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We use direct numerical simulations to study the two-dimensional flow of a rotating, half
soap bubble that is heated at its equator. The heating produces buoyancy and rotation
generates Coriolis forces in the fluid. However, owing to the curved surface of the bubble,
the buoyancy and Coriolis forces vary with latitude on the bubble, giving rise to rich flow
behaviour. We first explore the single-point properties of the flow, including the Reynolds
and Nusselt numbers, mean fields and Reynolds stresses, all as a function of latitude. For a
given Rayleigh number, we observe a non-monotonic dependence on the Rossby number
Ro, and large-scale mean circulations that are strongly influenced by rotation. We then
consider quantities that reveal the multiscale nature of the flow, including spectra and
spectral fluxes of kinetic and thermal energy, enstrophy and structure functions of velocity
and temperature. The fluxes show that just as for non-buoyant two-dimensional turbulence
on a flat surface, there is an upscale flux of kinetic energy at larger scales (fed by buoyancy
injection of turbulent kinetic energy at smaller scales), and a downscale flux of enstrophy
at smaller scales. The kinetic energy spectrum and velocity structure functions are well
described by Bolgiano–Obukhov (BO) scaling at scales where the effects of rotation are
weak. The temperature structure functions do not, however, satisfy BO scaling in general,
owing to strong intermittency in the temperature field.

Key words: turbulence simulation, rotating turbulence

† Email address for correspondence: xylcfd@hust.edu.cn

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 924 A19-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

61
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:xylcfd@hust.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.610&domain=pdf
https://doi.org/10.1017/jfm.2021.610


X.Q. He, A.D. Bragg, Y.L. Xiong and P. Fischer

1. Introduction

Thermal convection is ubiquitous in natural and engineered systems (Ahlers, Grossmann
& Lohse 2009; Lohse & Xia 2010; Stevens, Clercx & Lohse 2013). For example,
convection plays a dominant role in many solar energy flat-plate collectors (Das, Roy
& Basak 2017), and heat transfer from the core to the exterior of stellar structures is
of paramount importance (Long et al. 2020). In such flows, the fluid motion is driven
by buoyancy forces that arise from density variations owing to thermal gradients, and
the flows can be classified based on the relative directions of the imposed temperature
gradient and gravity (Das et al. 2017). Some studies have considered flows where the
temperature gradient is perpendicular to gravity (Basak et al. 2009a,b, 2010; Hussam &
Sheard 2013), but perhaps the most commonly studied situation is where the temperature
gradient is parallel to gravity, such as in Rayleigh–Bénard convection (RBC). However, in
many real world circumstances, the imposed temperature gradient is neither parallel nor
perpendicular to gravity (Bejan 2013). Such situations can occur for thermal convection
inside enclosures with irregular geometries, which have been reviewed in detail recently
by Das et al. (2017). Among the many different possible geometries, thermal convection
on a spherical surface is an interesting model for studying astrophysical and geophysical
flows (Kellay 2017), and this is the subject of the present work.

Two key parameters that determine the behaviour of a (non-rotating) thermally
convective flow are the Rayleigh number, Ra and the Prandtl number Pr. The Ra
characterises the ratio of the time scale between diffusive and convective thermal
transport; the Pr is the ratio of momentum diffusivity to thermal diffusivity. Given Ra, Pr,
two other emergent parameters in the flow that are of utmost importance are the Reynolds
number Re and the Nusselt number Nu, with Re denoting the ratio of inertial force to
viscous force and Nu characterising the heat transport properties of the flow.

The RBC is an important model for the study of the turbulent thermal convection,
and can be implemented conveniently in experiments or numerical simulations (Ahlers
et al. 2009; Lohse & Xia 2010; Stevens et al. 2013). Research on RBC may be broadly
described in terms of two aspects: the small-scale and large-scale dynamics. The study of
the small-scale properties has tended to focus on the scaling of velocity and temperature
structure functions, and intermittent behaviour in the flow. A recent review of the
small-scale properties can be found in the work of Lohse & Xia (2010). Studies on the
large-scale properties of RBC tend to focus on exploring the dependence of the emergent
properties Nu and Re on the control parameters Ra and Pr, as well as the properties of
thermal plumes and large-scale circulations (LSC). A detailed discussion of theoretical
and experimental progress on RBC can be found in Ahlers et al. (2009).

In geophysical and astrophysical flows, convectively driven flows are also influenced
by system rotation, e.g. owing to planetary rotation. Rotating RBC (RRBC) is often
considered a suitable model for studying such flows where both buoyancy and rotation
play important roles (Stevens et al. 2013). In RRBC the Rayleigh–Bénard system rotates
about the direction parallel to gravity (the vertical direction), and when considered in a
rotating frame of reference, rotation is seen to introduce centrifugal and Coriolis forces
to the dynamical system. For RRBC another important control parameter is the Rossby
number, Ro. When Ro � 1 the effect of rotation on the flow is weak, while it is strong for
Ro � 1.

An early experimental study on RRBC was performed by Rossby (1969) in a cylindrical
vessel. This study showed that the onset of convection is delayed by rotation (Rossby 1969),
something that was studied in more detail in Zhong, Ecke & Steinberg (1993), and also
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that the heat flux in the flow could be increased by up to 10 % owing to the presence of
rotation. Since the work of Rossby (1969), further research on cylindrical vessel flows with
varying aspect ratios Γ have shown that with the increase of 1/Ro, RRBC goes through
three successive regimes: the weak rotation regime, the moderate rotation regime and the
strong rotation regime (Kunnen et al. 2011; Stevens et al. 2013), which are denoted by
regime I, II and III, respectively.

In regime I, the rotation is too weak to interfere with the flow structures and the heat
flux is essentially independent of the rotation because the rotationally induced forces are
negligible compared to buoyancy (King, Stellmach & Buffett 2013). In this regime, LSC
are the prominent flow structures and Nu does not vary with Ro (Weiss & Ahlers 2011b,a).

In regime II, the system depends on the interaction between the rotationally induced
forces and buoyancy. Small vertical plumes parallel to the rotation axis take the place of
LSC as the dominant flow structures, while heat transport is enhanced with decreasing
Ro (Boubnov & Golitsyn 1986; Sakai 1997; Vorobieff & Ecke 2002; Kunnen, Geurts &
Clercx 2010; Scheel, Mutyaba & Kimmel 2010; Weiss & Ahlers 2011b; King, Stellmach &
Aurnou 2012; Guervilly, Hughes & Jones 2014; Horn & Shishkina 2015; Zhong, Sterl & Li
2015). In this regime, variations of the flow in the vertical direction can suppressed owing
to the well known Taylor–Proudman effect. However, the vertical plumes also convey hot
fluid from the Ekman layer to the cold bulk of the fluid, a phenomenon referred to as
‘Ekman pumping’. This pumping causes Nu to increase with decreasing Ro in regime
II. Zhong & Ahlers (2010) and Stevens et al. (2009) have studied the transition where
the flow enters regime II by 1/Ro passing its critical value 1/Roc. Zhong et al. (2009)
studied the dependence of the heat-flux enhancement owing to rotation on Ra and Pr, and
shows that when Pr is large and Ra is relatively small, enhancements of up to 30 % are
possible. However, they showed that for sufficiently small Pr the enhancement vanishes.
Furthermore, they showed that increasing Ra also reduces the enhancement. Zhong &
Ahlers (2010) also showed that that the critical non-dimensional rotation rate 1/Roc
required for the flow to enter regime II is reduced by increasing Pr and is not affected
by Ra in the parameter range concerned by their study.

