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The Weak b-principle: Mumford
Conjecture

Rustam Sadykov

Abstract. In this note we introduce and study a new class of maps called oriented colored broken
submersions. This is the simplest class of maps that satisfies a version of the b-principle and in dimen-
sion 2 approximates the class of oriented submersions well in the sense that every oriented colored
broken submersion of dimension 2 to a closed simply connected manifold is bordant to a submersion.
We show that the Madsen–Weiss theorem (the standard Mumford Conjecture) fits a general setting of
the b-principle, namely, a version of the b-principle for oriented colored broken submersions together
with the Harer stability theorem and Miller–Morita theorem implies the Madsen–Weiss theorem.

1 Introduction

A smooth map of manifolds f : M → N is said to be an immersion if its differential
is a fiberwise monomorphism TM → TN of tangent bundles. According to a re-
markable theorem by Smale and Hirsch, the space of immersions M → N of given
manifolds with dim M < dim N is weakly homotopy equivalent to a simpler topo-
logical space of formal immersions, i.e., fiberwise monomorphisms TM → TN. The
Smale–Hirsch theorem was one of the primary motivations for the general Gromov
h-principle: given a differential relation, the space of its solutions is weakly homotopy
equivalent to the space of its formal solutions [9].

In [14] (for a short review, see [15]) I proposed a stable homotopy version of the
h-principle, the b-principle, motivated by a series of earlier results including [1, 2, 5,
7, 11, 13, 16, 17, 19, 20]. Namely, with every open stable differential relation R, there
are associated a moduli space MR of solutions, a moduli space hMR of stable formal
solutions, and a map α : MR → hMR. It turns out that MR is an H-space with a
coherent operation, while hMR is an infinite loop space [14], whose stable homotopy
type is relatively simple. The b-principle is the following conjecture.

The b-principle The canonical map MR → hMR is a group completion.

When it holds true, the b-principle allows us to perform explicit computations of
invariants of solutions. On the other hand, the b-principle is true for most of the dif-
ferential relations (see [14] and references above); notable exceptions are the differ-
ential relations of oriented submersions of positive dimensions d. In this important
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exceptional case the b-principle inclusion coincides with the Madsen–Tillmann map

α :
⊔

BDiff M → Ω∞MTSO(d),

where
⊔

BDiff M is the disjoint union of the classifying spaces of orientation pre-
serving diffeomorphism groups of oriented closed (possibly not path connected)
manifolds M of dimension d, while Ω∞MTSO(d) is the infinite loop space of the
Madsen–Tillmann spectrum [7]. The standard Mumford conjecture asserts that for
d = 2 and for a closed oriented surface Fg of genus g, the map α|BDiff Fg induces
an isomorphism of rational cohomology rings in stable range of dimensions ∗ � g.
The Mumford conjecture was proved in the positive by Madsen and Weiss in [11],
and later several other proofs of the Madsen–Weiss theorem were given in [4,7,8,10].

Theorem 1.1 (Madsen–Weiss) The rational cohomology ring of BDiff Fg is a poly-
nomial ring in terms of Miller–Morita–Mumford classes κi :

H∗(BDiff Fg ; Q) ' Q[κ1, κ2, . . . ], for ∗ � g,

or, equivalently, the map α|BDiff Fg is a rational homology equivalence in a stable range
of dimensions.

Remark 1.2 In fact, Madsen and Weiss proved a stronger statement, which, in
particular, implies that the map α|BDiff Fg is an integral homology equivalence in a
stable range.

In the current note we study a new class of flexible maps—the class of colored bro-
ken submersions—that provides a good approximation to the class of submersions,
retains the sheaf property, and satisfies a version of the b-principle. More generally,
we define colored broken solutions to an open stable differential relation; these enjoy
many interesting properties including the following ones.

• For an open stable differential relation R that does not satisfy the b-principle, a
stable formal solution of R can be integrated into a broken solution (Theorem 8.3).
Thus, stable formal solutions differ from solutions only in broken components of
the corresponding broken solutions.

• The pullback of a colored broken solution with respect to a generic smooth map is a
colored broken solution. Thus, colored broken solutions form a class and therefore
possess a moduli space (Section 8).

• The class of colored broken solutions satisfies the sheaf property, and therefore it
is suitable for study by means of homotopy theory.

• Colored broken solutions of an open stable differential relation R satisfy a weak
b-principle (Theorem 8.3) even if solutions of R do not.

To begin with we introduce the broken submersions/solutions in Section 2. In
Sections 3–5 we recall the notions of a concordance and bordism. Next we show that
the class of broken submersions approximates well the class of submersions (Sec-
tions 6–7); in Section 7 we essentially prove Theorem 1.3 (a complete proof is given
in Section 10).
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Theorem 1.3 Let f : M → N be an oriented broken submersion of dimension 2 to a
simply connected manifold N. Suppose that the image of broken components of f in N
is disjoint from ∂N; in particular, over ∂N the map f is a fiber bundle with fiber Fg .
Suppose that g � dim N. Then f is bordant to a fiber bundle by a bordism that is a
broken submersion itself.

