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Scallop patterns forming on erodible surfaces were studied historically using a linear
analysis of the inner region of a turbulent boundary layer growing on a corrugated wall.
Experimental observations show a phase shift between the shear stress at the wall and
the wall oscillation that depends on the wavenumber. An ad hoc correction applied to
the turbulent closure and due to Hanratty et al. (Thorsness et al., Chem. Engng Sci.,
vol. 33, issue 5, 1978, pp. 579-592; Abrams & Hanratty, J. Fluid Mech., vol. 151, issue
1, 1985, p. 443; Frederick & Hanratty, Exp. Fluids, vol. 6, issue 7, 1988, pp. 477-486)
was systematically used to recover the reference experimental results. In this study,
Reynolds-averaged Navier—Stokes (RANS) and direct numerical simulations (DNS) were
performed and revealed the role of the Boussinesq assumption in the results obtained. We
show that the Hanratty correction acts as a palliative to the misrepresentation of Reynolds
stresses due to the use of the Boussinesq hypothesis. The RANS calculations based on
a turbulence model using a second-order moment closure recovered the expected results
obtained in the reference DNS calculations, in particular with respect to wall heat transfer.
The analysis of these results highlights the critical importance of the anisotropy of the
diagonal Reynolds stresses on the prediction of wall transfer under these conditions and
their implication in the occurrence of scalloping.
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1. Introduction

Scallop patterns are found in a large variety of situations, characterising the interaction of
a fluid and an erodible surface. They are observed on meteorites, and called regmaglypts
(Lin & Qun 1987; Claudin & Ernstson 2004), in pipes (Blumberg & Curl 1974; Villien,
Zheng & Lister 2001, 2005), in karst or ice caves (Anderson et al. 1998; Sundqvist, Seibert
& Holmgren 2007; Pflitsch er al. 2017) or with dunes (Best 2005; Vinent et al. 2019)
and sand ripples (Bagnold 1941; Charru, Andreotti & Claudin 2013). Many examples of
these scallop patterns are listed by Claudin, Duran & Andreotti (2017). Thomas (1979)
gathered several experimental results and provides evidence of a unique scaling of the
wavelength of the scallops with the boundary-layer viscous length. Similar patterns are
also observed on atmospheric re-entry vehicles. During the re-entry phase in hypersonic
conditions, the windward face of a vehicle is exposed to severe heat fluxes due to the
post-shock environment. Carbon-based thermal protection systems are commonly used to
guarantee the integrity of the payload. The carbon oxidation and sublimation processes
lead to the ablation of the heat shield, and under some conditions, scallops may be
observed on vehicle nosetips. Few in-flight experiments are published (Canning, Tauber &
Wilkins 1968; Larson & Mateer 1968), the most important reference being the TATER test
(Hochrein & Wright 1976) for which scallops approximately 1 to 4 mm long and a depth 10
times smaller were observed on the ablated surface as shown in figure 1. Several on-ground
tests (Laganelli & Nestler 1969; Nestler 1971; Williams 1971; Baker 1972; White &
Grabow 1973; Shimizu, Ferrell & Powars 1974; Reineke & Guillot 1995; Mikhatulin &
Polezhaev 1996; Powars 2011), involving lower heat fluxes and using surrogate ablative
materials such as camphor or Teflon, have confirmed the formation of scallops. The
ablation process depends on the material and may imply decomposition or fusion. To study
the formation of scallops on re-entry vehicles, we therefore rely on existing approaches for
which several fundamental unresolved issues related to turbulence models still remain.
The occurrence of these patterns on the surface of erodible walls were studied for many
years by performing linear analyses (Benjamin 1959; Thorsness, Morrisroe & Hanratty
1978; Abrams & Hanratty 1985; Fourriere, Claudin & Andreotti 2010; Charru et al.
2013; Claudin et al. 2017). Classically, the surface regression rate is assumed to be small
enough so that the associated characteristic time scale is very large compared with the
mean flow characteristic time. The problem is then first reduced to the investigation of an
incompressible turbulent boundary layer developing over a sinusoidally perturbed static
surface. The linear forced response for this flow was first studied by Benjamin (1959) and
consists of solving the Orr—Sommerfeld equation for a laminar flow. This problem was
explored again by Hanratty and co-workers (Zilker, Cook & Hanratty 1977; Thorsness
et al. 1978; Abrams & Hanratty 1985; Frederick & Hanratty 1988) providing a new insight
into the linear response while introducing a slight modification to the Orr—Sommerfeld
equation and considering turbulent flows. Thorsness et al. (1978) introduced a metric
function to transpose the equations into the *boundary-layer coordinate system’ before the
linearisation. However, the base flow was moved together with the coordinate system and
displaced to the new origin. This crucial modification was carefully analysed and discussed
by Luchini & Charru (2019). In the present work, we take up the work of Fourriere et al.
(2010) and Charru et al. (2013) to derive the linear problem. This is equivalent to the
approach of Hanratty et al. and gives exactly the same results. The equations set and
notations are recalled in Appendix A. Since the flow is supposed turbulent, a closure
relation is used to model the contribution of Reynolds stresses in the stress tensor ;.
In all the studies cited, the Boussinesq hypothesis (A3) is used together with a Prandtl
mixing length model.
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Figure 1. Scallops observed on in-flight and on-ground experiments representative of hypersonic re-entry
vehicles. From left to right, nosetip pictures of the TATER experiment (Hochrein & Wright 1976), on-ground
tests using camphor (Larson & Mateer 1968) and Teflon (Powars 2011) as surrogate material.

Simultaneously to their initial linear analysis, experimental works were conducted by
Hanratty et al. (Zilker et al. 1977; Frederick & Hanratty 1988) providing essential data
to validate the results of the linear analysis. A series of measurements in a turbulent
channel flow equipped with a wavy wall highlighted a modulation of the wall shear stress
phase with respect to the wall deformation in a specific wavelength range. The existence
of a phase shift between the wall shear stress and the wavy wall can be explained by
the momentum budget (Charru & Hinch 2000). For laminar flows, or simply as long as
the perturbations are in the viscous sublayer, the pressure gradient induced by the wall
waviness is responsible for the phase shift. For turbulent flows, other contributions may
come into play, notably the diffusion term related to the difference in stresses T, — 7.
When comparing the experimental observations and the linear analysis, Hanratty et al.
noticed the failure of the mixing length model. Interestingly, by introducing a dependence
of the mixing length to a relaxed pressure gradient, denoted C hereinafter, Hanratty and
co-workers (Thorsness et al. 1978; Abrams & Hanratty 1985) were able to reproduce the
behaviour of the wall shear stress phase. This correction to the mixing length was further
reformulated by Charru et al. (2013) and Claudin et al. (2017) and used successfully.