In regime III, Ro is small enough such that the rotationally induced forces dominate
the system and Nu plunges as Ro is further decreased (Rossby 1969; Zhong et al. 1993;
Liu & Ecke 1997; Vorobieff & Ecke 2002; Kunnen, Clercx & Geurts 2006, 2008; Zhong
et al. 2009). In this regime, turbulence is quenched and the efficiency of heat transport is
greatly diminished. The heat flux experiences a sharp drop owing to the Taylor–Proudman
effect in regime III. Vorobieff & Ecke (2002) discovered that near the top and bottom
boundaries cyclonic vortices collect that are aligned with the rotation axis. The same
phenomenon appears not only in the experiments of Sakai (1997) and Boubnov & Golitsyn
(1986) but also in the numerical simulations of Julien et al. (1996). Grooms et al. (2010)
specified these cyclonic vortices as convective Taylor columns and developed a nonlinear
model of these flow structures. Furthermore, in the study of Guervilly et al. (2014), these
cyclonic vortices were shown to be large scale and posses a long lifetime when Ra and
1/Ro are large enough. In the study of King et al. (2009), regime III is argued to emerge
when the Ekman boundary layer become thinner than the thermal boundary layer. Horn &
Shishkina (2015) decomposed the velocity field into toroidal and poloidal components to
understand the differences between the three regimes, while Rajaei et al. (2018) considered
the transition between the regimes using statistical analysis of the turbulent velocity fields.

Many studies have focused on the scaling properties of the heat flux, such as the
behaviour of the scaling exponent ξ in the relation Nu ∼ Raξ . The first unifying theoretical
attempt is achieved by Malkus & Chandrasekhar (1954). In his work, ξ is deduced to be 1/3
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using a hypothesis based on the self-adapted thickness of thermal boundaries. However,
the theory of Malkus & Chandrasekhar (1954) lacks a formulation of the relation between
Nu and Pr. There are also other theoretical efforts made by Castaing et al. (1989) and
Cioni, Ciliberto & Sommeria (1997), which are based on the model of the mixing zone.
They proposed a scaling behaviour of ξ = 2/7. Meanwhile, the same scaling coefficient
is obtained by Shraiman & Siggia (1990) with a very different hypothesis. Julien et al.
(1996) showed that ξ = 2/7 when boundaries are stress-free, while no-slip boundaries
give ξ = 1/3. Pharasi et al. (2011) showed that for stress-free boundaries, when Pr = 0.1,
ξ = 2/7 only if Nu exceeds a critical value. King et al. (2012) showed that in regime III
Nu = (Ra/Rac)

3, where Rac is the critical Ra for the onset of convection. Grossmann &
Lohse (2000, 2001, 2002, 2004) have established the unifying theory which succeeded in
the prediction of ξ in a wide range of Ra and Pr. The GL theory unifies the formulas of
ξ and agrees well with the most of the experimental results. One of the most significant
insights offered by the Grossmann–Lohse (GL) theory is to develop the kinetic and thermal
dissipation rate εU and εT into boundary components and bulk components, respectively
(i.e. εU = εU,BL + εU,bulk and εT = εT,BL + εT,bulk). The two fundamental premises of
GL theory have already been validated by the experiments (Xia, Lam & Zhou 2002;
Funfschilling et al. 2005). The first premise is the existence of large-scale circulation in
the flow (Xi, Lam & Xia 2004). The second is that both the velocity and temperature
boundaries satisfy the Prandlt–Blasius laminar hypothesis (Quan et al. 2010; Zhou & Xia
2010). Using both premises, the formula of εU,BL, εU,bulk, εT,BL and εT,bulk is evaluated
through dimensional analysis. Moreover, εU and εT are explicitly linked to Nu, Ra and Pr.
As a result, Nu(Ra, Pr) is obtained by an implicit equation of Nu, Ra and Pr. However, the
experimental results indicate that the rotation of thermal convection have little impact on
ξ (King et al. 2012).

In RRBC, the centrifugal force contributes in two ways. Part of the contribution
would exist even in the absence of temperature variations throughout the flow, and this
contribution may be absorbed into the pressure gradient term. The other contribution
is a centrifugal buoyancy force that is associated with density fluctuations. As noted in
Horn & Aurnou (2018), most previous direct numerical simulation (DNS) studies have
ignored this centrifugal buoyancy force, sometimes motivated by simplicity (because
there are many other complex aspects of RRBC that are already yet to be understood
even without this additional effect) and sometimes motivated by the fact that in some
parameter regimes it may be appropriate to neglect centrifugal buoyancy force under
Boussinesq-type approximations. However, Scheel et al. (2010) performed DNS that
included the centrifugal buoyancy force and showed that it was necessary in order to
explain the square patterns discovered in the experiments of RRBC, and Horn & Aurnou
(2018) and Horn & Aurnou (2019) conducted DNS including this force and showed that it
can play an important role.

Recently, an alternative system has been explored in order to understand turbulent
motion and heat transfer on a curved surface, namely Kellay’s soap bubble (Kellay 2017),
which has yielded interesting results on the behaviour of turbulent convection, as well as
a model for hurricane tracking (Seychelles et al. 2008, 2010; Meuel et al. 2013, 2018).
In Kellay’s experiment, a half soap bubble (hemisphere) is heated from its equator,
producing buoyancy forces and convection, resulting in a quasi-two-dimensional flow on a
hemispherical surface. Unlike standard RBC, the local buoyancy force in this flow varies
with location not only because of variations in the local fluid temperature, but also because
the component of gravity acting on the flow varies with latitude on the bubble. In Bruneau
et al. (2018), DNS of the soap bubble showed Re and Nu as a function of Ra and found
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scaling behaviour that is remarkably similar to that found in standard RBC. In Meuel et al.
(2018) the system was further explored by subjecting the soap bubble to rotation. Unlike
RRBC, in the rotating soap-bubble flow, the effect of the Coriolis force varies with location
owing to geometrical reasons, being zero at the equator of the bubble. Significant effects
of the rotation were found on the structure functions of velocity and temperature in Meuel
et al. (2018).