Theorem 1.3 relies heavily on the Harer stability theorem, and its proof is very
much in the spirit of a singularity theoretic argument by Eliashberg, Galatius, and
Mishachev in [4]. Next we review the weak b-principle (Section 8), and introduce
the colored broken submersions (Section 9). The moduli space Mb of colored bro-
ken submersions is an H-space with coherent operation. Its classifying space BMb

is known; it has essentially been determined in [7] (for a proof in present terms
(see [14])). Finally, in Section 10 we show that in view of the Harer stability the-
orem and the Miller–Morita theorem, the Madsen–Weiss theorem follows from the
weak b-principle for colored broken submersions.

Colored broken submersions are similar to (but have better properties than) mar-
ked fold maps. In particular, the moduli space of colored broken submersions of
dimension d is an appropriate homotopy colimit of classifying spaces BDiff M of
diffeomorphism groups of manifolds of dimension d with certain boundary com-
ponents; compare the original paper [11]. Colored broken submersions should be
compared with enriched fold maps of Eliashberg, Galatius, and Michachev from [4]
who used them to give a topological proof of the Madsen–Weiss theorem. Note, how-
ever, that in contrast to enriched fold maps, colored broken submersions behave well
with respect to taking pullbacks and possess a moduli space (Section 8). We adopt
much of the singularity theory technique from [4], but we do not use the major au-
thors’ tool: the Wrinkling theorem. The determination of the classifying space BMb

is essentially from [7] (however, the rest of their proof of the Madsen–Weiss theorem
is not necessary in the current setting).

2 Broken Solutions

Given a smooth map f : M → N, a point x ∈ M is said to be regular if in a neighbor-
hood U of x the map f |U is a submersion. A point x ∈ M is a fold point if there are
coordinate charts about x and f (x) such that

(2.1) f (x1, . . . , xm) = (x1, . . . , xn−1,±x2
n ± x2

n+1 ± · · · ± x2
m),

where n is the dimension of N, and x1, . . . , xm are coordinates in the coordinate
chart about x. If every point in M is regular or fold, then f is said to be a fold map. It
immediately follows from the local coordinate representation (2.1) of f that the set
of fold points of f is a submanifold of M of codimension d + 1 where d = dim M −
dim N.

Suppose that a path component σ of fold points of f is closed in M and the restric-
tion f |σ is an embedding. Suppose that there is a submersion τM of a neighborhood
of σ in M onto a neighborhood of 0 in Rd+1 such that the inverse image of 0 is pre-
cisely σ. Then the map τM trivializes the normal bundle of σ, though we do not fix a
diffeomorphism of a neighborhood of σ onto σ×Rd+1. Similarly, suppose that there
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Figure 1: A breaking component.

is a map τN of a neighborhood of f (σ) to R trivializing the normal bundle of f (σ)
in such a way that τN ◦ f = gσ ◦ τM on the common domain, where gσ is a Morse
function on Rd+1 with one critical point. Then we say that σ is a broken component;
the maps τM and τN are parts of the structure of a broken component. The minimum
of the indices of the critical points of gσ and−gσ is called the index of σ.

Remark 2.1 The normal bundle in M of a component σ of fold points of a gen-
eral fold map f is not trivial, and f |σ is not necessarily an embedding. Therefore
not every component of fold points of a fold map admits a structure of a broken
component. In fact, even if f |σ is an embedding and the normal bundles of σ in M
and f (σ) in N are trivial, the component σ might still not admit a structure of a
breaking component since f near σ may be twisted.

Remark 2.2 Broken components of index 0 are not compatible with certain nice
structures including the structure of broken Lefschetz fibrations in the case of maps
of 4-manifolds into surfaces. For this reason in the general setting in [15] we prohib-
ited broken components of index 0 and proved the weak b-principle in the form of
Theorem 8.3 with a less restrictive assumption of indices 6= 0. For the argument in
the present paper, however, it is convenient to allow broken components of index 0
(so that the space Mb in Section 9 is connected).

Given an open stable differential relation R imposed on maps of dimension d,
suppose a map f away of the broken fold components is a solution. Then we say
that f is a broken solution of R.

3 Bordisms

We need the notion of an oriented bordism of maps of manifolds with boundaries.
An oriented bordism of a manifold with boundary is an oriented bordism with sup-
port in the interior of the manifold. An oriented bordism of maps is defined appro-
priately.
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Definition 3.1 Let M be an oriented compact manifold with corners such that ∂M
is the union of−M0, M1 and ∂M0 × [0, 1], where ∂M0 × {i} and ∂Mi are identified
for i = 0, 1 (see Figure 2). In particular, the manifolds ∂M0 and ∂M1 are canonically
diffeomorphic. The corners of M are along ∂M0 × {i}.