To further elucidate how scalloping forms on erodible surfaces, the wall profile is made
time dependent and is related to a wall flux involved in the transport mechanism controlling
the wall recession. For sand ripple formation, the particle flux is used and is shown to be
lagged behind the wall shear stress. The lag of the particle flux has a stabilising effect
that balances the inertial destabilising effect of the shear stress. A thorough discussion is
given in the review by Charru et al. (2013). For dissolution or melting problems, Claudin
et al. (2017) considered a passive scalar transport equation, representing, for example, the
concentration of a chemical species or the temperature, and the wall profile evolution is
controlled by the wall normal flux of the scalar transported. The ablation problem on the
nosetip of a re-entry vehicle can be apprehended in the same way but several issues must
be addressed first, among which one is of key importance.

The correction C proposed by Hanratty is a heuristic model, made to recover
measurement (Zilker et al. 1977) data for the wall shear stress from a mixing length
approach. However, in order to close the passive scalar transport equation in the approach
followed by Claudin et al. (2017), the turbulent scalar flux is related to the eddy viscosity
based on the mixing length and including the correction C. Assuming that C is a valid and
sufficient correction for the turbulent scalar flux closure is far from being trivial and there
are no existing data enabling us to validate this model. The choice of the closure is yet
a determining factor for the assessment of the wall normal flux that controls the surface
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regression rate. To shed light on this point, we follow the approach presented by Claudin
et al. (2017) for the transport of a passive scalar and in § 2 we study the forced response
of the energy equation for an incompressible fluid. At first, a fixed corrugated surface is
considered and a dedicated mixing length is proposed to model the turbulent scalar flux.
The choice of the base flow is also discussed in this section to remove doubts about the
relevance of the validation cases performed. In § 3, direct numerical simulations (DNS)
are carried out to establish some validation points to complete the experimental data of
Hanratty, notably concerning heat flux. Additionally, Reynolds-averaged Navier—Stokes
(RANS) computations with first- and second-order moment closures are performed to
discuss the influence of the turbulent closures on the momentum and energy equations.
In the last §4, through the analysis of the different types of results, we will discuss
the achievements and some limitations of the Hanratty correction. Finally, a simple wall
regression model, assuming scale separation between the ablation mechanism and the flow
response, is presented to try to establish a link with the Thomas correlation. In particular,
we highlight the key role played by the closure relation for the turbulent heat flux.

2. Linear forced response
2.1. Turbulent closure for the linearised momentum equations

We take up the work by Charru et al. (2013) to solve the linearised momentum equations,
considering a steady and incompressible fluid flow, the corrugated surface being fixed
in time at this stage. The notation and the system of equations are recalled in Appendix
A.1. The study is restricted to the linear response of the flow to the wall undulation, i.e. the
amplitude ¢ of the wall deformation is small enough compared with the wavelength 27/«
with o the wavenumber. The nonlinear limitis ¢y & 0.1 (Charru ef al. 2013) whereas flow
separations are expected for ¢y > 0.3 (Zilker & Hanratty 1979). A dedicated code based
on a collocation method (Canuto ez al. 2006) using Chebyshev polynomials was developed
to solve the linearised system. The Reynolds stresses are modelled with the help of the
Boussinesq hypothesis (A3) and the eddy viscosity v; is deduced from a mixing length
approach (A2). Thorsness et al. (1978) first proved that a correction is required to recover
the experimental results (Zilker et al. 1977) showing large phase shifts of the wall shear
stress with respect to the wall undulation in a specific wavenumber range, as illustrated in
figure 2. The idea is to introduce a dependence to a relaxed pressure gradient for the van
Driest number A inspired by the work of Loyd, Moffat & Kays (1970) or similarly by that
of Cebeci & Smith (1974). Since the mixing length / (A2) depends on the non-dimensional
variables, the wall normal coordinate 7, the Reynolds number R based on the wavenumber
o and the van Driest number A, the disturbed part of the mixing length 1 obtained after
linearisation contains three distinct contributions

N R R Rn? [ Tx
= —« [1 — exp <—A—g> (1 —A—3+A—z<%—ﬂc>):|. (2.1)

The first one due to 7 is the linearised effect of the geometrical deformation. The second
reveals the influence of the wall shear stress disturbance 7,,. Finally, the dependence to
C is brought by the van Driest constant A with 8 the relative variation of A due to the
relaxed pressure gradient g = (1/A%)(dA/dC). The parameter A? = 26 is the standard
van Driest constant and § = 35 is found to be the value that best fits the measurements
(Frederick & Hanratty 1988; Charru et al. 2013). The dimensionless correction C is given

967 A39-4


https://doi.org/10.1017/jfm.2023.507

https://doi.org/10.1017/jfm.2023.507 Published online by Cambridge University Press

About the role of the Hanratty correction

2000 1500 1000 500

80+

60

40

20

ol 0% 107 102 .10, 10°
0.005 0.010 0.015 0.020

Figure 2. Phase of the wall shear stress in the transitional regime. Filled black circles denote Hanratty’s
experimental results. Solid lines are results of the linear analyses with the Hanratty correction C (blue) and
under the frozen turbulence hypothesis (orange). Rectangles are results of RANS computations with the k—w
model (orange) and the elliptic blending Reynolds stress model (blue). Forced responses in channel flow are
plotted with dashed blue lines for «§ = 2n and 8 =40: —— —; a6 = mwand f =45: —. — .—; ad = /2 and
B =50: —.. — ..—. The dashed orange line corresponds to the linear analysis where the Hanratty correction is
off but the dependence on 7, is conserved.

by a differential equation that reads

0 1 d
V_C = (txx - g) -C, (2.2)
P

dx  u?dx

where p is the pressure, p the density and u, the friction velocity. The constant y
determines the length over which the relaxation operates with respect to the streamwise
gradient of 7, — p/p. Originally (Thorsness et al. 1978; Frederick & Hanratty 1988),
C was only related to the pressure gradient, with similar results. The dimensionless
quantity C does not correspond to the whole correction introduced in 1, but it will be
called Hanratty’s correction thereafter for brevity. When only the geometrical dependence
of 1is kept, and so the dependences on 7, and C are dropped in (2.1), the turbulence
can be seen as ‘frozen’ regarding the perturbations. This will be referred to as the frozen
turbulence assumption in the following. More details on (2.1) and (2.2) can be found in the
supplemental material of the review of Charru et al. (2013).