The study of Meuel et al. (2018) only rather briefly explored the properties of the flow on
the rotating soap bubble, and there is much to understand about this flow, and the various
ways in which its properties are similar and dissimilar to RRBC. Such a detailed study is
the goal of this present paper. The outline of the paper is as follows. In § 2, the equations of
motion for the system, their properties and non-dimensional parameters are discussed, as
well as the DNS used to solve the equations. In § 3 we explore the single-point properties
of the flow, including the behaviour of Re, Nu, the mean flow and Reynolds stresses. In
§ 4 we explore the properties of the flow at different scales, considering fluxes of kinetic
energy, enstrophy and thermal energy. Structure functions of the velocity and temperature
field are also explored, along with a detailed consideration of their scaling behaviour.
Finally, in § 5 we draw conclusions of the work and discuss future directions for study.

2. Governing equations and DNS

2.1. Governing equations and control parameters
We consider the flow of a half soap bubble of radius R that is heated from its equator,
replicating the experimental set-up of Kellay (2017). The bubble geometry is such that
its thickness is negligible compared to its radius, and the flow in the radial direction has
little effect on the heat and mass transfer of the system. Therefore, the system may be
modelled as a two-dimensional flow on a hemispherical surface of radius R, with boundary
conditions applied at the equator. Furthermore, we consider a system where the bubble
rotates at a rate Ω ≡ ‖Ω‖ about its north pole.

The bubble may be described in terms of the three-dimensional Cartesian coordinate
system, with coordinates (x, y, z) and unitary basis vectors ex, ey, ez. With respect to
this, the bubble under consideration has its equator on the (x, y, z = 0) plane, and
rotates about ez, with ez · Ω = Ω . Given the curved surface of the bubble, it is also
convenient to use a geographical coordinate system with coordinates (r, θ, φ), and basis
vectors er(θ, φ), eθ (θ, φ), eφ(θ, φ), where er(θ, φ) × eθ (θ, φ) = eφ(θ, φ). The latitudinal
coordinate θ ∈ [0, π] increases from 0 at the equator, and the longitudinal coordinate is
φ ∈ [0, 2π). In these coordinates, the two-dimensional flow is on the surface (r = R, θ, φ),
and there is no flow in the direction er(θ, φ).

The two-dimensional flow on the hemisphere is governed by the incompressible
Navier–Stokes equations with the Oberbeck–Boussinesq approximation

DU
Dt

= − 1
ρ

∇p + ν�U − βTg − 2Ω × U − FU, (2.1)

∇ · U = 0, (2.2)

DT
Dt

= α�T − ST, (2.3)

where U is the velocity field, p is the pressure field, T is the temperature field, ν is the
kinematic viscosity, α is coefficient of thermal diffusion, β is the coefficient of thermal
expansion and ρ is the constant reference density. We consider the case where gravity and
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rotation are aligned with ez, and ez · g = −g. As discussed in the introduction, centrifugal
buoyancy can play a role in the dynamics of rotating, convective turbulence. However, as
with most studies on RRBC, we choose to neglect its effect here for simplicity, in order to
first understand the role of the Coriolis force on the bubble flow. The part of the centrifugal
force that is not associated with the background density field is, however, accounted for
through the pressure term via the incompressibility constraint.

Boundary conditions are applied on the hemisphere equator, with no-slip for
the velocity and a fixed value for the temperature field. Buoyancy driven
flow on the hemisphere is therefore fundamentally different to the classical
Rayleigh–Bénard systems for which there is a boundary through which heat flows out. In
Kellay’s heated soap bubble experiment (Kellay 2017), part of the energy is lost through
exchange with the cold air outside and inside the bubble. The terms in (2.1) and (2.3)
involving S and F are supposed to represent this energy loss to the surrounding air.
Related to this, these terms are also included in order to generate a non-trivial steady-state
flow, because without the friction term in the momentum equation, the inverse energy
cascade would lead to the formation of large-scale structures on to which energy continues
to accumulate. The momentum friction term is therefore include to arrest the inverse
cascade, allowing for a steady-state turbulent flow, analogous to the way in which DNS of
two-dimensional turbulence uses a friction term to prevent accumulation of energy at the
large scales of the flow (Boffetta & Ecke 2012). For the temperature equation, the boundary
condition we are using is such that in the absence of a cooling term in (2.3), the temperature
of the flow would continue to rise until it equals that on the boundary. In such a state, there
would be no temperature gradients or fluctuations, and so no convection or turbulence.
Therefore, a cooling term is required in (2.3) in order to generate a non-trivial steady
state. We will return momentarily to discuss the specification of S and F. Concerning the
initial conditions for the system, the initial temperature of the bubble is the same as the
surrounding air, and the velocity is initially zero everywhere.

In order to define the various control parameters in the system, we take the characteristic
length to be the radius of the bubble R, and the temperature difference δT to be the
difference in temperature between the equator and the cold air surrounding the bubble.
Using these, we define the Raleigh number Ra, Rossby number Ro and Prandtl number Pr
as follows:

Ra ≡ gβR3δT
να

, (2.4)

Ro ≡
√

g/R
2Ω

, (2.5)

Pr ≡ ν

α
. (2.6)

On the bubble, the velocity field may be represented as

U = Uθeθ + Uφeφ, (2.7)

where Uθ ≡ eθ · U , Uφ ≡ eφ · U , while for the radial direction, Ur ≡ er · U = 0 because
the flow is two-dimensional. We also define the fluctuations U ′ ≡ U − 〈U〉 with
components U′

θ ≡ Uθ − 〈Uθ 〉, U′
φ ≡ Uφ − 〈Uφ〉, where 〈·〉 denotes an ensemble average.

Using these, we define the other two crucial parameters in the system, the Reynolds
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number Re and the Nusselt number Nu

Re ≡
√

2EturbR
ν

, (2.8)

Nu ≡ HT(0)

HC(0)
, (2.9)

where Eturb ≡ (1/2)〈U′
θU′

θ + U′
φU′

φ〉 is the flow turbulent kinetic energy (TKE), HT(θ) is
the total latitudinal heat flux, defined as

HT(θ) ≡ λ
α

〈U′
θT ′〉 − λ

R
∂

∂θ
〈T〉, (2.10)

where λ denotes the thermal conductivity, T ′ ≡ T − 〈T〉 and HC(θ) is the latitudinal heat
flux owing to pure conduction (i.e. the state corresponding to U = 0), defined as

HC(θ) ≡ −λ
R

∂

∂θ
〈T〉
∣∣∣
U=0

. (2.11)

In our DNS, HC(θ) is computed using the same boundary conditions and parameters as
the full system, except that in the temperature equation, U = 0 is enforced. Both Re and
Nu depend directly on the properties of the flow, and implicitly on Ra, Ro and Pr. The
definition of Nu given in (2.9) is chosen because, owing to the curved surface of the bubble,
standard expressions for Nu that are used in RBC cannot be reliably used here to quantify
the heat transfer properties of the bubble. For the definition of Nu in (2.9), Nu quantifies
the enhanced transfer at the equator owing to fluid motion, and for the parameter regimes
we consider, owing to turbulence. We will also later consider HT(θ) in order to understand
the local heat transfer properties over the surface of the bubble.