Figure 2: An oriented bordism.

Let N be an oriented compact manifold with corners and with a similar decompo-
sition of the boundary. Let f : M → N be a map that preserves the decompositions.
In particular, appropriate restrictions of f define two maps

fi : (Mi , ∂Mi)→ (Ni , ∂Ni), where i = 0, 1.

We say that f is an oriented bordism from f0 to f1 if f = fi × id and f = f0 × id[0,1]

over collar neighborhoods of Mi and ∂M0 × [0, 1], respectively. If f0, f1 belong to
some class of maps, then we require that f belongs to the same class. For example, a
bordism of fiber bundles is a fiber bundle.

The product map F0 × id[0,1] : M0 × [0, 1] → N0 × [0, 1] is said to be a trivial
bordism. Let m0 ⊂ M0 be a compact submanifold of codimension zero, and f : m→
N0 × [0, 1] a bordism of f0 = F0|m0. Then, there is a well-defined bordism F : M →
N0 × [0, 1] where M is obtained from M0 × [0, 1] by removing m0 × [0, 1] and
attaching m along the new fiberwise boundary. The map F coincides with f over m
and with F0× id[0,1] over the complement to m. We say that F is a bordism of F0 with
support in m0 and with core f .

4 Concordances

A bordism M → N of maps is said to be a concordance if the manifold N is a prod-
uct N0 × [0, 1], and the decomposition of the boundary is the obvious one with
N1 = N0 × {1}. Thus, for example, two proper maps fi : Mi → N with i = 0, 1 of
manifolds with empty boundaries are said to be concordant if there is a proper map
f : M → N × [0, 1] together with diffeomorphisms

f−1
(

N × [0, ε)
)
≈ M0 × [0, ε), f−1

(
N × (1− ε, 1]

)
≈ M1 × (1− ε, 1]
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onto collar ε-neighborhoods of M0 and M1 for some ε > 0 such that in view of these
identifications

f | f−1
(

N × [0, ε)
)

= f0 × id[0,ε), f | f−1
(

N × (1− ε, 1]
)

= f1 × id(1−ε,1]

(see Figure 3). A concordance of maps of a given type is required to be a map of the
same type, e.g., a concordance of submersions is a submersion.

Figure 3: Concordance. Figure 4: The map (g, α).

One concordance, called breaking, is of particular interest. It is constructed by
means of a compact manifold W of dimension d, and a proper Morse function f on
the interior of W with values in (0,∞). Suppose that f−1[1,∞) is diffeomorphic
to ∂W × [1,∞) and, furthermore, the restriction of f to the latter is the projection
onto [1,∞). Then

(g, α) : Int W × Sn
f×id
−−−→ (0,∞)× Sn ⊂−→ Rn+1 ' Rn × R

is a broken submersion [15] (see Figure 4). The inclusion (0,∞) × Sn ⊂ Rn+1 in
the composition takes a scalar r and a vector v ∈ Rn+1 of length 1 to rv. By [15,
Proposition 4.2], the map g is also a fold map.

Let iA denote the inclusion of a subset A into R, and let (gA, αA) denote the pull-
back of the map (g, α) : Int W × Sn → Rn × R with respect to

(iA × idRn−1 )× idR : (A× Rn−1)× R −→ Rn × R.

Then (g[0,1], α[0,1]) is a concordance (see Figure 5). Its inverse is a concordance from
(g1, α1) to (g0, α0). It is called the standard model for breaking concordances, as this
concordance breaks fibers of a submersion.

Finally, for any map ( f , α) : W → N × R and any of its regular points p, there is
a neighborhood U ≈ Rd+n−1 × R of p in W such that ( f , α) has the form (g1, α1)
over U . We say that a concordance of ( f , α) is breaking if it coincides with the stan-
dard model for breaking concordances over U , and it is trivial elsewhere (i.e., it has
support in U ).

https://doi.org/10.4153/CJM-2015-003-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-003-4


The Weak b-principle: Mumford Conjecture 469

Figure 5: Breaking concordance.

5 Basic Concordances

We will show that Theorem 1.3 follows from the Harer stability theorem. The argu-
ment is in the spirit of Eliashberg, Galatius, and Mishachev in [4]. In this section we
consider two basic concordances that will play an important role in the proof.

Example 5.1 Let π : E → N be a fiber bundle with fiber a surface Fg of genus g.
Let D1,D2 be two disjoint submanifolds of E such that π|Di is a trivial disc bundle
over N. In particular, Di = N × D2. We aim to construct a broken fold concordance
of π to a fiber bundle with fiber Fg+1 (see Figure 6). Constant maps of D2 t D2 and
D1× S1 to a point are concordant by means of a Morse function u : W → [0, 1] with
a unique critical point (of index 1) (see Figure 7). Let Π be the concordance of π
with support in D1 t D2 and with core id×u : N ×W → N × [0, 1]. Then Π is a
stabilizing concordance; it attaches to each fiber Fg a handle (see Figure 6).

