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ABSTRACT 

The perturbation problem that describes the effect of a weak mag
netic field on stellar adiabatic oscillation is considered. This per
turbation problem is singular when the magnetic field does not vanish 
at the stellar surface, and a regular perturbation scheme fails where 
the magnetic pressure is comparable to the thermodynamic pressure. The 
application of the Method of Matched Asymptotic Expansion is used to 
obtain expressions for the eigenfunctions and the eigenfrequencies. 

1 . INTRODUCTION 

The discovery of magnetic fields in a few pulsating stars calls 
for a theoretical discussion of pulsation in the presence of a magnetic 
field. As an initial step toward understanding the role of magnetic 
fields in pulsating stars, we present a first order perturbation approach 
to the effect of a weak, large scale magnetic field on the linear nor
mal oscillation modes of a spherical non-magnetic star. The objective 
is to obtain expressions for both the eigenfrequencies and the eigen-
functions. 

Magnetic fields with reasonably large scales are considered, so 
their normal natural decay times are short compared to stellar life
times. The magnetic field is assumed to be weak in the global sense 
that M/|w|« lwith M being the magnetic and W the gravitational potential 
energy. In Section 2 it is recalled that the perturbation problem is 
singular for a magnetic field that is not identical zero on the stellar 
surface. In Section 3 the systems of differential equations are derived 
that govern the oscillations in the outer region where the regular per
turbation scheme is valid. In Section 4 the concepts of inner region 
and inner variables are discussed, and an application to the "pseudo-
radial"oscillation modes of Ferraro's model (Ferraro, 1954) is made. 
The effect of the magnetic field on the eigenfrequencies and eigea-
functions is discussed. 
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2. SINGULAR CHARACTER OF THE PERTURBATION PROBLEM 

The linear and adiabatic normal oscillation modes of a gaseous 
star with a magnetic field are the solutions of the eigenvalue problem 

a2t = L • | in V, B • | = 0 on S, (1 ab) 

where V is the non-spherical volume of the magnetic equilibrium con
figuration that is bounded by the surface S. E, is the Lagrangian dis
placement, a is the oscillation frequency, and the operators L and B 
are defined in Goossens (1972) and Goossens et al. (1976). 

Denote the perturbation expansion parameter as h ^ M/|w|, and 
compare (1) with the corresponding eigenvalue problem of a spherical 
non-magnetic star. The latter is defined by 

CToVLo'VnV0' V ^ O = 0 on S0 , (2ab) 

where the subscript "0" indicates a quantity of the spherical non-mag
netic case. As shown by Goossens et al. (1976), the perturbation 
problem is singular when the magnetic field is non-zero on S. A regu
lar perturbation scheme fails in a region where the magnetic pressure 
H2/8TT -v 0(p) or 1 arger, with p being the thermodynamic pressure. The 
singular perturbation problem is treated by the Method of Matched 
Asymptotic Expansions (M. M. A. E.). In this method a straightforward 
perturbation expansion, called outer expansion, is introduced in terms 
of the original variables, called outer variables. The outer expansion 
is valid in the outer region and fails in the inner region. The diffi
culty of the non-uniformity of the outer expansion in the inner region 
is overcome by the introduction of a new expansion, called inner ex
pansion, in terms of new inner variables, which are of order unity in 
the inner region. The two expansions are matched according to the 
Asymptotic Matching Principle of Van Dyke (Van Dyke, 1964), and a com
posite expansion valid in the entire domain is constructed. 

Of course, to perform a perturbation analysis, (1) has to be 
defined in VQ and on SQ (see Goossens, 1972; Goossens et al., 1976). 
In what follows all quantities and equations are defined in VQ. 

3. PERTURBATION EQUATIONS FOR THE OUTER REGION 

Consider now axisymmetric oscillations. Unlike linear adiabatic 
oscillations of a sphere, a normal mode is now not specified by an 
individual spherical harmonic. The displacement field is given by 

oo oo oo 

5r"V_*k(r)Pk(y), Ce - - V b k(D^(u). ^ -> tk<r)p£(,i). (3) 
k=0 k=1 k=1 

P (y) is the Legendre polynomial of degree k with y = cos 9 ; ak(r) 
b, (r), and t, (r) are functions of r; the functions ak, b^ define the 
spheroidal part; and the functions t, define the toroidal part of the 

https://doi.org/10.1017/S025292110008221X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008221X


EFFECT OF A MAGNETIC FIELD ON STELLAR PULSATIONS 663 

d i s p l a c e m e n t f i e l d . Use (3) t o expand p ' , p ' , and <j>' a s 

f ' < r > e ) = / _ f k ( r ) P k ( y ) ( 4 ) 

k 

where the functions f' (r) consist of a zero order and a first order 
k 

part 
fk(r> = f k , 0 ( r ) + h f k , l ( r ) ( 5 ) 

simply because the equilibrium quantities consist of a zero-order and 
a first-order part. 