The flow under consideration is driven by buoyancy, with heating at the equator. As
such, the fluid will convect away from the equator, and the intensity of the turbulence
will increase with increasing Ra. Furthermore, −βTg = βTgθeθ , where gθ = gez · eθ ,
and hence irrespective of spatial variations in T , buoyancy forces will vary from being
maximum at the equator where ez · eθ = 1 to minimum at the north pole where ez · eθ = 0.
This geometrical variation, caused by the curved surface of the bubble, makes flow of the
heated bubble distinct from RBC, for which such geometrical variation of the buoyancy
force is absent.

The Coriolis term can significantly affect the flow when Ro ≤ O(1), although it makes
no direct contribution to the TKE because (Ω × U) · U = 0. For the system under
consideration, the Coriolis force may be expressed as

− 2Ω × U = −2ΩUθez × eθ − 2ΩUφez × eφ, (2.12)

and at the equator, ez × eθ = 0 and ez × eφ = er. Because there is no flow in the
radial direction, then at the equator the Coriolis force makes no contribution to the
two-dimensional flow on the hemisphere, but its effect becomes increasingly large as θ

increases. As a result, irrespective of spatial variations in Uθ , Uφ , the Coriolis force varies
on the surface of the bubble. This geometrical variation again makes flow of the rotating
soap bubble quite different from standard RRBC.

Taking the curl of the steady, inviscid, linearised form of (2.1), with S = F = 0
and Ω a constant, we obtain (Ω · ∇)U = −β∇ × (Tg). Expressing this balance in the
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geographical coordinate system, we obtain the following equations:

∂Uθ

∂θ
= βg

Ω

tan θ

cos θ

∂T
∂φ

, (2.13)

∂Uφ

∂θ
= −βg

Ω
tan θ

∂T
∂θ

. (2.14)

These results show how temperature variations on the surface of the bubble can lead to
flow with shear, owing to the presence of both buoyancy and rotation acting on the system.
The effect vanishes near the equator because the Coriolis force vanishes on the equator.
In the limit Ro → 0, ∂θUθ = ∂θUφ → 0, which corresponds to the Taylor–Proudman
theorem (in vector form, (Ω · ∇)U = 0) on the surface of the bubble, associated with
the formation of Taylor–Proudman columns in the flow. For the fully nonlinear system
(2.1), if Ro is sufficiently small, the Taylor–Proudman behaviour may be still observed at
the large scales of the flow where nonlinearity is weakest. This may be seen by introducing
a scale-dependent Rossby number Ro� ≡ 1/(τ�Ω), that compares the eddy turnover time
at scale �, namely τ�, to the period of rotation, 1/Ω . Because τ� increases with increasing
�, then Ro� decreases with increasing �. At scales where Ro� � 1, the Taylor–Proudman
behaviour may still be observed in the full system described by (2.1), whereas the effect of
rotation will be subleading at all scales where Ro� > 1.

Near the equator, the no-slip condition on the soap bubble generates strong viscous
effects, and the Taylor–Proudman theorem does not apply. Instead, one may observe a
regime where the Coriolis term balances viscous forces in the flow, at scales where Ro� �
1. This balance can affect momentum transport into or out of the boundary layer near the
equator.

The other key feature influencing the bubble flow is its two-dimensionality. This
geometry prohibits both vortex stretching and strain self-amplification, which are
fundamental to the energy cascade in three-dimensional turbulence (Carbone & Bragg
2020; Johnson 2020). This prohibition gives rise to an additional inviscid constant of
motion in two-dimensional flow as compared with three-dimensional turbulence, namely
the inviscid conservation of enstrophy, and this leads to an inverse energy cascade in
two-dimensional turbulence (Boffetta & Ecke 2012). The DNS for flow on a non-rotating
bubble surface also identified an inverse energy cascade (Bruneau et al. 2018), similar to
two-dimensional turbulence on a flat surface.

2.2. Details of DNS
Following Bruneau et al. (2018), we solve (2.1)–(2.3) using the stereographic coordinate
system for numerical simplicity. The governing equations in the stereographic coordinate
system are discretised using a finite-difference method on a uniform staggered grid. The
discrete values of the pressure and temperature are located at the centre of each cell, and
those of the velocity components are located at the middle of the sides. The unsteady term
is discretised by the second-order Gear scheme, and the nonlinear term is handled using
a third-order Murman-like scheme. For instance −u∂xu − v∂yu is approximated at point
(i − 1/2, j) by

−ui,j

3
Δi,ju
δx

− 5ui−1,j

6
Δi−1,ju

δx
+ ui−2,j

6
Δi−2,ju

δx
if ui−1,j > 0, (2.15)

−ui−1,j

3
Δi−1,ju

δx
− 5ui,j

6
Δi,ju
δx

+ ui+1,j

6
Δi+1,ju

δx
, if ui,j < 0, (2.16)
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−vi−1/2,j+1/2

3
Δi−1/2,j+1/2u

δy
− 5vi−1/2,j−1/2

6
Δi−1/2,j−1/2u

δy

+vi−1/2,j−3/2

6
Δi−3/2,j−3/2u

δy
, if vi−1/2,j−1/2 > 0, (2.17)

−vi−1/2,j−1/2

3
Δi−1/2,j−1/2u

δy
− 5vi−1/2,j+1/2

6
Δi−1/2,j+1/2u

δy

+vi−1/2,j+3/2

6
Δi−3/2,j+3/2u

δy
, if vi−1/2,j+1/2 < 0, (2.18)

where ui,j = 1/2(ui+1/2,j + ui−1/2,j) and vi−1/2,j+1/2 = 1/2(vi,j+1/2 + vi−1,j+1/2) are
obtained by linear interpolation, Δi,ju = (ui+1/2,j − ui−1/2,j) and Δi−1/2,j+1/2u =
(ui−1/2,j+1 − ui−1/2,j).

The corresponding term for the vertical component of the velocity v is discretised in
the same way. Details on the construction of this scheme can be found in Bruneau &
Saad (2006) where a comparison of various third-order schemes is also presented. The
linear terms of the governing equations are treated implicitly, while the nonlinear terms are
treated explicitly. The pressure and velocity are directly solved using the Cramer method in
a fully coupled form, then the temperature equation is solved using the conjugate gradient
method. Further details on the code used and numerical methods may be found in Bruneau
et al. (2018).