A stabilizing concordance also exists in a slightly more general setting where
π : E→ N is a broken fibration and D1,D2 are two disjoint submanifolds of E such
that each π|Di is a trivial disc bundle over N.

Figure 6: A stabilizing concordance.

u

Figure 7: Cobordism W .
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In general, however, a given fiber bundle π : E→ N might not contain trivial disc
subbundles. For this reason we also introduce a concordance of Example 5.2 which
stabilizes fibers locally, only over a subset U ⊂ N; such a concordance always exists.
First we will explain the construction in the model case where N ⊂ Rn is a disc and π
is a disjoint union of two disc bundles, and then we consider the general case. The
fibers of this concordance are presented in Figure 8.

Example 5.2 For the construction we will need a compact manifold W and a
proper Morse function h on the interior of W such that the fibers of h over nega-
tive and positive values are D2 t D2 and D1 × S1, respectively; compare h with the
function u in Figure 7.

Let f0 be the disjoint union of two trivial disc bundles Di = D2×N → N, i = 1, 2,
over the standard open disc N ⊂ Rn of radius 1. Let U ⊂ N be the concentric closed
subdisc of radius 0.5 (see the part of Figure 8 over N × {0}).

Figure 8: Fibers over N × [0, 1].

Let S be the lower hemisphere of the sphere in N × [0, 1] ⊂ Rn × R of radius 0.5
centered at {0} × {1}; it meets the boundary N × {1} transversally along ∂S =
∂U ×{1} and the projection of the interior of S to N×{1} is a diffeomorphism onto
the interior of U × {1} (see Figure 8). We define f to be the broken submersion to
N × [0, 1] ⊂ Rn+1 given by the restriction of

W × Sn h×idSn−−−−→ R × Sn −→ Rn+1,

where the second map in the composition takes a real number λ and a vector v of
length 1 to λv +en+1. Thus, over a neighborhood S×R of S in N the concordance f is
given by idS×h, and over each path component of the complement to S it is a trivial
fiber bundle.

We will use this concordance in a more general setting.
Let f0 be a broken submersion E → N and U ⊂ N a small disc with smooth

boundary. We aim to construct a concordance that attaches to each fiber over the
interior points of U a handle. We identify U with a closed ball in Rn of radius 0.5, and
a neighborhood V of U in N with an open ball of radius 1. If U is sufficiently small,
then E| f−1

0 V contains two disjoint submanifolds D1 and D2 such that each f |Di is a
trivial disc bundle over V . We have constructed the concordance of f0|D1tD2. Since
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it is trivial near the fiberwise boundary, we can extend the constructed concordance
trivially to a concordance of f0| f−1

0 (V ). Since the obtained concordance is trivial
near f−1

0 (∂V ), we can extend it trivially to a desired concordance of f0.

An important consequence of the concordance in Example 5.2 is the following
proposition.

Proposition 5.3 Let f0 : M → N be a broken submersion over a compact manifold.
If over (possibly empty) ∂N the original map f0 is a fiber bundle with fiber Fg of genus
g � dim N, then f0 is concordant to a broken submersion f1 with connected fibers such
that each regular fiber is of genus� dim N.

6 Folds of Index 0

6.1 Erasing Concordance

Let F be an oriented closed surface, and N an arbitrary manifold. Then the broken
submersion given by the projection N × F → N is concordant to an empty map.
The concordance is given by a broken submersion of N ×W where W is an oriented
compact 3-manifold with ∂W = F. For example, if W is the standard 3-disc of radius
1/
√

2, then the erasing concordance idN ×h where h(x) = −|x|2 + 0.5 joins the trivial
sphere bundle over N with the empty map.

6.2 Chopping Concordance

Let π : E → N be a submersion of dimension 2 with fiber Fg and D → N a trivial
open disc subbundle of π. A chopping concordance chops off a sphere from each fiber.
More precisely, a chopping concordance modifies the fiber bundle only inside D, so
we will assume that E = D. There are a bordism W from D2 to D2 t S2 and a
Morse function f : W → [0, 1] with a unique critical point of index 2. The desired
concordance is idN × f .

The following proposition at least in part appears in [11] and [4].

Proposition 6.1 Every proper broken submersion f0 of even dimension d to a compact
simply connected manifold N is concordant to a broken submersion f1 with no fold points
of index 0.

