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How Lipschitz Functions Characterize the
Underlying Metric Spaces
Lei Li and Ya-Shu Wang

Abstract. Let X and Y be metric spaces and E, F be Banach spaces. Suppose that both X and Y are
realcompact, or both E, F are realcompact. The zero set of a vector-valued function f is denoted by
z( f ). A linear bijection T between local or generalized Lipschitz vector-valued function spaces is said
to preserve zero-set containments or nonvanishing functions if

z( f ) ⊆ z(g) ⇐⇒ z(T f ) ⊆ z(Tg), or z( f ) = ∅ ⇐⇒ z(T f ) = ∅,

respectively. Every zero-set containment preserver, and every nonvanishing function preserver when
dim E = dim F < +∞, is a weighted composition operator (T f )(y) = Jy ( f (τ (y))). We show that
the map τ : Y → X is a locally (little) Lipschitz homeomorphism.

1 Introduction

Let X and Y be metric spaces and let C(X) and C(Y ) (resp. Cb(X) and Cb(Y )) be the
algebras of continuous (resp. bounded continuous) functions defined on X and Y ,
respectively. It is well known that every multiplicative linear bijection between C(X)
and C(Y ), or between Cb(X) and Cb(Y ), gives rise to a homeomorphism between X
and Y (see, e.g., [11, 9.7 and 9.8]). Similar good conclusions hold for multiplicative
linear bijections between various Lipschitz function spaces on X and Y . For example,
if the spaces Lip(X) and Lip(Y ) of Lipschitz functions are algebraic isomorphic, then
the underlying metric spaces are Lipschitz homeomorphic [9].

In the vector-valued case, there is no multiplicative structure equipped with the
vector spaces C(X, E) and its various subspaces when E is a Banach space. Fortu-
nately, we can still consider some structures related to zero sets. Denote the zero set
and cozero set, respectively, of a (scalar or vector-valued) function f defined on X by

z( f ) = {x ∈ X : f (x) = 0} and coz( f ) = {x ∈ X : f (x) 6= 0}

A linear map T between vector-valued function spaces defined on X and Y is said to
be separating [3, 6, 12], or disjointness preserving [1, 2], if

coz( f ) ∩ coz(g) = ∅ =⇒ coz(T f ) ∩ coz(Tg) = ∅,
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and T is biseparating if the inverse implication also holds. In other words, T is bisep-
arating exactly when

z( f ) ∪ z(g) = X ⇐⇒ z(T f ) ∪ z(Tg) = Y.

In recent years, disjointness structures have been intensely studied in many classes
of function spaces (cf. [3–5,7,8,13–15]). As a good substitute for multiplication pre-
servers, (bijective) biseparating linear maps between (scalar or vector-valued) con-
tinuous functions always provide homeomorphisms when X and Y are compact (see,
e.g., [10]). However, it is a rather different case when X and Y are not compact. An
example in [11, 4M] provides us with non-homeomorphic realcompact spaces X and
Y such that Cb(X) and Cb(Y ) are isometrically algebraic and lattice isomorphic.

In [16, 17], a bijective linear map T between (scalar or vector-valued) function
spaces defined on completely regular spaces X and Y is called a (two directional)
zero-set containment preserver if

z( f ) ⊆ z(g) ⇐⇒ z(T f ) ⊆ z(Tg),

and T is called a (two directional) nonvanishing function preserver if

z( f ) = ∅ ⇐⇒ z(T f ) = ∅.

Li and Wong [16, 17] showed that every linear zero-set containment preserver, and
every nonvanishing function preserver when dim E = dim F < +∞, between (scalar
or vector-valued) continuous functions defined on realcompact spaces X and Y pro-
vides a homeomorphism between X and Y . They also studied other classes of con-
tinuous functions including scalar Lipschitz functions.