The details of the different DNS and the associated parameters are listed in table 1.
There are three different classes of runs: A, B and C. In class A, Ra and Ro are fixed
while the numerical grid resolution varies from 512 × 512 to 2048 × 2048. From this
we determined that 1024 × 1024 provides the optimum resolution for convergence and
minimal computational cost for the parameter ranges we consider, as was also found in
Bruneau et al. (2018). The appropriate resolution is mostly constrained by the thermal
boundary-layer thickness, because the thermal boundary layer is thinner than the velocity
boundary layer for Pr > 1. Previous studies indicate that the maximum Ra for which the
thermal boundary layer could be resolved by 1024 × 1024 for Pr = 7 is Ra = 3 × 109

(Bruneau et al. 2018). Although they did not consider rotation, their findings also apply
to our study because rotation reduces the kinetic energy dissipation rate, so that the grid
resolution requirements are most stringent for the 1/Ro = 0 case. It is also to be noted that
the stereographic projection method used in our numerical simulations is also beneficial
to the grid resolution because the uniform grid in the projected plane corresponds
in spherical coordinates to a smaller cell size near the equator than near the polar
zone.

Class B runs consider three different values of S and F in order to evaluate their
impact on the flow statistics. We found that S = F = 0.06 gave the optimum choice,
as was also found in Bruneau et al. (2018) for the non-rotating bubble DNS. Class C
runs use the optimum grid resolution and values of S, F found from runs A and B,
but now with varying Ro and Ra in order to explore the role of rotation on the flow
properties.

The results shown in the following sections correspond to the statistically stationary
regime of the flow. In this regime, the ensemble average 〈·〉 is approximated using a
time average, and an average over φ, the latter being appropriate because the system
is statistically invariant with respect to φ. The statistics depend only on the latitudinal
coordinate θ , and owing to symmetry, we plot the results only over the range θ ∈ [0, π/2].
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Run Ra Pr 1/Ro S F Time Resolution
A1 3 × 109 7 0 0.06 0.06 1100 512 × 512
A2 3 × 109 7 0 0.06 0.06 1100 1024 × 1024
A3 3 × 109 7 0 0.06 0.06 1100 1536 × 1536
A4 3 × 109 7 0 0.06 0.06 500 2048 × 2048
B1 3 × 106 7 0, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 5, 10 0.06 0.06 100 − 1100 1024 × 1024
B2 3 × 106 7 0, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 5, 10 0.08 0.08 100 1024 × 1024
B3 3 × 106 7 0, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 5, 10 0.1 0.1 100 1024 × 1024
C1 3 × 107 7 0, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 5, 10 0.06 0.06 100 − 1100 1024 × 1024
C2 3 × 108 7 0, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 5, 10 0.06 0.06 100 − 1100 1024 × 1024
C3 3 × 109 7 0, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 5, 10 0.06 0.06 100 − 1100 1024 × 1024
D1 3 × 103 7 0, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 5, 10 0.06 0.06 100 − 1100 1024 × 1024
D2 3 × 104 7 0, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 5, 10 0.06 0.06 100 − 1100 1024 × 1024
D3 3 × 105 7 0, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 5, 10 0.06 0.06 100 − 1100 1024 × 1024

Table 1. The parameters for the DNS cases. Time corresponds to the number of time units for which the DNS
was run, and is expressed in non-dimensional form using

√
(R/g).

3. Results and discussion: single-point information

We begin with a visual, qualitative comparison of the effects of Ro and Ra on the
instantaneous properties of the flow. In figure 1 we plot the temperature, TKE and
enstrophy fields for 1/Ro = 0 and for Ra = 3 × 106 and Ra = 3 × 109 to see the effect
of varying Ra. The same quantities are also plotted for Ra = 3 × 109 at 1/Ro = 10 to
see the effect of varying Ro. We note that the plumes and corresponding vortices in
these visualisations are qualitatively very similar to those observed in experiments of
a soap bubble (Meuel et al. 2013, 2018), and comparing the plumes for Ra = 3 × 106

and Ra = 3 × 109 in figure 1 we observe that the plumes become smaller and more
convoluted in shape with increasing Ra. This is because of the enhanced turbulence
intensity as Ra is increased, leading to stronger mixing in the flow. Associated with
this is that the thermal boundary-layer thickness reduces significantly in going from
Ra = 3 × 106 to Ra = 3 × 109. Concerning the TKE and enstrophy, we find that as Ra
is increased, smaller-scale structures in the flow emerge, with strong enstrophy occurring
at higher latitudes. For fixed Ra, as 1/Ro is increased the turbulent activity in the flow
becomes restricted to lower latitudes where buoyancy is still strong enough to overcome the
suppressing influence of the Coriolis force. The insets that highlight the thermal boundary
layer indicate that the boundary layer and its thickness are only weakly affected by rotation.
This is probably because of the fact that the Coriolis force is most active at the largest
scales of the system, and plays a weaker role at the small scales of the flow, such as those
that characterise the thin boundary layer at Ra = 3 × 109.

Note that in this work, the Rayleigh number ranges from Ra = 3 × 106 to Ra = 3 × 109,
which is much higher than the critical Rayleigh number for the flow. The critical
Rayleigh number will depend on 1/Ro, and our data indicates that for 1/Ro = 10, the
critical Rayleigh number is larger than Ra = 3 × 104 but smaller than Ra = 3 × 105,
while for 1/Ro = 0 it is between Ra = 3 × 103 and Ra = 3 × 104. A much larger
set of DNS covering a wider portion of the parameter space would be required to
determine the actual critical value and its dependence on 1/Ro. This is left for future
work.
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Figure 1. Instantaneous temperature (a–c), TKE (d–f ) and enstrophy (g–i) for 1/Ro = 0. Panels (a,d,g) show
results for Ra = 3 × 106, (b,e,h) show results for Ra = 3 × 109 without rotation and (c, f,i) show results for
Ra = 3 × 109 and 1/Ro = 10. Insets to temperature visualisation highlight a section of the thermal boundary
layer.

3.1. The behaviour of the Reynolds and Nusselt numbers
We now turn to quantitatively analyse the statistics of the flow, beginning with an
examination of the behaviour of the Re and Nu in the flow. We remind the reader that
based on their definitions, these are emergent properties of the flow, that depend upon the
control variables Ra, Ro and on the coordinate θ .

In figure 2 the variation of Re for different Ra and 1/Ro is shown. In each case, Re
reaches a maximum at some intermediate θ , being small near the equator owing to the
no-slip condition, and small near the north pole where buoyancy forces are weak because
the heating is at the equator. The location of the maximum Re is weakly affected by
Ra as well as Ro. The effect of Ro on Re is somewhat subtle, leading to an increase
for some latitudes and a decrease for others. However, once 1/Ro ≥ 1 the suppression
of turbulence at higher latitudes becomes evident. This suppression occurs because as θ

increases, the buoyancy force decreases, and the Coriolis force becomes dominant. The
Coriolis force does not generate TKE, and the Taylor–Proudman effect (combined with
the fact that 〈Uθ 〉 = 0 for this flow) inhibits transport in the θ direction. As a result, TKE
is not able to be transported to the top of the bubble. However, as Ra is increased for
fixed Ro, the convection becomes stronger and the Reynolds number increases at high
latitudes.
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Figure 2. Variation of Re with θ for varying 1/Ro and Ra.