Proof Suppose that N is closed. Let σ be a component of folds of f0 of index 0,
and let U denote one of the two path components of the complement to f0(σ) in N
for which the co-orientation of f0(σ) is outward directing. The concordance that
we construct is trivial outside a neighborhood of f−1

0 (Ū ). Consequently, we can
assume that N is a neighborhood of Ū . In fact, only the component containing σ
is modified, and therefore, by the definition of broken submersions, we can assume
that M = σ × Rd+1 and f0 is the product of idσ and g = x2

1 + · · · + x2
d+1 followed by

an identification of σ × R with a neighborhood of σ in N. Let S be a submanifold
in N × [0, 1] such that ∂S = ∂Ū × {0} and the projection of the interior of S to N
is a diffeomorphism onto U . Over a neighborhood S× R of S the map f is given by
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idS×g, while over each of the two components of the complement to S in N × [0, 1]
the map f is a trivial fiber bundle.

Suppose now that N has a non-empty boundary. Let σ be a component of folds of
index 0. If f0(σ) bounds S and the co-orientation of ∂S is outward directing, then σ
can be eliminated by the concordance of the first part of the proof. Suppose ∂S is in-
ward directing. Let N ′ denote the enlargement of N with a collar ∂N×[0, 1] attached
to N by means of an identification of ∂N ⊂ N with ∂N × {1}. Let us extend f0 over
the collar so that it is a concordance that first chops off a sphere from each fiber and
then eliminates the choped off component by the erasing concordance. In particular,
the extended map f0 has a new component σ′ of breaking folds of index 0. Further-
more, the image of σ′ t σ bounds S′ ⊂ N ′ such that the co-orientation of ∂S′ is
outward directing. Hence, σ and σ′ can be eliminated by the concordance of the first
part of the proof. Thus, we can assume that f0 has no folds of index 0.

7 Geometric Consequences of the Harer Stability Theorem

Let Γg,k denote the relative mapping class group of a surface Fg,k of genus g with k
boundary components. There are several proofs of the Mumford conjecture. Most of
them use the Harer stability theorem, which states that the homomorphism Γg,k →
Γg,k−1 induced by capping off a boundary component of Fg,k and the homomor-
phism Γg,k → Γg+1,k−2 induced by attaching a cylinder along two boundary com-
ponents are homology isomorphisms in dimensions � g. In view of the Atiyah–
Hirzebruch spectral sequence, the Harer stability theorem is equivalent to the asser-
tion that the homomorphisms under consideration induce bordism isomorphisms
of classifying spaces in dimensions� g.

Example 7.1 By the Harer stability theorem, given a fiber bundle f0 : E0 → N0

over a compact manifold of dimension� g with fiber Fg,k and a section s over ∂N0

together with a trivialization τ of the normal bundle of s(∂N0) in E0|∂N0, there exist
an oriented bordism of f0 to f1 : E1 → N1 and extensions of s from ∂N0 = ∂N1

over N1 and τ from s(∂N1) over s(N1). Indeed, the initial data defines a map of pairs

(N0, ∂N0)→ (BDiff Fg,k,BDiff Fg,k+1),

and the assertion is equivalent to the existence of a bordism to a map with image in
BDiff Fg,k+1.

Example 7.2 Let f0 be a fiber bundle over N0 with fiber Fg of genus g � dim N0.
Suppose that there exists a stabilization f1 of f0 (see Example 5.1). Then f0 is zero
bordant if and only if f1 is. Indeed, the assertion follows from the fact that the two
inclusions

BDiff Fg ←− BDiff Fg,1 −→ BDiff Fg+1

are bordism equivalences in stable range.

Eliashberg, Galatius, and Mishachev [4] gave an important geometric interpreta-
tion of the Harer stability theorem. In this section we deduce two consequences of
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the Harer stability theorem (Proposition 7.3 and 7.6) for broken submersions using
a singularity theory technique from [4].

Proposition 7.3 Let f0 be a broken submersion M0 → N0 to a closed simply connected
manifold N0. Then f0 is bordant to a fiber bundle.

Proof In view of Propositions 5.3 and 6.1, we can assume that the fiber of f0 over
each regular point is a connected surface of genus � dim N0 and that f0 has no
folds of index 0. Let σ denote a path component of breaking folds Σ f0 of f0. Since
f0(σ) is cooriented and N0 is simply connected, the Mayer–Vietoris sequence implies

h

Figure 9: The image g(S̃).

that the complement to f0(σ) consists of two components. Let S denote the closed
submanifold in N0 bounded by f0(σ) such that the coorientation of the fold values
∂S is inward directed (see Figure 9). Recall that a neighborhood of σ is identified
with σ × R3, and near σ the map f0 is given by idσ ×m, where m = −x2

1 − x2
2 + x2

3.
Let σ̃ be the submanifold σ × {0} × {0} × R in the neighborhood of σ. Note that
the coordinates x1 and x2 trivialize the normal bundle of σ̃. Let S̃ = S ∪∂S S be the
double of S. A neighborhood σ̃′ of ∂S in S̃ is canonically diffeomorphic to σ̃′. Given
a map h of S̃, the restrictions of h to the two copies of S are denoted by h+ and h−.