This paper works with vector-valued Lipschitz functions. In 2009, Araujo and
Dubarbie [7] showed that if there is a linear biseparating map between spaces of
vector-valued bounded Lipschitz functions on complete metric spaces X and Y , then
X and Y are Lipschitz homeomorphic. In 2010, Leung [15] extended this to gener-
alized Lipschitz function spaces, and provided a (topological) homeomorphism be-
tween X and Y . On the other hand, Jiménez-Vargas, Villegas-Vallecillos, and Wang
[13,14] worked on the same problem for spaces of vector-valued little Lipschitz func-
tions defined on locally compact metric spaces X and Y and showed that X and Y are
locally Lipschitz homeomorphic if the biseparating map is continuous. We note that
the classical spaces Lip, lipα, and Lipb of Lipschitz, little Lipschitz and bounded Lips-
chitz functions, respectively, are special cases of generalized Lipschitz function spaces
LipΣ(X, E). However, local Lipschitz function spaces Lip loc (X, E) are not generalized
Lipschitz function spaces.

Suppose X and Y are (not necessarily complete or locally compact) metric spaces
and E and F are Banach spaces such that both X and Y are realcompact, or both E
and F are realcompact. Using results in [17] we see that every bijective linear zero-set
containment preserver, and every nonvanishing function preserver when dim E =
dim F < +∞, between (local or generalized) Lipschitz function spaces is a weighted
composition

(T f )(y) = Jy

(
f (τ (y))

)
,
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where Jy : E → F is a linear bijection and τ : Y → X is a homeomorphism between
the underlying (not necessarily complete or locally compact) metric spaces. The pre-
server T is continuous if and only if all fibre linear maps Jy are bounded. In these
cases, τ is a locally (little) Lipschitz homeomorphism (Theorems 3.5, 3.8, and 3.9)
from Y onto X.

2 Various Preservers on Nicely Regular Subspaces

Definition 2.1 ([17, Definition 3.1]) Let X be a completely regular space and let E
be a locally convex space. Let A(X, E) be a vector subspace of C(X, E), and let

A(X) := {ψ ◦ f : f ∈ A(X, E), ψ ∈ E∗}

be the subset of C(X) consisting of coordinate functions of all f in A(X, E). We call
A(X, E) nicely regular if the following conditions hold:

(A1) A(X) is self-adjoint if K = C and its hermitian part ReA(X) is a vector sublat-
tice of C(X) containing all constant functions.

(A2) For any f in A(X) and any e in E, the function f ⊗ e is in A(X, E). (Here, we
denote by f ⊗ e the vector-valued function x 7→ f (x)e for the scalar-valued
function f and the vector e ∈ E.)

(A3) Z(X) = Z(A(X)).
(A4) If hn ≥ 0 is a bounded function in A(X) for n = 1, 2, . . . , then there is a strictly

positive sequence {αn} such that the sum
∑

n αnhn converges pointwise to a
function in A(X).

Recall that the support supp( f ) of a function f is the closure of its cozero set,
coz( f ). A map T between function spaces is called a support containment preserver if

supp( f ) ⊆ supp(g) =⇒ supp(T f ) ⊆ supp(Tg).

Proposition 2.2 Suppose that A(X, E) and A(Y, F) are nicely regular subspaces of
C(X, E) and C(Y, F), respectively. Assume that T : A(X, E) → A(Y, F) is a linear
bijection. Consider the following conditions:

(i) T preserves zero-set containments;
(ii) T preserves nonvanishing functions;
(iii) T is biseparating;
(iv) T preserves support containment and separating;
(v) T and T−1 preserve support containments.

Then we have that (i) =⇒ (ii) =⇒ (iii)⇐⇒ (iv)⇐⇒ (v).

Proof For the equivalences, we need only to verify two claims.

Claim 1 If T is biseparating, then T preserves support containments.

Let f , g ∈ A(X, E) with supp( f ) ⊆ supp(g). If there exists y0 in supp(T f )
such that y0 6∈ supp(Tg), then there is an open neighborhood U0 of y0 such that
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U0 ∩ supp(Tg) = ∅. Therefore, we can choose y ′ in U0∩coz(T f ) and a function h in
A(X, E) with z(Th) = Y \U0, and thus (Th)(y ′) 6= 0. Note that coz(Th)∩coz(Tg) =
∅. Then we can derive that coz(h) ∩ coz(g) = ∅, since T−1 is separating, and hence
coz(h) ∩ coz( f ) = ∅. Since T is separating, coz(Th) ∩ coz(T f ) = ∅. This is a
contradiction, because y ′ ∈ coz(Th) ∩ supp(T f ). This asserts that

supp( f ) ⊆ supp(g) =⇒ supp(T f ) ⊆ supp(Tg).