Experimental results and those of the linear analyses of the wall shear stress phase
Y. = arg(fy;) are plotted in figure 2 for wavenumbers in the transitional regime. Indeed,
three regimes can be distinguished with respect to ‘'R and the penetration depth of the
perturbation §;. The first regime corresponds to small values of R (R < 100), and,
according to Charru & Hinch (2000), §; 8,R/3, where §, is the viscous length v/u;.
The perturbation is confined in the viscous sublayer so that the turbulent closure plays
no role in this regime. The third regime corresponds to the long wave approximation
(R > 10000) for which the flow disturbances extend far beyond the viscous region where
the Reynolds stresses cannot be neglected anymore. As recalled by Charru et al. (2013),
velocity measurements confirm the linear increase in mixing length with wall distance in
the logarithmic region. Therefore, in this regime, the results are little affected by the choice
of turbulent closure as long as the linearity of the eddy viscosity with respect to the wall
distance is recovered in the logarithmic region of the inner layer. The intermediate regime,
i.e. R € [100, 10 000], often called the transitional regime, is far more complex and more
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challenging. The linear analysis with the standard mixing length model, i.e. without the
inclusion of correction C, does not recover the trend measured, but the use of the Hanratty
correction improves the results remarkably. The evolution of v/, with @™ = R~! from the
laminar regime to the fully turbulent regime is then faithfully reproduced.

2.2. On the importance of the choice of the base flow

Implicitly, all the linear analyses over the years by Thorsness et al. (1978), Abrams &
Hanratty (1985), Fourriere et al. (2010), Charru et al. (2013) and Claudin er al. (2017)
were derived from the base flow solution of the inner region of the boundary layer
configuration. Actually, with the use of Prandtl’s mixing length model (A2), the linear
analyses were made on a semi-infinite domain covering the viscous sublayer, the buffer
region and the logarithmic region. The obtained perturbation is therefore included in this
domain, without any interaction with the outer region as long as the upper boundary
condition imposes a zero perturbation field. Additionally, the problem is then independent
of the friction Reynolds number and only depends on the dimensionless wavenumber
at = R~!. However, the reference experiments of Hanratty er al. were obtained in a
rectangular channel of height 2§ with dov = m. Therefore, the friction Reynolds number
51 may then influence the flow response to the wall deformation, and the validation of the
results obtained from Hanratty’s experiments in a channel may be questioned. To elucidate
this issue, we consider a modified version of our code with a mixing length model adapted
to channel flow configuration and using the Nikuradse formula

1=35 (0.14 —0.08 (1 - g)z —0.06 (1 - §)4) (1 — exp (-%)) 2.3)

For a6 = 7, corresponding to Hanratty’s experiments, similar results (figure 2) are
obtained with both versions of the code when g is increased to 45 in the channel
configuration. Considering the existing dispersion for the experiments, both results are
satisfactory. When «§ is lowered or increased by a factor of 2, the magnitude 8 of the
Hanratty correction C must be modified accordingly to recover the experimental data.
There is a real influence of the friction Reynolds number on the results but it can be
compensated by adjusting $. It is nevertheless important to note that both versions of the
code with the respective mixing length models (A2) and (2.3) provide close results for
R < 500 (@™ > 0.002) for a common reference value 8 = 35, whatever the values of «8.
Therefore, the dependence to the friction Reynolds number é in the transitional regime is
small and the linear responses obtained by considering the inner region of a boundary layer
can be legitimately compared with measurements or computations obtained in channel
flow configurations. The results presented below have all been produced by the code based
on the inner boundary-layer region to be consistent with previous studies.

2.3. The role of the vorticity

Another remarkable aspect in the evolution of the wall shear stress phase is the influence
of the vorticity. The penetration depth §; depends on the Reynolds number R and its
definition (Charru & Hinch 2000) is given by the vorticity disturbance & = it ,, — iw at the
wall (see Appendix A). The penetration depth must not be seen as the distance to the wall
where the perturbation is not zero but a measure of the distance over which the vorticity
acts. Actually, the perturbation fields for the velocity and the pressure are not zero above §;
but the vorticity is. Figure 3 depicts the normalised vorticity profiles for R € [10, 1000].
Vorticity peaks, almost independent of R, are clearly visible around z* = 7 before the
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Figure 3. Vorticity disturbance profiles. Dark blue to light blue lines indicate increased Reynolds number
R = 10, 100, 200, 500, 700, 1000.

profiles tend to zero. The disturbance field can be divided into a vortical region, near the
wall, and a non-vortical region far from the wall. In the non-vortical region, the phases of
the perturbations are nearly constant and without offsets from the corrugated wall. Below,
the induced vorticity impacts on the profiles and phase shifts appear. The vortical region
has a determining influence on the evolution of ;.

2.4. Turbulent closure for the linearised energy equation

To tackle dissolution or melting problems, Claudin et al. (2017) introduced an additional
transport equation for a passive scalar in the linear analysis. The model was intended
to be applicable to a wide range of applications using a Robin boundary condition at
the wall. In the present context, in order to compare results of the linear analysis with
numerical Navier—Stokes simulations, the considered passive scalar is the total enthalpy
associated with the linearised energy equation (A10). Again, for the sake of comparison
with numerical simulations, the boundary condition at the wall is a Dirichlet type condition
where the enthalpy is imposed. For large values of wall heat flux, the dissipation can
be neglected and the energy equation (A10) reduces to an advection—diffusion equation
identical to the dissolution equation considered by Claudin et al. (2017). The model
(A10) is representative of ablative materials for which, in the context of re-entry vehicles,
the surface regression may be directly related to the energy equation or to an oxidiser
concentration transport equation (White & Grabow 1973).

The main difference with Claudin et al. (2017) lies in the closure relation for the
turbulent scalar flux, which here is the turbulent heat flux (A1l). Claudin et al. (2017)
considered that the mixing length for the turbulent scalar flux, denoted /y, can be simply
taken equal to /. For this study, a more general form (Cebeci & Smith 1974) for Iy is
retained by separating the damping functions for the velocity and the enthalpy

1/2 1/2
lp = kz (1 —exp (—%)) (1 —exp (—ZUVA?Z)) . 2.4)

The mixing length disturbance Iy is given by

A Rn 12 Rn i
lp = —k (1 — exp (_F)) 1 —exp 0
0
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The introduction of a second damping function in (2.4) makes it possible to introduce an
additional correction to /g in (2.5). From Cebeci & Smith (1974), we have Ag = 30; Ag is

made dependent on 7,, with a coefficient ¢y = (2/A2)(8A9 /07y;). The dependence of Ay
on C is taken to be identical to that of A in (2.1) and in the following we take 8y = g = 35.
The results obtained with the model retained by Claudin et al. (2017) are recovered when
Ag =A% =26and ¢y = 0.

3. Navier-Stokes computations
3.1. The RANS computations

To enlighten the impact of the turbulent closure on the forced response, several RANS
computations were performed. The numerical procedure is based on the second-order
compressible finite volume code named CEDRE (Aupoix et al. 2011; Scherrer et al. 2011),
developed at ONERA and designed for unstructured grids. The computational domain
is a two-dimensional periodic channel where ad = 7. In order to respect Hanratty’s
experimental conditions, the sinusoidal profile was only applied on the bottom wall.
Constant and homogeneous source terms were added to reproduce the mean pressure
gradient and to balance the energy budget. A constant temperature was imposed as a
boundary condition at the walls so that the induced fluxes compensate for the energy
source term. The source terms were designed to respect as much as possible the
incompressibility assumption. The density fluctuations were found to be three to four
orders of magnitude below the velocity and pressure fluctuations. Eight configurations
with various values of the kinematic viscosity v were explored, corresponding to R =
{100, 150, 200, 300, 400, 500, 700, 1000} covering the transitional regime.