In figure 3 we consider the total heat flux HT(θ) (defined in (2.10)) divided by its value
on the equator θ = 0, in order to understand how the heat-transfer properties vary with
θ . The results reveal a weak dependence on Ra but a strong dependence on 1/Ro. In
particular, as 1/Ro is increased, HT(θ)/HT(0) decays to zero more rapidly, owing to the
turbulence being suppressed away from the equator by the Coriolis force, and the fact
that buoyancy becomes weaker as θ increases. Again, the dependence of the Coriolis and
buoyancy forces on θ makes the behaviour of the flow we are considering quite different
from standard RRBC.

The scaling behaviour of Nu and Re are shown in figure 4. The results for Nu show
that Nu ∼ Ra0.3, and the exponent seems to be independent on 1/Ro. This value is not
far from the classical theoretical prediction of 1/3 for standard RBC (Ahlers et al. 2009).
The results for Re show that Re ∼ Ra0.49 for low 1/Ro and Re ∼ Ra0.53 for 1/Ro = 10.
The insets reveal that for lower values of Ra, Nu is slightly increased as 1/Ro is increased,
while Re decreases more significantly as 1/Ro is increased. However, as Ra increases,
this dependence on 1/Ro reduces because the buoyancy force becomes stronger relative
to the Coriolis force as Ra is increased, and hence the dependence on 1/Ro becomes
weaker.

3.2. The mean flows
In figure 5 we plot the normalised mean temperature 〈T〉/δT , for different Ra and 1/Ro.
When 1/Ro < 1, 〈T〉/δT is weakly affected by rotation because the role of the Coriolis
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Figure 3. Variation of HT (θ)/HT (0) with θ for varying 1/Ro and Ra.
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Figure 4. Scaling behaviour of Nu and Re with Ra for varying 1/Ro. Insets highlight the influence of 1/Ro.

force is subleading in this regime. For 1/Ro ≥ 1, the Coriolis force and the associated
Taylor–Proudman effect inhibits thermal transport at high latitudes, causing 〈T〉/δT to
reduce significantly as 1/Ro is increased. However, because in this regime heat transfer
towards higher latitudes is significantly reduced, heat accumulates at lower latitudes. This
explains the increase in 〈T〉/δT that can be seen in figure 5 for 1/Ro ≥ 1 at lower latitudes.
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Figure 5. The averaged temperature profiles 〈T〉, normalised by δT , as a function of latitude, and for different
Ra, 1/Ro.

The thickness of the thermal boundary layer depends on Ra, which can be seen in figure 5,
and scales as ∼ Ra−0.3, approximately independent of Ro. This is consistent with the
scaling behaviour of Nu.

In figure 6 we show results for 〈Uφ〉 normalised by
√

Eturb, for different Ra and 1/Ro.
The results in figure 6 indicate that zonal-like mean flows are present, with the sign of 〈Uφ〉
varying with θ . Note that because 〈Uθ 〉/

√
Eturb (not shown) is very small everywhere

on the bubble, it is more appropriate to classify these as zonal flows, rather than LSC
which are important in classical RBC. For the 1/Ro = 0 case, the symmetries of the
problem would suggest that 〈Uφ〉 = 0, which is not what we observe. This suggests that
for the 1/Ro = 0 case, the finite mean velocity could be because of a lack of statistical
convergence. We tried running the DNS for much longer for this case, but did not
observe a reversal. This indicates that the zonal flow observed must fluctuate on very long
timescales, somewhat analogous to the very long lifetimes of the LSC observed in classical
RBC.

As 1/Ro is increased, the zonal flows associated with 〈Uφ〉 become stronger, especially
for larger Ra, with significant shear developing at lower latitudes. Unlike the no-rotation
case, zonal flows may exist in the true steady state for finite 1/Ro because rotation provides
the symmetry breaking factor required to allow 〈Uφ〉 /= 0. The relation described by (2.14)
describes how a mean temperature gradient ∂θ 〈T〉 could be associated with a mean shear
∂θ 〈Uφ〉. However, given that ∂θ 〈T〉 ≤ 0, this effect cannot explain the non-monotonic
variation of 〈Uφ〉 observed in figure 6. An alternative mechanism for the generation of
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Figure 6. The mean longitudinal velocity 〈Uφ〉, normalised by
√

Eturb, as a function of latitude and for
different Ra, 1/Ro.

these zonal flows is via the Reynolds stresses associated with Rossby waves (Shukla &
Stenflo 2003), which are possible on the bubble owing to the latitudinal variation of
the Coriolis parameter. This is in contrast to RRBC where the Coriolis parameter is
independent of position in the flow (i.e. there is no ‘beta-plane’ effect) so that Rossby
waves cannot occur.

3.3. Temperature fluctuations
In figure 7 we plot the results for the root-mean-square (r.m.s.) fluctuating temperature√〈T ′T ′〉, normalised by δT , as a function of latitude and for different Ra, 1/Ro.
For 1/Ro = 0, as Ra is increased, the main effect is to simply shrink the thermal
boundary layer, with the temperature fluctuations at high latitudes becoming weaker as
Ra is increased. As 1/Ro is increased, at higher latitudes the thermal fluctuations are
significantly suppressed as the Coriolis force inhibits the transport of thermal fluctuations
away from the boundary layer. However, in the vicinity of θ = π/16 (the precise region
probably depends on Ra), we see that increasing 1/Ro actually increases the thermal
fluctuations. This effect may be owing to something similar to Ekman suction wherein
hot fluid is sucked out from the boundary layer owing to the transport produced by viscous
and Coriolis forces on the fluid. For 1/Ro, the enhancement in this region reduces with
increasing Ra, however, it is possible that the enhancement would remain significant if
1/Ro were sufficiently large.
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Figure 7. The r.m.s. fluctuating temperature
√〈T ′T ′〉, normalised by δT , as a function of latitude and for

different Ra, 1/Ro.