In view of Lemma 7.4 below, we can assume that the canonical diffeomorphism
σ̃′ → σ̃ extends to an inclusion h : S̃ ⊂ M0 such that h+ and h− are right inverses
of f0, and the trivialization of the normal bundle of σ̃ extends to that over h(S̃).

The promised concordance will have support in a small neighborhood h(S̃)× R2

of h(S̃); hence, we can assume that the complement is empty. Let S′ be a copy of S in
N0×[0, 1] such that S′meets the boundary of N0×[0, 1] transversally along ∂S×{0}
and the projection of the interior of S′ to N0 is a diffeomorphism onto the interior
of S. Over a neighborhood S′ × (−1, 1) of S′ in N0 × [0, 1], the desired concordance
is idS′ ×u, where u is the Morse function of Example 5.1 (see Figure 7), while over
the complement to S′ in N0 the concordance is trivial.
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Lemma 7.4 After possibly modifying f0 by an oriented bordism, we can assume that
there is an embedding h : S̃→ M0 with trivialized normal bundle extending the canoni-
cal diffeomorphism σ̃′ → σ̃ and the trivialization of its normal bundle, respectively such
that h− and h+ are right inverses to f0.

Proof We can assume that f0|Σ f0 is a general position immersion. Let S j denote
the submanifold in S of points of f0(Σ f0) of multiplicity j and let S0 be the com-
plement to

⋃
Si in S. Then S =

⋃
S j . Suppose that h−, h+ and trivializations have

been constructed over a neighborhood of S j for all j > k. Let D be an open tubular
neighborhood of Σ f0 in M0. Then over B0 = Sk the map b0 given by f0|M0 \ D is a

a component 
of S 0

a component 
of S 1

a component 
of S 2

Figure 10: The composition of S.

fiber bundle with fiber Fg,2k for some g. By Example 7.1, there is a bordism b : E→ B
of b0 to b1 : E1 → B1 such that h−, h+ and trivializations extend over B1. The bor-
dism b can be essentially uniquely thickened to a bordism b : E → B = B × Dk of
the restriction of f0 over a disc neighborhood of B0 so that b is a broken submersion
with breaking fold values

⊔
B × Dk−1

i , where Dk−1
i ranges over all k coordinate hy-

perdiscs in Dk. Let N be the union of N0 × I and B in which the top submanifold
(B0 × Dk)× {1} is identified with B0 × Dk ⊂ B. Let M be a similar union of M0 × I
and E. Then after smoothing corners we obtain a bordism f = f0× idI ∪b of f0 to f1

such that h−, h+ and trivializations extend over a neighborhood of Sk( f1). Thus, by
induction, we get a desired extension.

Remark 7.5 The above construction works in the case of N0 = S1 as well. Indeed,
choose S to be the interval in N0 over which the fibers of f0 are of maximal Euler
characteristic. Then the above bordism eliminates the two folds in f−1

0 (∂S). Contin-
uing by induction we end up with a submersion. Note that here the bordism of f0 is
actually a concordance.

Proposition 7.6 Let f0 be a broken submersion M0 → N0 to a compact simply con-
nected manifold N0. Suppose that over ∂N0 the map f0 is a fiber bundle with fiber Fg of
genus g � dim N0. Then f0|∂N0 is zero bordant in the class of fiber bundles.
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Figure 11: Trading singularities.

Figure 12: The component σ can be “traded” for a new component of breaking folds parallel
to ∂N0.

Proof In view of Propositions 5.3 and 6.1, we can assume that the fiber of f0 over
each regular point is a connected surface of genus � dim N0 and that f0 has no
folds of index 0. Let σ be a component of folds and S a closed domain bounded by
f0(σ). Assume that the coorientation of ∂S is outward directing; otherwise σ can be
eliminated as above. We can assume that a neighborhood of ∂N0 is identified with
∂N0 × [0, 2) and over U = ∂N0 × [0, 1] the broken submersion f0 is the trivial
concordance of f0|∂N0. Modify f0 over U so that it is a concordance that first stabi-
lizes the fibers and then destabilizes them back (see Example 5.1). Then f0 has two
new components of breaking folds. One of these two components can be eliminated
with σ by the concordance as above. Thus the component σ can be “traded” for
a new component of breaking folds parallel to ∂N0. Consequently, we can assume
that f0 only has breaking folds parallel to ∂N0.

In other words, the map f0 over a collar neighborhood of ∂N0 is a concordance
that stabilizes the fibers, and over the complement to the collar neighborhood of ∂N0

it is a fiber bundle. It remains to apply Example 7.2.
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8 The Weak b-principle

A collection C of smooth maps f : M → N with fixed dim M − dim N = d is said to
be a class of maps of dimension d if the induced map h∗g in the pullback diagram

M′ −−−−→ M

h∗g

y g

y
N ′

h
−−−−→ N

is in C for every map g ∈ C and every map h transverse to g.