Two turbulence models were used to analyse the impact of the order of the Reynolds
stress closure. On the one hand, computations with the k—® model (Menter 1994), k being
the turbulent kinetic energy and w the specific dissipation, were performed to characterise
the influence of the Boussinesq hypothesis (A3) while, on the other hand, the elliptic
blending Reynolds stress model (EBRSM) turbulence model (Manceau & Hanjali¢ 2002;
Manceau 2015) was retained to obtain representative results of the second moment closure.
The Boussinesq hypothesis is expected to have a significant impact on the streamwise
momentum balance (A1) through the term 7y, — 7, in the transitional regime. With the

Boussinesq hypothesis u/2 — w? is made proportional to du/dx, which is not true with
second-order models. In particular, the exact production term for u’2 — w'2 is Pyy — P, =
—4u'2(du/dx) — 2u'w'(du/dz — dw/0x) and suggests a dependence on the shear stress
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w'w for the growth of w2 — w2, At the first order with respect to the wall oscillation,
the production term Py, — P, is not only ruled by the pressure induced velocity gradient
ou/ox but also by the shear stress —u’w’. The objective of the computations is to highlight
the effects of these differences on the evolution of ¥, with respect to R.

The closure relations for the turbulent heat fluxes u;i’ completely differ between the
k—w model and the EBRSM. The standard approach associated with eddy viscosity models
such as the k—w model is to make use of a simple gradient diffusion hypothesis (SGDH)
with a turbulent thermal diffusivity including a constant turbulent Prandtl number Pr;, in
a similar manner to (A1l) for the mixing length model of the linearised problem. In all
the following k—w computations, Pr; is set to 0.9. In the context of second-order models,
several approaches can be contemplated but the most commonly employed model relies on
the generalised gradient diffusion hypothesis (GGDH) with the relation taken from Daly &

Harlow (1970), —u;il’ = cg g,ﬁj’.(ah /0x;). The turbulent time &; derives from the turbulent
kinetic energy and its dissipation. The EBRSM was run with the classical value ¢y = 0.22,
close to that recommended by Dehoux, Benhamadouche & Manceau (2017). The choice
for the closure relation of W has a considerable influence on the enthalpy perturbation
field and the wall heat flux ¢,,. A close look to the expressions for the streamwise

component u'h’ for both models SGDH and GGDH reveals the influence of the shear stress
DH

u'w’. The GGDH closure relation for a non-parallel bi-dimensional flow gives u'h’ copt _
—cpE 2 (D)%) — cobdw (Bh)3y) ~ Wh O T — oW (3h/dy) since £ o vy, The
shear stress is known to be affected by the wall deformation which means that, at the
first order, the turbulent heat flux will thus behave differently between the SGDH and
the GGDH models. In the transitional regime, the wall heat flux ¢, depends on the
contribution of the turbulent heat flux in the energy budget and ultimately its phase v
with respect to the corrugated wall will be influenced by the choice of the closure relation.

3.2. The DNS computations for validation

The experimental data of Hanratty et al. do not allow a comprehensive examination of
all of the aspects regarding the perturbations due to the wall waviness. There are no
available data on heat transfer at the wall. For applications, the analysis of the energy
budget is determining since the wall regression is most often driven by transfers at
the wall that can be represented without any loss of generality by heat transfer, as
recalled in § 2.4. To access such data, DNS were conducted with the spectral difference
Navier—Stokes solver named JAGUAR (Chapelier, Lodato & Jameson 2016) and developed
at ONERA and CERFACS. The code is designed to handle triangle (Veilleux et al.
2022a) or tetrahedral elements (Veilleux et al. 2022b) but all the presented computations
were performed with a fourth-order discretisation scheme using hexahedral elements.
Time integration is made with a low-dissipation low-dispersion sixth-order Runge—Kutta
scheme. The computational domain is [0, 31] x [0, 66] x [{p cos(ax), §] with ad = 7/2.
The streamwise extent of the domain is 126 &~ 4§ that fits the usual requirements for
periodic channel flow simulations. A constant source term is added on the momentum
equation that sets the friction velocity u,. The wall temperature is kept constant and the
level of the mean heat flux on the wall is determined by the balance with the viscous
and turbulent dissipation. As a consequence the wall heat flux is ¢,, = pu% Up, with Uy,
the bulk velocity, providing rather low values of ¢ = U;. Two mesh resolutions are
used depending on the targeted Reynolds number. The numbers of solution points are
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Figure 4. Mean velocity (blue) and temperature (orange) profiles. Empty symbols (o,00) are DNS results while
solid lines (EBRSM) and dashed lines (k—w) present RANS computations. The full black symbols (¢) are DNS
results from Hoyas & Jiménez (2008) at Re; = 180 and Re; = 550: (a) R, = 150; (b) R, = 300.

240 x 240 x 160 ~ 9M and 320 x 320 x 240 ~ 24M. With a fourth-order discretisation,
the mean y* values in the wall cells are found to stay between 0.25 and 0.5. The friction
Reynolds numbers 8§ range from 150 to 500 with R € {100, 150, 200, 300}. Here again,
the velocity field is nearly divergence free and the density fluctuations are several orders of
magnitude lower than the velocity and pressure perturbations. The amplitude of the wall
ripple is chosen to give §0+ € [2.9, 6.6], ensuring linear behaviours with oy always less
than 0.03.

These DNS configurations cannot be directly considered as a complementary material
to the experimental results of Hanratty et al. since «d is twice as small in the computations
as in the experiments. However, it was shown in §2.2 that, for R < 500, the phase
shift v, is hardly affected by this change in the product «§. This choice for o is a
compromise between representativeness and cost. The main purpose of these simulations
is to serve as a reference for RANS computations and the linear analyses, especially
concerning the heat transfer. For this reason, RANS computations were also performed
with strictly similar conditions. All computations used air as the fluid with perfect gas
assumptions and, given the temperature levels encountered, the specific heat capacity
Cp can be reasonably considered constant. The computed temperature fields are directly
comparable to the enthalpy fields. We note by 6 the temperature difference with the
wall and 67 = 6/6, the associated dimensionless variable, where 6, = —dw/pCpity
is the friction temperature. Mean velocity profiles (u™) (figure 4) compare favourably
between the different computations for all Reynolds numbers, even though the &~ model
underestimates the profiles in the buffer layer. The reference data of Hoyas & Jiménez
(2008) obtained in non-deformed channels are also depicted to prove the validity of the
DNS computations presented here. Second moments also agree between the two DNS
datasets. The DNS mean temperature profiles are well reproduced by the EBRSM while
the k—w model tends to underpredict the profiles above the linear region.