As far as the displacement fields are concerned, f£ Q only in
volves the spheroidal displacement field associated with P^(p), but 
f£ j involves spheroidal and toroidal displacement fields associated 
with various P^Cp) depending on the angular structure of the magnetic 
field. For example in the case of a purely poloidal dipole-type field, 
f£ j involves spheroidal displacement fields associated with the 
Legendre polynomial of order k-2, k, k + 2, and can be represented as 

f = f' + f + f (6) 
k,l k,l,-2 k,l,0 k,l,2 K J 

where f' , „ denotes the contribution of (a. „, b, „) to f' , etc. 
k, 1 ,-z k-2 k-2 k, 1 

So far the radial functions a, (r), b^(r), and t^(r) have not yet 
been specified. We now concentrate on the effect of the magnetic field 
on a particular spheroidal normal mode of the sphere associated with 
P^Cu), and we expand the functions a^Cr), b^(r), t-̂ Cr) in the outer 
region to the first order in h as 

al~al,o + hal,\ 
hrhi,o+hhi,] 

a = ha, 
k k, 1 

b, =hb. . 
k k, 1 

for k^Z, t =ht for all k. (7) 
K K 9 1 

aZ C)(r) anc* ^Z 0^r) define the displacement field of the spheroidal 
normal oscillation mode of the sphere associated with P^Cu). 

Use expansion (7) to further evaluate the quantities fJ' and to 
obtain retaining terms up to the first order in h (for an axi-
symmetric purely poloidal dipole-type field) 

f l -2 = h f l - 2 , o , i + h f i - 2 , i , 2 ; f l = f i , o , o + h f I , o , i + h f i , i , o ; 

fi+2-
hfi+2.0,l

+hfi+2.1,-2'
 fk = hfk,0,, fork^-2,£,.£+2. (8) 

f£ 0 0 and ffc 0 1 denote the contributions of (a£ Q, b£ o) t o ^Z 0 and 
of (ak i, bk l) to fk 0- Hence f£ o 0 i-s a quantity of the zero-order 
oscillation problem, while fk 0 1 is a quantity of the first-order 
oscillation problem. f£-2 1 2 an-d f£+2 1 2 n o w denote the contribu
tions of (a£ o> ^°Z o) t 0 t n e quantities indicated by the same notation 
in Equation (6), as the contributions of (a£ j, b^ j) to the latter 
quantities are of the second order in h. f/_n i n an-d f/+o i _o 
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depend only on the equilibrium and the zero-order oscillation proper
ties. They give rise to non-homogeneous terms in the differential 
equations that govern the oscillations in the outer region. Expand 
the frequency as 

'0 + haf 

As in the sphere', introduce dimensionless variables defined as 

;(0) 

RX 

R 
GM 

R 

GM 

al,o 
pl,o 

P0 

*Lo 

o 

0 

dW 
(0) 
1,3 
dx 

W, (0 

RX ak,0 

_R_ 
GM 

•k.0.1 

GM(<t>k,0,l "k,l,0 ) 

dW. (0 k,3 
dx 

(9) 

An axisymmetric poloidal dipole-type field introduces additional sphe
roidal displacement fields associated with t - 2, t , £ + 2; all other 
oscillation quantities are identically zero. 

The zero-order variables W» 
first-order differential equations 

?(0) 
;(0) 

satisfy a system of four linear 

dW« 

dx 
A^(x, dig) w^ (10) 

where A^(x, to2) is the matrix of coefficients that involve t and the 
square of the dimensionless frequency u)§ and x = r/R. The first order 
variables W£') (k = t - 2, SL, 1+2) satisfy systems of four linear 
non-homogeneous differential equations 

dx ••Al-2(x'^l-i+*l-2(x) ' 

dW (0 

dx :A£(X'W0)W£ 
(0 F^x.w2) 

dW (0 
1+2 
dx 

:A£+2(x' 
3 1 : K * 2 « (11 abc) 