Claim 2 If T preserves support containments, then T−1 is separating.

Let coz(T f ) ∩ coz(Tg) = ∅ and suppose x0 ∈ coz( f ) ∩ coz(g). Then there is an
open neighborhood V0 of x0 such that V0 ⊆ coz( f ) ∩ coz(g). So we can find k in
A(X, E) such that k(x0) 6= 0 and z(k) = X \V0. That is, coz(k) ⊆ coz( f ) ∩ coz(g).
Since T preserves support containments,

supp(Tk) ⊆ supp(T f ) ∩ supp(Tg).

Since coz(T f ) ∩ coz(Tg) = ∅, we see that

coz(Tk) ⊆ supp(T f ) ⊆ Y \ coz(Tg),

and hence coz(Tk)∩ coz(Tg) = ∅. This implies that Tk = 0 and hence k = 0, which
derives a contradiction. This tells us that T−1 is separating.

The other implications follow from [17, Lemmas 3.3 and 3.6].

3 Establishing Lipschitz Homeomorphisms Between Underlying
Metric Spaces

Recall that a mapping τ : X → Y between metric spaces X and Y is said to be locally
Lipschitz if each point of X has a neighborhood on which τ is Lipschitz. If τ is bijec-
tive, and both τ and τ−1 are locally Lipschitz (respectively, Lipschitz), then τ is said
to be a locally Lipschitz homeomorphism (respectively, Lipschitz homeomorphism). In
[19, Theorem 2.1], Scanlon showed that τ : X → Y is locally Lipschitz if and only if
τ is Lipschitz on each compact subset of X.

Let (X, dX) be a metric space and E be a Banach space. The vector space of
all locally Lipschitz functions from X into E is denoted by Lip loc (X, E). For each
nonempty compact subset K of X, a seminorm ρK : Lip loc (X, E)→ [0,+∞) is given
by

ρK ( f ) = LK ( f ) + ‖ f ‖K ,

where

LK ( f ) = sup
{ ‖ f (x)− f (y)‖

dX(x, y)
: x, y ∈ K, x 6= y

}
and ‖ f ‖K = sup

x∈K
‖ f (x)‖.

The set of all seminorms ρK , where K runs through all nonempty compact subsets of
X, generates a Hausdorff complete locally convex vector topology on Lip loc (X, E).
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For any closed subset C of a metric space X, it is obvious that the function

fC (x) = min{1, dX(x,C)}

is a bounded Lipschitz function and z( fC ) = C . Therefore,

Z
(

Lip(X, E)
)

= Z
(

Lip loc (X, E)
)

= Z
(

Lipb(X, E)
)

= Z
(

Lip(X)
)

= Z(X).

Here, Z(A) denotes the collection of all the zero sets of functions in A, and we write
Z(X) = Z(C(X)) for simplicity.

In [15], Leung defined a new class of spaces, the generalized Lipschitz function
space LipΣ(X, E). We say that σ : [0,+∞) → [0,+∞] is a modulus function if σ is
nondecreasing, σ(0) = 0, and σ is continuous at 0. A nonempty set Σ of modulus
functions is called a modulus set if the following two conditions are satisfied:

(MS1) For any σ1, σ2 ∈ Σ, there exist σ ∈ Σ and K < +∞ such that σ1 + σ2 ≤ Kσ.
(MS2) For every sequence {σn} in Σ and every non-negative summable real se-

quence {an}, there are σ ∈ Σ and K < +∞ such that
∑

an(σn ∧ 1) ≤ Kσ.

Let Σ be a modulus set. Let X be a metric space and E be a Banach space. The
generalized Lipschitz function space LipΣ(X, E) is the set of all vector-valued functions
f : X → E such that ω f ≤ Kσ for some σ ∈ Σ and K < +∞. Here, ω f : [0,+∞)→
[0,+∞] is defined by

ω f (ε) = sup{‖ f (x1)− f (x2)‖ : dX(x1, x2) ≤ ε}.