4. Analysis and discussion
4.1. Influence of the turbulent closures on RANS computations

The narrow differences in the mean quantities visible in figure 4 actually hide more
vast discrepancies in the perturbation fields, which increase with the Reynolds number
‘R. Profiles of the velocity and temperature perturbation fields were extracted at several
streamwise location x/A and plotted in figures 5 and 6. The amplitudes of the perturbation
are divided by a factor 2 when R is doubled, in accordance with the linear expansion (A4)

967 A39-10


https://doi.org/10.1017/jfm.2023.507

https://doi.org/10.1017/jfm.2023.507 Published online by Cambridge University Press

About the role of the Hanratty correction

(@) (b)

0.47 021
0.1f
08
-0.1F

—0.2 Lo L |

100 10! 102
=g

Figure 5. Profiles of velocity perturbations at stations x/A = 0.0 (blue), x/4 = 0.2 (purple), x/1 = 0.4
(green), x/A = 0.6 (orange) and x/1 = 0.8 (red). Symbols are DNS results, solid lines present the RANS
computations with the EBRSM while the dashed lines stand for the k—w results: (a) R, = 150; (b) R, = 300.

(b)

0.04

0.02

0

-0.02

, -0.04
7010 Ll n Lo L Lot . Ll n Lol L Lo
100 10! 102 100 10! 102

- 7 -z

Figure 6. Profiles of temperature perturbations. The legend is identical to that of figure 5: (@) R, = 150;
(b) R, = 300.

stating that any quantity ¢ is such that (g7 — (¢7))/¢;" oc & = R71. It is immediately
apparent that the EBRSM compares better with the DNS results than the k—w model.
The agreement is better for velocity perturbations than for temperature perturbations,
where a noticeable difference exists below zT = 20. Despite a good overall trend, the
perturbation profiles presented by the k~w model are lagged behind those of DNSs with
smaller amplitudes. The higher the Reynolds number, the larger the lag. Another notable
point that emerges from these figures is that the ordering between the profiles is modified
from the centre of the channel to the wall. Figures 5 and 6 again illustrate the division
between vortical and non-vortical regions. Around the centre of the channel, the phase of
the perturbed field is not altered with respect to the wall and the ordering between profiles
is aligned with the wall locations, i.e. in-phase or anti-phase, depending on the sign of
the perturbation. Conversely, near the wall, the ordering is modified by the phase of the
perturbed field. Moreover, DNS and RANS calculations have also revealed a perturbation
peak in the velocity profiles around z+ = 10, consistent with the vorticity peak revealed by
the linear analysis (figure 3). A similar peak is also visible in the temperature profiles, but is
less pronounced due to the high levels of perturbations observed in the non-vortical region.
The wall shear stress disturbances (z,} — (t,;}F))/ §5F of figure 7 corroborate the previous
observations with k—w predictions delayed compared with those of DNS while the EBRSM

provides better agreement. For the wall heat flux disturbances (¢;5 — (¢;7))/ {J“ presented
in figure 7, the k—w model underestimates the amplitudes and is not able to recover the
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Figure 7. Wall shear stress (left/blue colour) and wall heat flux disturbances (right/orange colour) at R = 150
(a) and R = 300 (b). Symbols are DNS results. Solid lines are the RANS computations with the EBRSM and
the dashed lines represent the computations with the k—«» model.
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Figure 8. (¢) Mean profiles of the Reynolds stress difference u? — w2  (blue) and the shear
stress —uw T (orange) for R = 300. Symbols are the DNS results and lines stand for the EBRSM

—t+ =+ s+ —+
computations. Corresponding forced responses profiles (w2 —w?2  — w2 —w?2 )/t (b) and

(—u'w * + (Ww +)) / §0+ (c) at several stations x/A. Lines and symbols are those used in figure 5.

phase shift. The EBRSM greatly improves the results but the phase shift on ¢,, is a bit
overpredicted. The RANS results for the wall shear stress phase v, are also reported in
figure 2. The closure relations of the RANS computations are manifestly responsible for
the prediction accuracy and the results evidence the failure of the Boussinesq hypothesis,
as expected. Even though the wall deformation is very small, ensuring a linear behaviour
of the perturbation, the flow field is heavily affected by the turbulent modelling. The error
is even more pronounced on the perturbed temperature field and the wall heat flux. As
explained above, the good behaviour of the EBRSM compared with the k—w model is

essentially due to the representation between the Reynolds stress difference w2 — w2,

—+ —+ —
Figure 8 shows the mean and disturbed profiles of w2 — w2 and —u'w’ ™ obtained
with the EBRSM calculations compared with those from the DNS for R = 300. Although

the forced response does not match that yielded by DNS, the profile of w2 — w2 at leading
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order is in good agreement with DNS results, while for i~ calculations, (not shown here)

—+ —+
the normalised stress difference at the leading order is (W? — w2 ) = 4(v,(du/dx)) =
0. Figure 8 also indicates that the perturbations due to the wall in the diagonal stress

difference u2 — w2 are four to five times larger than those induced in the shear stress

—ww . The results show that the term 9 (Txx — Tzz)/0x has a magnitude five times smaller
than that of the term 9d7,;/0z in the streamwise momentum equation (Al). In the end,
the 0(tyx — T;;)/0x term contributes approximately 20 % in the budget of the momentum
equation at the first order, showing its critical importance.

The RANS results are now used to further examine the results of the linear analysis and
assess the effect of the Hanratty correction C on the prediction of the phase shift of the
wall shear stress and the wall heat flux.