3.4. The Reynolds stress tensor and its anisotropy
We now turn to characterise the turbulence using the Reynolds stress tensor σ ≡ 〈(U −
〈U〉)2〉 and for the bubble flow, the components of this tensor may be written in matrix
form as

σ =
(〈U′

θU′
θ 〉 〈U′

φU′
θ 〉

〈U′
φU′

θ 〉 〈U′
φU′

φ〉

)
, (3.1)

whose components we denote by σij, with i, j either θ or φ. We begin by considering the
diagonal components of σφφ, σθθ that contribute to the TKE, and the results are shown in
figure 8. The results show strong anisotropy in the flow, with σθθ generally significantly
larger than σφφ , except at lower latitudes where σφφ is typically larger (the region of θ for
which this occurs depends upon 1/Ro). The buoyancy term in the Navier–Stokes equation
makes a contribution B + B� to the Reynolds stress equation, where B ≡ βgθeθ 〈T ′U ′〉,
and in matrix form

B + B� = βgθ

(
2〈T ′U′

θ 〉 〈T ′U′
φ〉

〈T ′U′
φ〉 0

)
. (3.2)

From this it is clear that buoyancy does not make a direct contribution to σφφ . Instead,
buoyancy acts as a source for σθθ , and some of this fluctuating energy is transferred to
σφφ via redistribution mechanisms, such as the pressure-strain term (Pope 2000). While
this explains why σθθ is greater than σφφ over much of the domain, it is not consistent
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Figure 8. The diagonal Reynolds stress components σφφ and σθθ , normalised by Eturb, as a function of
latitude and for different Ra, 1/Ro.
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with the fact that σφφ is larger than σθθ for low latitudes. One way to understand this is
that because the only finite contribution to ∇〈U〉 in the flow comes from the component
involving ∂θ 〈Uφ〉, then the transport equation for σφφ will involve a finite shear-production
term, whereas σθθ does not, and the data for σθφ (below) indicate that this term is positive
in the region where σφφ is larger than σθθ at lower latitudes.

The Coriolis term also contributes to the redistribution of kinetic energy among the flow
components. For example, the Coriolis acceleration projected along eφ is

− 2eφ · (Ω × U) = −2ΩUθeφ · (ez × eθ ), (3.3)

such that the flow in the latitudinal direction can produce an acceleration in the
longitudinal direction, modifying the Reynolds stress associated with U′

φ . The net effect
on both components is, however, zero because (Ω × U) · U = 0. Therefore, like the
pressure–strain term, the Coriolis term produces a redistributive effect on the flow energy,
only in this case, the effect arises from purely linear processes.

The results in figure 8 show oscillations in σφφ as θ is increased, which are not
present for σθθ . These oscillations may be a result of the presence of LSC, whose
influence on 〈Uφ〉 was discussed earlier. As 1/Ro is increased, the effect on σφφ, σθθ is
non-monotonic, increasing or else decreasing their values for different θ . As θ is increased,
the buoyancy force tends to decrease, while the Coriolis term becomes dominant (see
§ 2). The Taylor–Proudman effect hinders the transport of fluctuations towards larger θ ,
and because the Coriolis term does not produce TKE, this then implies that both σθθ

and σφφ should decay as θ is increased. The results in figure 8 are consistent with this
behaviour, and show that σθθ and σφφ reduce to almost zero for θ ≥ π/4. We note that
for θ → 0, the effect of rotation seems to vanish (which is also apparent for several of the
other results). This is most probably owing to the fact that the Rossby number based on
the boundary-layer thickness is > O(1), i.e. the Coriolis force does not strongly affect the
small scales of motion in the boundary layer.

The results for the shear-stress term σθφ , are shown in figure 9, and indicate that the
maximum value of these stresses are an order of magnitude smaller than the diagonal
Reynolds stresses. For the higher Ra cases and for 1/Ro = 0, σθφ is positive near the
equator, but becomes negative at higher latitudes. As 1/Ro is increased, this feature
still persists; however, the location of the transition from positive to negative values, as
well as the magnitudes of σθφ , change significantly. The region of θ over which σθφ

is finite decreases with increasing 1/Ro because in the regime 1/Ro � 1, the Coriolis
term suppresses σθφ . In particular, while (3.3) implies that the Coriolis term can produce
coupling between the components of U ′, the Coriolis term suppresses both components of
U ′ so that (3.3) is also suppressed. Nearer to the equator this behaviour does not emerge
because buoyancy forces are important there. As for the diagonal components of σ , the
dependence on 1/Ro is strongly non-monotonic, with the maximum value for σθφ on the
bubble emerging for the 1/Ro = 1 case. However, the enhancement as 1/Ro is increased
from zero to one is significantly stronger than for either σθθ or σφφ .

4. Results and discussion: scale-dependent information

Having explored the behaviour of the flow using one-point quantities that mainly
characterise the large scales of the flow, we now turn to consider quantities that describe
the properties of the flow at different scales. In this section we focus on the data for
Ra = 3 × 109 for which there is the greatest scale separation in the flow, allowing us to
most clearly explore the behaviour at dynamically distinct scales in the flow.
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Figure 9. The averaged Reynolds shear stress σφθ along different latitudes of the soap bubble.

4.1. Kinetic energy and temperature spectra
For flows with strong buoyancy, there may exist a range of scales where buoyancy and
inertial forces are both important, with viscous forces negligible. Assuming these forces
balance, for stably stratified turbulence Bolgiano and Obukhov derived the well known
Bolgiano–Obukhov (BO) scaling laws (Bolgiano 1959; Obukhov 1959, hereafter BO59).
In recent decades, there has been significant interest in exploring whether BO59 also
applies in other flows such RBC (Lohse & Xia 2010) and Rayleigh–Taylor turbulence
(Boffetta & Mazzino 2017). Using BO scaling, then for two-dimensional turbulence with
an inverse energy cascade. The following scaling is predicted (Boffetta & Mazzino 2017):

EU(k) ∝ k−11/5, (4.1)

ET(k) ∝ k−7/5, (4.2)

where EU(k) is the kinetic energy spectrum, and ET(k) is the thermal energy (half of the
squared temperature).

The BO59 phenomenology is only expected to apply in regions of the flow sufficiently
far from boundaries, and therefore will probably not apply at low latitudes in our flow.
However, even for sufficiently high latitudes BO59 scaling may still not apply for at least
two reasons. First, our flow takes place on a curved, not flat surface, and buoyancy in our
flow is a function of latitude owing to the variation of g · eθ with θ , as discussed earlier.
However, one could argue that BO59 scaling might nevertheless hold in a local sense
at scales small enough to be only weakly affected by the surface curvature and spatial
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Figure 10. Kinetic energy and thermal energy spectra for varying 1/Ro and for Ra = 3 × 109. Inset shows
the compensated energy spectra.

variation of g · eθ . Second, our flow is affected by rotation, and at scales where 1/Ro� > 1
BO59 will no longer apply owing to the role of the Coriolis force at these scales that is
not included in BO59. The scaling that will emerge will then be determined by the relative
roles of buoyancy, Coriolis forces and inertial forces in the flow at different length scales
and different scalings may emerge in different scale ranges, where different forces in the
flow balance. However, at scales where 1/Ro� < 1, BO59 should still apply because at
these scales the role of the Coriolis force is weak. In figure 10 we plot our results for EU(k)
and ET(k). These are computed using spherical harmonic decompositions, with averaging
over all θ, φ (see the Appendix for details).