When E is the scalar field, LipΣ(X, E) is abbreviated to LipΣ(X). The spaces of Lip-
schitz, little Lipschitz, bounded Lipschitz, and uniformly continuous functions are
special cases of the generalized Lipschitz function space.

A generalized Lipschitz function space LipΣ(X) is said to be Lipschitz normal if
for every pair of subsets U ,V of X with d(U ,V ) > 0, there exists f in LipΣ(X)
such that 0 ≤ f ≤ 1, f = 0 on U , and f = 1 on V . We will say that LipΣ(X, E) is
Lipschitz normal if LipΣ(X) is. In the sequel, all generalized Lipschitz function spaces
LipΣ(X, E) are assumed to be Lipschitz normal. In particular, Z(LipΣ(X)) = Z(X)
([15, Lemma 3]).

Both Lip loc (X, E) and LipΣ(X, E) are nicely regular. In other words, they satisfy
the conditions (A1)–(A4) of Definition 2.1.

Recall that a metrizable space is realcompact if and only if its cardinality is a non-
measurable cardinal. In particular, all separable metric spaces and separable Banach
spaces are realcompact. See, e.g., [11, Theorem 15.24].

For the rest of this paper, X and Y are metric spaces and E, F are Banach spaces
such that both X and Y are realcompact, or both E and F are realcompact.

Theorem 3.1 Suppose that A(X, E) and A(Y, F) are nicely regular subspaces of
C(X, E) and C(Y, F), respectively. Let T be a linear bijection fromA(X, E) ontoA(Y, F).

(i) If T preserves zero-set containments, then there exists a homeomorphism τ : Y →
X such that

T( f )(y) = Jy

(
f (τ (y))

)
.(3.1)

Here, all the fiber maps Jy(e) = T(1⊗e)(y) are bijective and linear from E onto F.

https://doi.org/10.4153/CMB-2013-007-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-007-8


How Lipschitz Functions Characterize the Underlying Metric Spaces 369

(ii) The same conclusions hold provided T preserves nonvanishing functions instead
and one (and thus both) of E and F is of finite dimension.

Proof These are applications of [17, Theorems 3.5, 4.4, and 5.1].

Remark 3.2 For the generalized Lipscthiz spaces, a form of Lipschitz continuity of
the map τ in (3.1) has been obtained by Leung [15, Proposition 26].

Furthermore, we want to obtain some metric properties of the homeomorphic
map τ : Y → X. Recall that, for an arbitrary but fixed point x0 in X, a complete norm
can be defined on Lip(X) by

‖ f ‖Lip = max{| f (x0)|, L f }.

Here, L f is the Lipschitz constant of f . When the base point x0 is changed to another
point x in X, we might get a different, but equivalent, norm on Lip(X). In particular,
the point evaluation f 7→ f (x) is a bounded linear functional of Lip(X).

Lemma 3.3 Let X and Y be metric spaces. Any composition map T : Lip(X) →
Lip(Y ) defined by T f = f ◦ τ is automatically continuous for the respective Lipschitz
norm.

Proof Let { fn} be a sequence in Lip(X) with ‖ fn‖Lip → 0 and ‖T fn − g‖Lip → 0
for some g in Lip(Y ). For any y in Y , the point evaluations at y and x = τ (y) are
continuous on Lip(Y ) and Lip(X), respectively. Since

| fn(x)− g(y)| = | fn(τ (y))− g(y)| = |(T fn − g)(y)| → 0 and fn(x)→ 0,

we derive that g(y) = 0, for all y ∈ Y . Having a closed graph, T is bounded.

By arguments similar to those in [9, Theorem 3.9 and Lemma 3.15], we obtain
the following lemma. We will give a short sketch of the proof in the interest of self-
containment.

Lemma 3.4 Let X and Y be metric spaces, and let τ : Y → X be a homeomorphism.

(i) If f ◦ τ ∈ Lip(Y ) for all f in Lip(X), then τ is Lipschitz.
(ii) If f ◦ τ ∈ Lipb

loc (Y ) for each f in Lipb
loc (X), then τ is locally Lipschitz.