4.2. Achievements and limitations of the Hanratty correction

Previous work by Abrams & Hanratty (1985), Charru et al. (2013) and Claudin et al.
(2017) proved the effectiveness of the correction C in recovering the wall shear stress
phase evolution with respect to the wavenumber (solid blue line in figure 2). Although
very efficient, this correction suffers from two main limitations. The first one is related
to the application of the correction in the mixing length model. The RANS computations
highlighted the failure of the Boussinesq hypothesis to predict the stress difference 7, —
7,;, which is then of the order of the perturbation O(«{p), in the streamwise momentum
equation (A1l). However, the Hanratty correction acts on the shear stress t,, through the
modification of the mixing length. In other words, the Hanratty correction does not correct
the problematic term but balances the streamwise momentum equation, and, in that sense,
it can be viewed as an ad hoc palliative to the failure of the Boussinesq hypothesis. The
second limitation comes from the use of a relaxed pressure gradient to drive the correction
C. The RANS and DNS calculations have evidenced the role of the mean vorticity of the
flow in creating the turbulent stresses that ultimately lead to the observed phase shift in the
wall shear stress. However, the pressure gradient does not enter the vorticity equation and
is not a relevant variable to control turbulence. Furthermore, the pressure gradient is not
involved in the Reynolds stress transport equations, which does not prevent the EBRSM
computations from correctly reproducing the phase shift of the wall shear stress. Despite
these limitations, the Hanratty correction is very useful and effective for linear analyses.
A further demonstration of the positive impact of the correction C is shown in figure 9,
where the amplitudes of the wall shear stress disturbance are presented. In the linear
analysis the wall shear stress fluctuation (TJ — (1:V‘VIr )/ §0+ is given by a7y;(0) according
to (A4). Calculations of the linear response with C and, to a lesser extent, the EBRSM
results, follow the measurements remarkably well, while the k~w» model and results of
the linear analysis without the Hanratty correction move further apart as o™ is decreased.
We now focus on the use of the Hanratty correction in the closure relation for turbulent
heat flux of the linearised energy equation detailed in §(2.4). In the mixing length
disturbance ?9 (2.5), C is considered twice with respect to the two van Driest numbers
A and Ay. An additional dependence on 7,, was introduced for the van Driest number
Ay. Best agreements were obtained with €y = 4. The results of the linear analysis for the
evolution of the phase of the wall heat flux v, with respect to & are shown in figure 10
and compared with RANS computations. Results corresponding to the original model
proposed by Claudin ef al. (2017) (Ag = 26 and €y = 0) are also reported in figure 10.
Values of ¥, are shifted from 180° when the sign of ¢;;, is changed. When |¢};] is large
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Figure 9. Amplitude of the wall shear stress perturbation. The filled black circles are measurements of
Hanratty et al.. Square symbols are the RANS computations with the EBRSM (blue) and the k—w (orange)
model. The solid lines are the results of the linear analysis with the Hanratty correction (blue) and when the
frozen turbulence assumption is used (orange).
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Figure 10. Wall heat flux disturbance phase v/ as a function of the wavenumber a*. Blue symbols are the
phase computed with the EBRSM for ¢, = 400 (O) and ¢;; = —400 (). The orange square symbols are
the results obtained with the ki~ model. The solid lines are the corresponding results of the linear analysis
with (blue line) all corrections activated (A = 26, Ap = 30, B =35, €9 =4) and with (orange line) the
frozen turbulence hypothesis (A = 26, Ag = 30, 8 =0, €9 = 0). The black dashed line presents the results
corresponding to the approach followed by Claudin er al. (2017) for [y (A = 26, Ag = 26, B = 35, €9 = 0). The
thin horizontal dashed line corresponds to ¥y = —90°.

enough, practically when |¢| > 100, the dissipation term & of the equation for the mean
enthalpy (A14) is almost negligible and the equation is symmetrical with respect to ¢;;,. The
Navier—Stokes computations with the k—w model provide values of ¥, in good agreement
with the linear analysis obtained with the frozen turbulence assumption, consistent with
the observation made on ¥, in figure 2. Results equivalent to those of Claudin et al. (2017)
provide overestimated phase values of approximately 40° whereas, with AY = 30 and
especially €y = 4, the linear forced responses match those of the EBRSM computations.

This means that the Hanratty correction has a beneficial impact on Ip but it is not sufficient.

967 A39-14


https://doi.org/10.1017/jfm.2023.507

https://doi.org/10.1017/jfm.2023.507 Published online by Cambridge University Press

About the role of the Hanratty correction

101

N/gy

1072 ¢

~ (o,

+
w

103

(¢

L L L L 1 R EET R |
0.001 0.005 0.010 0.020
at

10

Figure 11. Amplitude of the wall heat flux perturbation. Square symbols are the RANS computations with the
EBRSM (blue) and the k—w (orange) model. The solid and dashed lines are the results of the linear analysis.
The blue lines correspond to results of the linear approach with ¢, = 400 (dashed) and ¢, = —400 (solid).
The orange line presents the analysis performed with the frozen turbulence assumption. The dashed black line
shows the results obtained with Ag = Ag =26and ¢ = 0.

An additional correction on Ag, with €9 = 4, is required to recover the results obtained
with the EBRSM computations.

In figure 11 the comparison of the amplitude of the wall heat flux disturbance points out
several divergences. The disturbances of the wall heat flux (¢;} — (¢.7))/ ;&L obtained in

the linear analysis, i.e. —ozf (0), are smaller than those of the RANS computations. The
results produced by the k—w model and the results of the linear analysis with the frozen
turbulence assumption exhibit almost the same trends whereas the EBRSM and the linear
analysis results diverge as ™t decreases. This may be due to the closure relation used for

the turbulent heat fluxes —u;#’. The EBRSM uses the GGDH assumption while the linear
analysis makes use of a SGDH hypothesis and is impacted by the Hanratty correction C
in ?9 (2.5). The results obtained with Ag = 26 and €9 = 0 are not better. For the energy
equation, the Hanratty correction is not able to compensate the approximation made in
the modelling of the turbulent heat fluxes. This is not surprising since C was implicitly
designed to correct only for the misrepresentation of the Reynolds stresses. Although
imperfect, the linear analysis using the model described in § 2.4 for the energy equation
allows a good prediction of ¥,. However, it was not possible with this type of closure (2.5)

for Iy to also obtain a satisfying prediction of the wall heat flux amplitude.

4.3. Linear stability of an ablative surface

The surface elevation is now a function of time ¢ (x, t) = ¢o exp((oyt + iwyt + iwx)) and
is assumed to be ruled by the ablation process and controlled by the wall heat flux. For
moving surfaces, the critical layer, below which the flow propagates more slowly than the
surface, has a crucial importance on the flow dynamics (Belcher & Hunt 1998). For our
re-entry applications (see Appendix B), the surface speed w, /o is low compared with
the friction velocity. In this slow waves regime (w,,/au; < 15) the critical layer is thin
and plays no significant dynamical role. In other words, only the temporal growth rate o,
matters and controls the surface regression in direction z.

The model detailed in the Appendix A.2 can be applied to dissolution or melting
problems since the energy equation produces similar results to the advection—diffusion
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Figure 12. Normalised growth rate o,,¢,,/rp with respect to a® in logarithmic and linear scales. Square
symbols are the RANS computations with the EBRSM (blue) and k—w (orange) model. The corresponding
dashed lines are splines computed from the data. The solid lines are the results of the linear approach with
(orange) and without the frozen turbulence assumption.