The homogeneous parts of (11a) and (lie) are identical to the equa
tions that govern the oscillations of the sphere associated with P/_o 
and P£+2> but with the eigenvalue parameter replaced by an eigenvalue 
UA for an oscillation associated with Ps in the sphere. The homogeneous 
part of (11 b) is identical to (10). The non-homogeneous part of (lib) 
involves the correction a>2 on the square of the dimensionless eigenfre-
quency. Equations (11) are the perturbation equations that describe the 
effect of the magnetic field on the oscillations in the outer region. 
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4. PERTURBATION EQUATIONS FOR THE INNER REGION 

The definition of the inner region, inner variables, and inner 
expansions depends on the equilibrium distribution of pressure. The 
equations that govern the oscillations in the inner region can only be 
derived when the distribution of pressure is known. -As an initial at
tempt to understand the mathematical problem,we consider "pseudo-radial" 
modes of Ferraro's model, which is a spheroid of constant density with 
an axisymmetric purely poloidal dipole-type magnetic field (Ferraro, 
1954). The adjective "pseudo-radial" is used to indicate that the 
original radial oscillations of the sphere now also have a spheroidal 
displacement field associated with P2()j). 

The distribution of pressure in Ferraro's model satisfies p ^ 1 -x , 
so that the inner region is defined by 1 - x = 0(h) and has a radial 
thickness 6=0(h). The small perturbation parameter h = e2 is choosen. 
To illustrate the application of the M.M.A.E., we,list the partial 
results on the first overtone radial mode. The outer solutions are 

w(0) _„„_„_,„,„ ,„_2 „ , . „ . _ ? 
0,1 

polynomials in x2 with terms up to x , 
3 

w. <°. = A.w<
0). ln(\ - x2) + > A9l . x

2* 

w<!> 
2,J 

polynomials in x2 with terms up to x6 , (12abc) 

where A; are known constants, and A2X -j a r e constant that can be expres
sed linearly in the three as yet undetermined constants to2, A2 ], and AQ 3, 

The functions WQ • contain a term £n(] - x2) and are singular at 
x = 1. This clearly illustrates that the regular perturbation expan
sion breaks down in the inner region. 

The inner variables are obtained by stretching the original varia
bles by appropriate functions of h such that they are 0(1) in the inner 
region. The inner independent variable n is defined as 

n = (1 - x2)/h . (13) 

We do not stretch the dependent variables since they are already 0(1) . . 
in the inner region. They are now denoted by ft with zero-order part ft 
and a first-order part ftO. Rewrite the equations in inner variables 
to obtain equations relative to the inner region. The solutions can 
be obtained in closed analytical form and read after application of 
the boundary condition on the conservation of momentum 

ttj:0] = constant, (14) 
0,j 

} ( 1 ) 

0,j 
oA . = analytical expressions in n with two undetermined 

constants. (15) 
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The five remaining constants are determined by matching the 2-term 
outer expansion and the 2-term inner expansion by application of the 
continuity condition to the gravitational potential. The matching 
requires terms in h Znh. 

We now have an outer solution valid in the outer region and an 
inner solution valid in the inner region. The method of additive com
position is used to obtain the composite solution that is valid over 
the entire domain. As an example, the composite solution for wp 

reads as "0, 

^o,A,2 = ^°,\ + h i-rir-r^1 -*2>o*l*2>*io -*2) 
+ polynomials in x2 with terms up to x6 

+ ~ ~ - ln[225 ^ (1 - x2) + 4 h] (16) 

The composite solution is regular over the total domain, also in x = 1. 
In x = 1, however, the composite solution contains a term in h tnh 
that is never included in a regular perturbation expansion but that, 
for small values of h, is more important than h. The eigenfrequency is 

w 
2 = 38 + ( J 5 4 ^ _ _ 8 6 _ 

3 L ^36575 1463 1; J ^ ' 

Equation (17) shows that the eigenvalue of the radial first over
tone increases with h. The magnetic field also has a distinct effect 
on the displacement field that is no longer purely spherically sym
metric. Take, as an example, the amplitude of £r(r, 9) for e

2 = 0.05. 
For 8 < 62?9 this amplitude is enhanced in the layers 0 < x < 0.88 
and reduced for x > 0.88, while for 9 > 62?9, the reverse effect 
occurs now with a critical value x = 0.82. 
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DISCUSSION 

J. COX: Are these last results for the constant density model? 
GOOSSENS: Yes, only for the constant density model. It has a homo

geneous constant density. The effect of the magnetic field will be 
more drastic for models with a density gradient. The inner region 
will be larger. 
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