Proof (i) Fix x0 ∈ X and y0 = τ−1(x0) ∈ Y to define the Lipschitz norm on Lip(X)
and Lip(Y ), respectively. The map T : Lip(X) → Lip(Y ) given by T f = f ◦ τ is a
unital vector lattice isomorphism. Then T is continuous by [9, Theorem 3.8]. For
any x1, x2 ∈ X, we have that

dX(x1, x2) = sup
{ | f (x1)− f (x2)|

L f
: f ∈ Lip(X), L f 6= 0, f (x0) = 0

}
.

Indeed, when we choose f = dX( · , x1)−dX(x0, x1), we can prove the above equality.
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Thus for each f ∈ Lip(X) with f (x0) = 0, we have ‖ f ‖Lip = L f . By the continuity
of T, we can derive that

LT f ≤ ‖T f ‖Lip ≤ ‖T‖ · ‖ f ‖Lip = ‖T‖ · L f .

So for any y1, y2 ∈ Y we obtain

dX

(
τ (y1), τ (y2)

)
= sup

{ | f (τ (y1))− f (τ (y2))|
L f

: f ∈ Lip(X), L f 6= 0, f (x0) 6= 0
}

≤ sup
{
‖T‖ |(T f )(y1)− (T f )τ (y2)|

LT f
: f ∈ Lip(X), LT f 6= 0, (T f )(y0) 6= 0

}
≤ ‖T‖ · dY (y1, y2).

(ii) For any compact subset K of Y , it suffices to show that τ is Lipschitz on K.
Indeed, for each f ∈ Lip(τ−1(K)), we can extend it to be a Lipschitz funtion on Y ,
which is also denoted by f . By the assumption we can derive that f ◦ τ ∈ Lipb

loc (Y ),
and hence f ◦ τ is Lipschitz on K. So by (i) we have that τ is Lipschitz on K.

Theorem 3.5 Assume that T : Lip loc (X, E) → Lip loc (Y, F) is a bijective weighted
composition operator

T( f )(y) = Jy

(
f (τ (y))

)
.

Then τ : Y → X is a locally Lipschitz homeomorphism. Moreover, T is continuous if
and only if all fiber linear bijections Jy are bounded.

Proof Recall that the continuity of T means that for any compact subset K in Y and
real number C > 0, there exist a compact subset W in X and a real scalar M > 0 such
that ρK (T f ) < C whenever ρW ( f ) < M. It is then obvious that the continuity of T
ensures the boundedness of all Jy .

Conversely, for any compact subset K ⊂ Y and C > 0, if τ : Y → X is a homeo-
morphism, then W = τ−1(Y ) is a compact subset of X. So we can see that

Lip(W, E) = { f |W : f ∈ Lip loc (X, E)} and Lip(K, F) = {g|K : g ∈ Lip loc (Y, F)}

are Banach spaces. When we define U : Lip(W, E)→ Lip(K, F) by

(U f )(y) = Jy( f (τ (y))), ∀ y ∈ K, f ∈ Lip(W, E),

it follows from the closed graph theorem that U is a bounded linear bijection and
U ( f |W ) = (T f )|K for all f ∈ Lip loc (X, E). Therefore, for any f ∈ Lip loc (X, E) with
ρW ( f ) < C

‖U‖ , we can derive that ‖ f |W‖ = ρW ( f ) < C
‖U‖ , and then

ρK (T f ) = ‖(T f )|K‖ = ‖U ( f |W )‖ ≤ ‖U‖ · ‖ f |W‖ < C.

This implies that T : Lip loc (X, E)→ Lip loc (Y, F) is continuous.
We next show that τ is a locally Lipschitz homeomorphism without assuming the

continuity of T. By Lemma 3.4 and [19, Theorem 2.1], τ is local Lipschitz if for each
f ∈ Lipb

loc (X), f ◦ τ is Lipschitz on every compact subset K of Y containing at least
two points.
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Claim 1 For any e in E with ‖e‖ = 1, we have infy∈K ‖T(1⊗ e)(y)‖ > 0.

This is obvious, as the continuous function y 7→ ‖T(1⊗ e)(y)‖ never vanishes on
the compact subset K ⊆ Y .