equation used by Claudin er al. (2017) when |¢}| is large. Any solid surface can be
decomposed into a series of sinusoidal profiles and the linear response of the flow
will be the combination of the responses for each wavenumber. The surface regression
is assumed to be proportional to the wall flux (Claudin et al. 2017). Dropping the
homogeneous part of the flux, the evolution of the elevation at the first order is ruled
by d¢ /0t = —ru%{ocx[f(O)lexp((iax—i—ix/a;,)), with r a constant proportionality factor
(s?/m?), controlling the regression rate. The temporal growth rate of the surface elevation
is then governed by the real part of the dispersion relation, i.e. o), = —ruza UAF(O)I cos(Yrg).
Function oy,(«) changes sign when [y crosses the horizontal line ¥4 = 90°. In the
case of a negative wall heat flux, the horizontal line ¥4 = —90° is plotted in figure 10.
When the Boussinesq hypothesis is used without the Hanratty correction in the linear
analysis and for the computations with the k—w model, ¥4 is always less than —90°
and o,, remains negative for all wavenumbers a ™. For the EBRSM results or for the
linear responses involving the correction C, o, becomes positive for a™ ~ 0.006. All
wavenumbers below o & 0.006 are unstable, in the range of wavenumbers covering
the transitional regime. However, the growth rate o,, quickly decreases as ™t decreases,
mainly due to its proportionality with «. In figure 12, growth rates o, (normalised)
obtained in the RANS computations and in the linear analysis are depicted with respect
to a™. In the k—~w computations and in the linear analysis with the frozen turbulence
assumption, the growth rates are always negative. Both models predict stable modes
regardless of a™. But the EBRSM and the linear approach show an unstable region where
oy > 0 and the presence of a peak. The wavenumber associated with this peak indicates
the most unstable mode for which the surface time growth rate is the highest. The error
in the prediction of the amplitude of the wall heat flux with the linearised model using
(2.5) for the closure of the turbulent heat flux leads to a shift in the position of the peak.
The linear analysis indicates a peak at at = 2.4 x 1073 (R = 417) whereas it is found at
at ~ 4 x 1073 (R = 250) by the EBRSM. The location of the peak is almost independent
of ¢} and is not modified by the sign of ¢ as long as |¢;| > 100. The Prandtl number Pr
has a limited influence on the peak position in the linear approach. The same tendency is
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expected in Navier—Stokes computations. The peak is moved to higher values of ™ as Pr
is increased and, for example, when Pr = 100, the peak is located at at =42 x 1073,

Thomas (1979) presented evidence in support of the hypothesis that the scalloping of
soluble surfaces may be attributed to wall turbulence. By analysing bed morphologies
where scallops occur, he showed that the longitudinal wavelength of the bedform is a
multiple of the viscous length 8, providing @t ~ 6 x 10~3. The proportionality between
these quantities was demonstrated over a range exceeding four decades of length and
covering a wide variety of situations from the corrosive dissolution of steel (Schoch 1968;
Schoch, Richter & Kohle 1969; Schoch, Richter & Effertz 1970a; Schoch et al. 1970b;
Schuster 1971; Heimsch et al. 1978), brass (Sick 1972) and copper (Knutsson, Mattsson &
Ramberg 1972), the plastic shear of bitumen (Brauer 1963) and aluminium (Brunton 1966)
and the rippling of colloidal-particle deposits in a water main (Wiederhold 1949; Seiferth
& Kriiger 1950). In the context of atmospheric re-entry vehicles, the wavelength found in
the TATER experiment (Hochrein & Wright 1976) aligns with the Thomas correlation. The
orders of magnitude provided in Appendix B justify the use of the linear approach (A.1
and A.2) to study this type of flow, particularly with respect to compressibility effects.
The location of the most unstable mode with the EBRSM computations or with the linear
approach are closed to the value found in the Thomas correlation, confirming the role
of turbulence in the occurrence of scallops. It is nevertheless premature to draw general
conclusions from these results. Only the linear response was examined, with a high degree
of hypothesis on the flow that restricts the scope of the approach. Further verification is
needed to extend the approach to different types of erodible surfaces where scallops are
observed. Nonlinear effects, notably related to flow separations, may also interfere in the
scallop formation (Charru et al. 2013). This will certainly require further experimental or
numerical data for validation. The results presented are a first step towards explaining the
value of the slope of the Thomas correlation.

5. Conclusion and perspectives

The scallops observed on re-entry blunt bodies are similar to those encountered in many
applications, the characteristic scale of which is given by the Thomas correlation of the
viscous boundary-layer length. The study of these scallops was historically based on a
linear analysis of the disturbances generated by a fixed wall corrugation on the inner region
of a turbulent boundary. The success of this approach relies in particular on the use of
the Hanratty correction, without understanding the underlying mechanisms requiring the
intervention of this correction. Using RANS and DNS numerical simulations, an in-depth
analysis of the perturbations generated by the corrugated wall has allowed us to clarify the
implications of the different terms of the Navier—Stokes equations and to better understand
the role of the Hanratty correction.

It is found that the disturbance profiles can be separated into two distinct regions.
Away from the wall, the vorticity perturbation is zero and the velocity and temperature
profiles are in phase with the wall undulation. In the vicinity of the wall, the vorticity
disturbance is significant and a phase shift with respect to the wall is observed in the
various perturbed quantities. The vorticity creation is directly related to the contribution
w? — w2 in the streamwise momentum equation. The RANS computations using the k-
model and the EBRSM, confronted with reference results from DNS, highlight the failure
of the Boussinesq hypothesis in this context. The results for the velocity disturbances
show that the k—w calculations, which are based on the Boussinesq hypothesis, are not
able to reproduce the DNS data correctly, unlike the EBRSM calculations, which are
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fairly accurate. The differences between the DNS results and the k—w computations are
even greater for the temperature profiles. The use of a SGDH closure for turbulent heat
fluxes further increases the errors. In contrast, the EBRSM calculations, which use a
GGDH closure, show very good agreement with the DNS calculations, notably for the
parietal heat flux.

A comparative study of results from the linear analysis and RANS results highlights
the role of the Hanratty correction. The latter serves in fact to compensate for the poor
representation of the Reynolds stresses in the equations coming from the use of the
Boussinesq hypothesis. The Hanratty correction was designed to act effectively on the
momentum equation. Its indirect use in the energy equation does not make it possible
to obtain the expected results for wall heat transfer. In particular, the phase shift and the
amplitude of the wall heat flux fluctuation are poorly predicted by the linear approach,
even with the Hanratty correction, unless a supplementary correction is also added to
the mixing length governing the turbulent heat flux closure. Finally, the study of wall
regression under the effect of an ablative flux is carried out. The surface elevation is
supposed to be ruled by the wall heat flux and its growth rate, apart from the homogeneous
contribution of the leading order, is governed by the phase shift and amplitude of the wall
heat flux disturbance. When the Boussinesq hypothesis is used without compensation,
the linearised problem is unconditionally stable. However, in the linear approach using
the Hanratty correction and in the RANS EBRSM computations, the growth rate of the
surface elevation is found to be positive for @™ > 0.006 in the transitional regime. The
most unstable mode is found for ot = 2.4 x 1073 in the linear analysis and around
at =4 x 1073 in the EBRSM computations. The difference in location results from
the errors made on the phase and amplitude in the linear analysis occurs because of the
turbulent closure relations used. These values of the dimensionless wavenumber are close
to that given by the Thomas correlation, providing a first indication on the mechanisms
involved in the occurrence of the scallops in the linear phase.