Example 8.1 If g : M → N is a submersion, then for every smooth map
g : N ′ → N, the induced map h∗g is a submersion as well. If g is an immersion,
then the induced map h∗g is an immersion as well, provided that h is transverse to g,
i.e., provided that for each x ∈ N, x′ ∈ N ′, and y ∈ M such that h(x′) = x = g(y),
we have

Im(dx′h)⊕ Im(dyg) ' TxN.

Thus, both submersions and immersions of dimension d form classes of maps. More
generally, solutions to any open stable differential relation R form a class of maps
(see [14]). The transversality condition is clearly important here; if a smooth map h
is not transverse to a smooth map g, then the pullback space M′ might not admit a
manifold structure.

An appropriate quotient space of all proper maps in a collection C is called the
moduli space for C. Namely, recall that the opening of a subset X of a manifold V is an
arbitrarily small but non-specified open neighborhood Op(X) of X in V . Consider
the affine subspace

{x1 + · · · + xm+1 = 1} ⊂ Rm+1.

It contains the standard simplex ∆m bounded by all additional conditions 0 ≤ xi ≤ 1.
Let ∆n

e denote the opening of ∆m in the considered affine subspace. Then every mor-
phism δ in the simplicial category extends linearly to a map δ̃ : ∆m

e → ∆n
e . Let Xm

denote the subset of C of proper maps to ∆m
e transverse to all extended face maps.

Then X• is a simplicial set with structure maps X(δ) given by the pullbacks f 7→ δ̃∗ f .
The (simplicial model of the) moduli space M for C is the semi-simplicial geomet-

ric realization of X•. We say that C satisfies the sheaf property if f : M → N belongs
to C whenever each f | f−1Ui is in C for a covering {Ui} of N. If f satisfies the sheaf
property, then the sets Ω∗M and [N,M] are isomorphic to the sets of bordism classes
and concordance classes of proper maps in C to N, respectively.

We say that a class C is monoidal if the map of the empty set to a point is a map
in C and the class C is closed with respect to taking disjoint unions of maps, i.e., if
f1 : M1 → N and f2 : M2 → N are maps in C, then

f1 t f2 : M1 tM2 −→ N

is also a map in C. For a monoidal class C the space M is an H-space with a coherent
operation (i.e., the first term of a Γ-space). We will recall the construction of its
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Figure 13: A map ( f , α) in the collection hC1.

classifying space M1 and an approximation of M1 by a space hM1 of a relatively
simpler homotopy type, for details see [14], [15].

Let C1 be the derived collection (not a class) of proper maps ( f , α) : V → N × R
with f ∈ C such that every regular fiber of ( f , α) is null-cobordant; and let C1 ⊂ hC1

be a subcollection of pairs withα◦ f−1(x) 6= R for all x ∈ N. The spacesM1 and hM1

are the geometric realizations of simplicial sets of maps ( f , α) to ∆m
e ×R such that f

is transverse to all extended face maps and ( f , α) is in C1 and hC1, respectively.

Definition 8.2 The weak b-principle for C is said to hold true if the inclusion
M1 → hM1 is a homotopy equivalence.

Theorem 8.3 (Sadykov, [15]) Let C be a monoidal class of maps satisfying the sheaf
property. Suppose that every breaking concordance of every map in hC1 is itself in hC1.
Then the weak b-principle for C holds true.

Under the assumptions of Theorem 8.3, if M is path connected, then it is homo-
topy equivalent to its group completion ΩM1. Furthermore, in view of Theorem 8.3,
we can identify M with ΩhM1.

9 Colored Broken Submersions

A map f : M → N might not be a broken submersion even if its restriction to every
subset f−1(Ui) for an open covering {Ui} of N is a broken submersion. In other
words, broken submersions do not satisfy the sheaf property. We will use colored
broken submersions that satisfy the sheaf property.

Let I denote the category of finite sets n = {1, . . . , n} for n ≥ 0 and injective
maps. It is a symmetric monoidal category with operation given by taking the disjoint
union m t n of objects in I. An m-coloring on a broken submersion f is a map C f

from the set of path components of breaking folds of f to the set m such that the
restriction of f to breaking components of any fixed color is an embedding; here we
allow m to be any element in I or the set∞ of positive integers. The moduli space of
m-colored broken submersions is denoted by Mm. Recall that an I-space is a functor
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I → Top. We are interested in the I-space m 7→ Mm; its hocolim is denoted by Mb

(see [18]).

Theorem 9.1 The set of oriented bordism classes of broken submersions of dimension 2
over closed oriented manifolds of dimension n is naturally isomorphic to Ωn(Mb).