It follows from Claim 1 that y 7→ 1/‖T(1 ⊗ e)(y)‖ defines a function in Lip(K),
and then, by [18], it can be extended to a scalar-valued bounded Lipschitz function
on Y .

Claim 2 For each f in Lipb
loc (X), the function f ◦ τ is Lipschitz on K ⊆ Y .

Observe that for all f ≥ 0 on X, we have f ◦ τ ≥ 0 on Y and

| f ◦ τ (y)‖T(1⊗ e)(y)‖ − f ◦ τ (y ′)‖T(1⊗ e)(y ′)‖ |

= | ‖ Jy( f (τ (y))e)‖ − ‖ Jy ′( f (τ (y ′))e)‖ |

= | ‖T( f ⊗ e)(y)‖ − ‖T( f ⊗ e)(y ′)‖ |

≤ ‖T( f ⊗ e)(y)− T( f ⊗ e)(y ′)‖

≤ LK (T( f ⊗ e))dY (y, y ′), ∀ y, y ′ ∈ K.

That is, f ◦ τ ( · )‖T(1 ⊗ e)( · )‖ is Lipschitz on K. Hence f ◦ τ is Lipschitz on K.
For any f in Lipb

loc (X), by writing f as a linear combination of at most four positive
functions, we derive that f ◦ τ is Lipschitz on K.

By a similar argument, τ−1 is also locally Lipschitz on X. We thus see that τ is a
locally Lipschitz homeomorphism, which completes the proof.

We say that a modulus function σ is of bounded type O(t) if there is a finite positive
constant Lσ such that σ(t) ≤ Lσt for all t ≥ 0.

Theorem 3.6 Assume that Σ and Σ ′ consist of modulus functions σ of bounded
type O(t). Assume also that Lipb(X) ⊆ LipΣ(X) and Lip(Y )b ⊆ LipΣ ′(Y ). If
T : LipΣ(X, E)→ LipΣ ′(Y, F) is a bijective weighted composition operator

T( f )(y) = Jy

(
f (τ (y))

)
,

then τ : Y → X is a locally Lipschitz homeomorphism.

Proof For any compact subset K of Y containing at least two points and each f in
Lipb

loc (X), by [18], the restricted function f |τ (K) in Lip(τ (K)) can be extended to a g
in Lipb(X) ⊆ LipΣ(X). Since LipΣ(X, E) is Lipschitz normal, there exists h in LipΣ(X)
such that 0 ≤ h ≤ 1 and h = 1 on τ (K). Note that gh ∈ LipΣ(X). For any y in K, we
have

T(gh⊗ e)(y) = Jy

(
gh(τ (y))e

)
= (gh)

(
τ (y)

)
Jy(e) = f

(
τ (y)

)
T(1⊗ e)(y).

Moreover, for any y, y ′ in K, we can derive that

| f ◦ τ (y)‖T(1⊗ e)(y)‖ − f ◦ τ (y ′)‖T(1⊗ e)(y ′)‖ |

≤ ‖T(gh⊗ e)(y)− T(gh⊗ e)(y ′)‖

≤ ωT(gh⊗e)

(
dY (y, y ′)

)
≤ Mσ

(
dY (y, y ′)

)
≤ MLσdY (y, y ′),
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for some σ in Σ ′ and some finite constants M, Lσ > 0. That is,

( f ◦ τ )( · )‖T(1⊗ e)( · )‖

is Lipschitz on K. It then follows from the similar argument of Theorem 3.5 that f ◦τ
is Lipschitz on K. Hence, τ is a locally Lipschitz homeomorphism.

Corollary 3.7 Suppose that T : Lip(X, E)→ Lip(Y, F) is a linear bijection preserving
zero-set containments, or nonvanishing functions when E or F is of finite dimension, then
X and Y are locally Lipschitz homwomorphic and T carries the form (3.1).

Next we consider some special classes of generalized Lipschitz function spaces.

Theorem 3.8 Assume that T : Lipb(X, E) → Lipb(Y, F) is a bijective weighted com-
position operator

T( f )(y) = Jy

(
f (τ (y))

)
.

Then τ : Y → X is a locally Lipschitz homeomorphism. Moreover, T is continuous if
and only if all fiber linear bijections Jy are bounded.