Many questions are still open and studies are needed to evaluate the influence of
compressibility, regression models including possible chemical reactions, real gas effects,
roughness effects and finally nonlinear interactions. In parallel, as suggested in figure 1,
a three-dimensional linear analysis taking into account surface curvature effects could
provide additional information on the three-dimensional nature of the scallops.
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Appendix A

A.l. The momentum equations
We consider the bi-dimensional RANS equations for a steady incompressible flow. The
Reynolds average [J, that reduces to a time averaging under the assumption of ergodicity,

is used to study the mean quantities. In the following, the symbol [J is dropped for
mean quantities but kept for the second-order moments. We denote by [’ the fluctuations

around the Reynolds average. We also introduce the spatial average ([ 1) = (1/2) fo/l Cldx.
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The equation set reads

du au a p 0Ty, a
U=+ W= "—\Tp— |+ + — (T — T22)
P 9z dx

0 0 0 0
2w 8 (,Zz_g) L
P ax

(AD)

The sinusoidal wall profile is of the form ¢ (x) = ¢o el with o the amplitude and « the
wavenumber. The linear expansion is made with respect to the small parameter «¢y. The
dimensionless variable n = «z and the Reynolds number R = u;/av are defined from
the wall normal coordinate z, the kinematic viscosity v and the friction velocity u, =
VATxz) / p-

At the leading order on smooth flat walls, the only remaining Reynolds stress in the
equation is the shear stress «/'w’ and then the turbulent closure is made with a Prandtl
mixing length model / coupled with a van Driest damping function. It reads

l=«z (1 — exp (—%)) , (A2)

with A the van Driest number. The total stress 7; is deduced from the Boussinesq
hypothesis

T =2 (v + ) S; — 3k, (A3)

where v; and k are the eddy viscosity and turbulent kinetic energy, respectively. For a
mixing length model, the turbulent kinetic energy is related to / through the relation k =
X212|S 1% 18| = / 28;;S;; is the norm of the strain rate tensor S; and x a phenomenological
constant between 2 and 3 that may be found for boundary layers from Bradshaw’s relation
(Bradshaw, Ferriss & Atwell 1967).

All quantities in (A1) are expressed in wall units using #; and v. The + signs commonly
used to designate variables expressed in wall units are dropped for the sake of conciseness
and clarity in (A4), (A7), (A8) and (A9). The mixing length [/ is made dimensionless
using the wavenumber «. Any dimensionless quantity ¢ is then decomposed into a
homogeneous part and a disturbed part only depending on 1 such that g(x, z) = (¢)(n) +
agoq(n) e'**. More explicitly, for the velocity and Reynolds stress fields the decomposition
reads

u= (u) + aloite'®
w = alow e

T, = 1+ afoty

1 .
Tz — P__P_ _X2 +agoty e . (Ad)
P p 3
1 .
Tz = _§X2 + agot e
1 .
Tox = _§X2 +05§07:xxelax
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We denote by 7, the disturbance for the difference t.; — p/p, including the pressure
contribution. For the mixing length, we have

al = (I) + agol e, (A5)

The expression of lis given by (2.1). The Hanratty correction is found after linearisation
of (2.2), which becomes

R+y)C=i(Tx— T — 1p). (A6)
The mean velocity profile (u) is the solution of the equation
D22 + Ry =1, (A7)

where [ ;, denotes the derivative with respect to 7.
At the first order, the system for the disturbed field reads

e — 2(0) (u) %1

u,=—iw+
i R +2(02(u) ,
W, = —iut
- (A8)
4
7= (i{u) + )ﬁ+(u)’ [
] ( (u>7n n
Ty, = —1()W + ity
The associated four boundary conditions are
#(0) = —(u) ,(0) = —R
w(0) =0
. © (A9)
w(oo) =0
Txz(00) = 0.

A.2. The energy equation
We consider the energy equation written for the total enthalpy &, = h + u?/2 4+ w?/2

0 a (v oh —
v oh ——
X ———wh+uty,+wty,—wh | =0, (A10)
Pr oz

where the flux f is given by f = —((v/Pr)(8h/8z) — Wh' + ute: + wt.. — why).

The turbulent heat flux —A'w’ is modelled with a SGDH using the eddy viscosity v, =
(3u /0z) and the turbulent Prandtl number Pr;
12 du dh

_w = 2.2 (A1)
Pr, 8Z 82

The mixing length /g is given by (2.4) in § 2.4. It is then made dimensionless with the
wavenumber «. The enthalpy and flux are made dimensionless with u; and we denote by
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¢ = ¢/ pu the dimensionless wall heat flux. Again, the + sign is dropped in (A12),
(A14), (A15) and (A16). All these quantities are decomposed in a homogeneous part and
a disturbed part as follows:

h= h + il iax
(h) +alohe } (AL12)

f=f) +atef e,
and
aly = (lg) + alolp €. (A13)

The mean enthalpy (/) is deduced from

(wﬂwm+5j

Pr, Pr ) (R).y + (u) + ¢, =0, (Al4)

while the perturbations h and f are ruled by

P | R I 5o .
f+w <h>+§<”>>_(fxz<u)_§x W+u)

RUF
(lo)?(u) + R
Pr; Pr (A15)

7 Prt

A | T
—i Txx(’/t)_gX u+wj.
The associated boundary conditions are

Mm=—mmm1

f( - (A16)
oo) = 0.

Appendix B

The in-flight experimental TATER tests are described in Hochrein & Wright (1976) and
the aerothermodynamic design procedure, including comparisons with measurements,
is detailed in McAlees & Maydew (1985). Scallops formed on the nosetip of these
experiments during the ascension phase but the conditions encountered are representative
of ablation mechanisms occurring on thermal protection system employed in re-entry
vehicles. To complete the data presented by Hochrein & Wright (1976) and McAlees &
Maydew (1985), Navier—Stokes computations were run. The complete flight trajectory
was simulated taking into account the ablation that occurs on the nosetip of the vehicle
and real gas effects. For the part of the flight during which the ablation occurs, the orders
of magnitude of different quantities obtained in the inner region of the boundary are
presented below, justifying the hypothesis used in the present study.
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Because of the detached shock located upstream, the conical part of the nosetip faces
a weakly supersonic flow with a Mach number at the edge of the boundary layer M,
around 1-2. Within the inner region of the boundary layer the Mach number is below
unity and the density varies by 20 % around a mean value of 6 kg m~3. Therefore, the
compressibility effects are not so pronounced and considering the linear analysis of an
incompressible fluid in such a case can be viewed as a first approach. The friction velocity
is approximately 50 m s~! and the viscosity is estimated at v = 1.2 x 107> m? s~ at the
wall. The surface regression (McAlees & Maydew 1985) lasts approximately 11 s and the
maximal regression speed is approximately 2 mm s~!. The maximum wall heat flux is

¢w ~ 50 MW m~2, which gives ¢}, ~ 70.
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