiral galaxy as represented by the neighborhood of the Sun 
or as contemplated in density wave theories of spiral structure will be globally un­
stable unless the disk contains only a rather small fraction of the total mass within 
its outer radius. 

In the absence of a halo there seems to be a rather close correspondance between 
the dynamic instability of a stellar disk and the secular instability of a gas disk. Both 
are marginally stable when the ratio of kinetic energy to gravitational potential 
energy t is about 0.14. Even the small difference between the critical value of t = 0.1376 
for the Maclaurin spheroids and t = 0.1286 for the Kalnajs (1972) uniformly rotating 
disk is probably largely due to the difference in thickness. A more precise gas analogue 
to the Kalnajs disk is an infinitesimally thin disk with isotropic stress only in the 
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plane; a choice of \l/ = f}(n(T)2 and a Maclaurin surface density distribution produces 
a zero frequency mode, corresponding to marginal secular instability, at t = 0.1250. 

More realistic differentially rotating stellar dynamic configurations have not yet 
been tested directly for stability against small perturbations, but the numerical sim­
ulations do provide quite strong evidence that shear and central condensation do 
not change t at marginal stability very much. However, the numerical simulations 
should be carried out with more realistic initial conditions, particularly initial con­
ditions which correspond to self-consistent stellar dynamic equilibrium models with 
a large velocity dispersion and a large Q near the center relative to that in the outer 
part of the disk. 

A stellar disk presumably began as a gas disk. The gas disk, considering a probable 
large effective viscosity from turbulence and perhaps magnetic fields at least during 
its formation, must have been secularly stable. Therefore, it is certainly relevant that 
Ostriker and Bodenheimer (1973) find t at marginal secular instability is about 0.138. 
Also, the dynamic instability calculations for thin or infinitesimally thin gas disks 
reported in Section 4 of this paper do provide necessary conditions for stability which 
already exclude disks like those commonly used to model spiral galaxies without 
halos. 

Just how much halo is necessary to stabilize a disk with a local stability parameter 
Q close to one is not yet well established. The numerical simulations have so far been 
carried out for only a few special cases. The indications are that a disk which does 
not contain a massive hot 'spheroidal component' in its center requires a halo of 
perhaps 3 times the mass of the disk or more. With a fairly massive halo it seems 
likely that the distinction between secular and dynamic instability for a gas disk 
becomes less important, and that the dynamic instability calculations reported in 
Section 4 have a more direct relevance to galactic disks. The central condensation 
of the halo should be somewhat less than that of the disk for an optimum overall 
stabilizing effect, though a more centrally condensed halo does reduce the amplitude 
of the central bar component of the overall unstable mode relative to the spiral 
component. 

All in all, I do not think the halo should be considered an extension of a central 
spheroidal component. The observational evidence is that the halo does not contain 
anything remotely like a normal stellar component. It seems to me that it is much 
easier to conceive of a halo containing black holes than a halo containing extreme 
M-dwarfs, since the black holes would fit in better with current ideas on star forma­
tion in metal-deficient interstellar gas (Larson and Starrfield, 1971) and on the chem­
ical evolution of galaxies (Truran and Cameron, 1971). In fact, there are indications 
some elliptical galaxies may have extended halos with large M/L ratios, perhaps 
largely composed of black holes (Wolfe and Burbidge, 1970). 

The calculations in Section 4 and some of the numerical simulations suggest that 
at least the more open spiral patterns in galactic disks may be understandable as 
slightly unstable global modes of the disk. They also indicate that conventional den­
sity wave theory may not be applicable. In particular, the local relation between 
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surface density perturbation and potential perturbation breaks down badly when the 
spiral pattern is fairly open in a centrally condensed disk. The potential perturbation 
in the outer part of the disk is dominated by the inner part of the spiral pattern, and 
does not follow the surface density perturbation. Also, if a massive halo is present 
the density wave fits to observed spiral patterns based on conventional galaxy models, 
which ignore any extended halo in obtaining the surface density of the disk from a 
rotation curve (see Lin et al, 1969; Tully, 1974), are invalid. 

The detailed study of global instabilities of galactic disks and their possible relation 
to spiral structure is just beginning. Direct observational confirmation of the existence 
of halos will be virtually impossible if the halos are made up of black holes, so ob­
servational tests of the broad implications of the global stability analysis may well 
have to rely on indirect evidence, such as M/L variations obtained from rotation 
curves (see Roberts, 1975). 
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DISCUSSION 
Hohl: Why is a central core/halo not effective in stabilizing the bar instability? 

Bardeen: At least for these gas disks, I find that a halo as centrally condensed or more centrally condensed 
than the disk is less effective (for a given total mass) than a less centrally condensed halo in stabilizing the 
disk as a whole. The central condensation does help damp the central bar, but the pattern angular velocity 
is increased, which means that the outer Lindblad radius moves in and has a stronger destabilizing effect. 
This behavior is somewhat in conflict with what is expected from the local criterion, since the central 
condensation increases Q substantially at the center. 

Miller: Have you allowed modes other than m = 2 yet? 
Bardeen: My program is set up to calculate the stability of modes with any value of m, but so far all my 

calculation have been for m = 2. 
Miller: An interesting problem would result if the halo could respond to the disk, rather than being 

rigid. Do you see a way to allow for this? 
Bardeen: A crude way would be to superimpose a hot disk and a cool disk, which interact only gravi-

tationally. 
Pismis: Is there any restriction to the extent of the halo required for stability? 
Bardeen: All the stability requires is a halo mass somewhat larger than that of the disk within the radius 

of the disk. The halo mass at larger radii whether it exists or not, has no effect on the dynamics of the disk. 
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