Proof Given a broken submersion f over an oriented closed manifold, a choice of
a coloring on its folds determines a class τ ( f ) in Ω∗(Mb). We can choose a coloring
so that different breaking components are colored by different colors. Then, since
every isomorphism m → m is a morphism in I, the class τ ( f ) does not depend on
the choice of the coloring. If f is bordant to a broken submersion g, then we can
assume that the images of the classifying maps of f and g are in Mm for a sufficiently
big palette m, and therefore τ ( f ) = τ (g). Conversely, every map τ : N → Mb

representing a bordism class in Ω∗(Mb) is linearly homotopic to a map with image
in Mm for some sufficiently big palette m, and therefore every map τ determines a
colored broken submersion.

The same argument shows that the canonical map of the telescope

M∞ = colimMm →Mb

and the canonical map Mb →M∞ are homotopy equivalences. In particular, homo-
topy classes [N,Mb] are in bijective correspondence with concordance classes of∞-
colored broken maps to N. Similarly, the homotopy colimit of the I-space m 7→M1

m

is denoted by M1
b and colimM1

m 'M1
b.

A general argument on I-spaces shows that Mb is an infinite loop space (see [18]).
Alternatively, the Galatius–Madsen–Tillmann–Weiss argument in [14] shows thatMb

is an infinite loop space, and its classifying space isM1
b. The H-space operation onMb

is defined by

Mm ×Mn −→Mmtn,

∆ f ×∆g 7→ ∆ ftg ,

where ∆h is the simplex in the moduli space corresponding to a map h. We choose
the unit point to be the vertex in M∅ ⊂Mb corresponding to the map ∅→ ∆0

e .
Since Mb is path connected, we have Mb ' ΩM1

b. Furthermore, by Theorem 8.3
the weak b-principle for colored broken submersions holds true. Consequently,
Mb ' ΩhM1

b.

10 Proof of the Mumford Conjecture

Proof of Theorem 1.1 Let hM ' Ω∞MTSO(2) be the moduli space for ori-
ented stable formal submersions of dimension 2. We need to show that the map
BDiff Fg → hM induces an isomorphism of homology groups in dimensions� g.
Recall that hM1 is the geometric realization of the simplicial set whose simplicies are
given by pairs of proper maps ( f , α) to ∆n

e × R such that f is a submersion of di-
mension 2 (see [14]). The simplicies of a bigger simplicial complex hM1

b correspond
to proper maps ( f , α) to ∆n

e × R such that f is a broken submersion of dimension 2
whose components of folds are labeled. Hence, there is an inclusion hM1 → hM1

b,
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which defines a map of the loop space hM ' ΩhM1 to the loop space ΩhM1
b 'Mb.

Hence, we get a sequence of maps

η : BDiff Fg −→ hM −→Mb.

Since Mb is an H-space, its fundamental group is abelian and therefore equals
[S1,Mb]. On the other hand, every broken submersion over S1 is concordant to a
fiber bundle with fiber Fg (see Remark 7.5). Hence, the fundamental group of Mb

is the image of the perfect group π1(BDiff Fg) provided that g ≥ 3. Consequently,
the space Mb is simply connected. In particular, every bordism class of Mb is repre-
sented by a map of a simply connected manifold N. By Proposition 7.3, every broken
submersion over a closed simply connected manifold N is bordant to a fiber bun-
dle with fiber Fg . Thus, η induces an epimorphism in integral homology groups in
dimensions n� g.

Let us show that η∗ is injective in dimensions n � g, i.e., given a broken sub-
mersion f0 over N0 which restricts over ∂N0 to a fiber bundle with fiber Fg of genus
g � dim N0, there is a fiber bundle f1 over N1 that restricts over ∂N1 = ∂N0 to
f0|∂N0. Again, we can assume that N is simply connected. Thus, the statement fol-
lows from Proposition 7.6. This implies that η∗ is an isomorphism in integral homol-
ogy groups in dimensions� g. Consequently, the b-principle map BDiff Fg → hM
induces an injective homomorphism in homology groups in a stable range. On the
other hand, by the Miller–Morita theorem, the induced homomorphism in rational
homology groups is also surjective in a stable range [12]. This implies the Mumford
conjecture.

Proof of Theorem 1.3 We can turn the map η : BDiff Fg →Mb defined in the proof
of Theorem 1.1 into a cofibration. Then the pair (Mb,BDiff Fg) classifies bordism
classes

( f , ∂ f ) : (M, ∂M) −→ (N, ∂N)

such that f is a smooth broken submersion over N that restricts over the bound-
ary ∂N to a fiber bundle ∂ f with fiber Fg , dim N � g. It remains to observe that
Ω∗(Mb,BDiff Fg) = 0 for ∗ � g, since η∗ is an isomorphism in a stable range.
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