Proof By Theorem 3.6, τ is a locally Lipschitz homeomorphism.
Now, suppose that T is continuous. For any y in Y and e in E, we have

‖ Jy(e)‖ = ‖T(1⊗ e)(y)‖ ≤ ‖T‖‖e‖.

This tells us that all Jy are bounded linear bijections. On the other hand, the con-

tinuity of T will follow if it has a closed graph. Suppose that fn ∈ Lipb(X, E) with
fn → 0 and T fn → g0 ∈ Lipb(Y, F). As

‖(T fn)(y)‖ =
∥∥ Jy

(
fn(τ (y))

)∥∥ ≤ ‖ Jy‖‖ fn‖ → 0,

we see that g0(y) = 0 for all y in Y , and hence g0 = 0. This implies that T is
bounded.

Let (X, dX) be a metric space, α a real number in (0, 1), and E a real or com-
plex Banach space. Let Xα denote the same set X together with the new metric
dαX(x, y) := dX(x, y)α. Denote by Lip(Xα, E) the Banach space of all vector-valued
functions f : X → E such that

pα( f ) = sup
{ ‖ f (x1)− f (x2)‖

dX(x1, x2)α
: x1, x2 ∈ X, x1 6= x2

}
and

‖ f ‖∞ = sup {‖ f (x)‖ : x ∈ X}
are finite, endowed with the sum norm

‖ f ‖α = pα( f ) + ‖ f ‖∞.

The little Lipschitz function space lipα(X, E) denotes the closed subspace of Lip(Xα, E)
consisting of functions f with

lim
dX (x1,x2)→0

‖ f (x1)− f (x2)‖
dX(x1, x2)α

= 0.
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Theorem 3.9 Assume that T : lipα(X, E)→ lipα(Y, F) is a linear bijection preserving
zero-set containments, or preserving nonvanishing functions when E or F is of finite
dimension. Then T carries the form (3.1),

T( f )(y) = Jy

(
f (τ (y))

)
,

such that τ : Y → X is a locally little Lipschitz homeomorphism. Moreover, T is contin-
uous if and only if all fiber linear bijections Jy is continuous.

Proof Since both lipα(X, E) and lipα(Y, F) are nicely regular, it follows from Theo-
rem 3.1 that T carries the stated weighted composition form. The rest of the proof is
basically the same as for Theorem 3.5. For any compact subset K of Y containing at
least two points, we can define a bounded linear map S : lipα(τ (K))→ lipα(K) by

(S f )(y) = f (τ (y)), ∀ y ∈ K.

For any fixed y1, y2 in K, define a function f1 by

f1(x) = min{γ, dX(x, τ (y1))}, ∀ x ∈ τ (K),

where γ > 0 is the finite diameter of the compact metric space τ (K). Then f1 is in
lipα(X), since

|dX(x, τ (y1))− dX(x ′, τ (y1))|
dX(x, x ′)α

≤ dX(x, x ′)1−α.

Since S f1 is little Lipschitz, we can derive that

dX(τ (y1), τ (y2))

dY (y1, y2)α
=
| f1(τ (y1))− f1(τ (y2))|

dY (y1, y2)α

=
|(S f1)(y1)− (S f1)(y2)|

dY (y1, y2)α
→ 0

as dY (y1, y2)→ 0. Hence τ is little Lipschitz on K.
The “moreover” part follows the same way as in proving Theorem 3.8, since little

Lipschitz function spaces are Banach spaces.

Remark 3.10 (i) In the above theorems, when T is continuous, the map y 7→ Jy

is continuous from Y into (L(E, F), SOT).
(ii) It is plausible that Theorems 3.8 and 3.9 might provide us a Lipschitz or little

Lipschitz homeomorphism τ between the metric spaces X and Y . However,
as indicated in [9] it is not always possible. For example, set X = R with the

usual Euclidean metric d and Y = (R, d̃) with the bounded metric d̃(x, y) =
min{1, d(x, y)}. Then Lipb(X) = Lipb(Y ) and lipα(X) = lipα(Y ) for all α in
(0, 1), but X and Y are not Lipschitz or little Lipschitz homeomorphic. Note
however that X and Y are locally (little) Lipschitz homeomorphic.
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