Our results show that for 1/Ro ≤ 1, a significant range of kR exists over which the
BO59 scaling accurately predicts the scaling behaviour of EU(k). For 1/Ro > 1, however,
BO59 does not apply because the effect of rotation strongly affects the range of kR
where BO59 would otherwise emerge. The effect of rotation causes EU(k) to decay faster
than k−11/5 as k increases. This may be understood by noting that if the Coriolis force
dominated the behaviour of the spectrum, then the dynamically relevant parameter would
be Ω and the scaling that would emerge is EU(k) ∝ k−3 (Smith & Waleffe 1999).

In contrast, our results show that even for 1/Ro = 0, BO59 does not accurately describe
the scaling behaviour of ET(k) over any significant range of kR. In particular, ET(k)
seems to decay more slowly than ET(k) ∝ k−7/5 even for 1/Ro = 0. The most probable
explanation for why BO59 does not describe ET(k) well, even though it does describe
EU(k) well, is that unlike the velocity field, the temperature field is maximum at the
equator and quickly reduces as θ is increased. Hence, because ET(k) is computed as
an integral over the surface of the whole bubble, it will be strongly affected by the
thermal boundary layer for which BO59 does not apply. Note that the steep temperature
gradient near the equator behaves almost like a Heaviside function, and it is this which is
responsible for the oscillations of ET(k) (Bruneau et al. 2018).

4.2. Spectral fluxes of kinetic energy, temperature and enstrophy
The behaviour of EU(k) and ET(k) are determined by the behaviour of fluxes in spectral
space that determine the energy and temperature fluctuations at different scales. In
two-dimensional turbulence, in the absence of buoyancy, there are two inviscid integrals of
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motion, namely kinetic energy and enstrophy. According to standard arguments, at larger
wavenumbers there is an upscale cascade of kinetic energy, and at smaller scales there is
a downscale cascade of enstrophy. For our flow, where buoyancy and Coriolis forces also
play a role, the behaviour of these cascades may differ, except at scales small enough for
inertial forces to dominate over buoyancy and Coriolis forces.

In figure 11 we compute the kinetic energy flux ΠU(k), the enstrophy flux Πω(k) and
thermal energy flux ΠT(k), as a function of kR (see the Appendix for details). The results
indicate that except at the highest wavenumbers where ΠU becomes slightly positive,
ΠU is predominantly negative, indicating an inverse energy flux driving kinetic energy
to larger scales in the flow. However, the Reynolds number of our flow is too small to
observe a cascade regime associated with a constant flux. Up until a certain value of kR,
the magnitude of ΠU reduces as 1/Ro is increases. This is simply understood in view
of the fact that in the limit 1/Ro → ∞, the dynamical equations are linear and there is
no energy transfer among scales. We also note, however, that above a critical kR (which
increases with increasing 1/Ro�), ΠU converges to ΠU for the non-rotating case 1/Ro = 0.
This can be understood in terms of the scale-dependent Rossby number Ro� introduced in
§ 2, namely, that for any given rotation rate Ω there is a scale below which 1/Ro� < 1,
indicating that the effects of rotation are subleading at these scales. As Ω is increased,
one has to go to a smaller scale before this regime is observed. The results in figure 11
are consistent with this, showing that ΠU approaches the 1/Ro = 0 behaviour at larger kR
(i.e. smaller scale) as 1/Ro is increased.

The results for the enstrophy flux Πω(k) as a function of wavenumber k, and for different
1/Ro are also shown in figure 11. As with two-dimensional turbulence on a flat surface,
the results show that there is a downscale flux of enstrophy, but the Reynolds number of
our flow is too small to observe a constant-flux cascade regime. As 1/Ro is increased,
Πω(k) tends to be reduced, as the role of nonlinearity in the flow is reduced. However,
we again observe that for sufficiently high kR, the effect of 1/Ro on Πω(k) disappears,
corresponding to scales of the flow where /Ro�. Overall, Πω(k) is much less sensitive
to 1/Ro than ΠU(k), which is because enstrophy is a predominantly small-scale quantity,
whereas the velocity field is dominated (away from boundaries) by the large scales, for
which the effect of rotation is the strongest.

The results for the thermal energy flux ΠT(k) shown in figure 11 show very weak
sensitivity to 1/Ro, except for kR � 20. This may seem surprising given that the
temperature field, like the velocity field (but unlike the vorticity), is dominated (away from
boundaries) by the largest scales of the flow, and therefore should be strongly susceptible
to the effects of rotation. However, as noted earlier, the strongest contributions to the
temperature field come from the thermal boundary layer, and the Rossby number based
on the boundary-layer thickness is very small. This then explains the weak effect of 1/Ro
on ΠT(k).

In figure 12 we show the results for the buoyancy flux spectrum ΠBuoy which is of
utmost importance because buoyancy is the mechanism generating the turbulent flow on
the bubble. Indeed, ΠBuoy > 0 for all kR, indicating that buoyancy injects TKE at all scales
of the flow. The results for 1/Ro = 0 show that at the lowest kR, ΠBuoy decreases with
increasing kR, which is in part associated with the fact that the velocity and temperature
fluctuations are largest at the large scales. However, as kR continues to increase, ΠBuoy
increases to a local maximum before vanishing for kR → ∞ (owing to smoothness of the
velocity and temperature fields). This indicates that there is a local, strong injection of TKE
at the smaller scales in the flow. This must in fact be the case, because as already shown, the
two-dimensional turbulent flow on the bubble exhibits an inverse kinetic-energy flux, and
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Figure 11. The kinetic energy, enstrophy and thermal energy spectral fluxes.

this requires an injection of TKE at smaller scales in the flow. Comparison with the results
in figure 11 shows that the injection of TKE at small scales owing to buoyancy occurs at
a smaller scale (larger kR) than that at which Πu becomes negative. Therefore, the inverse
flux takes the TKE injected at small scales through ΠBuoy, and passes it to the larger scales
in the flow, though not via a conservative cascade at these Reynolds numbers. The results
in figure 12 show that as 1/Ro is increased, ΠBuoy is suppressed except at the largest kR,
where the effect of the Coriolis force is negligible. This then shows in scale-space, how
rotation suppresses the mechanism of TKE injection into the flow, and thereby suppresses
turbulence in the flow as 1/Ro is increased.

4.3. Structure functions of temperature and velocity
Having considered the behaviour in Fourier space, we now consider the multiscale
behaviour of the flow using structure functions. Not only does this provide insight in
physical space, but it also allows us to consider the behaviour of fluctuations in the flow
beyond the second-order information captured by the spectra.

The Nth order structure functions of T and U are defined as

SU
N ≡ 〈|[U(x + d, t) − U(x, t)] · d̂|N〉, (4.3)

ST
N ≡ 〈|T(x + d, t) − T(x, t)|N〉, (4.4)
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Figure 12. Buoyancy flux spectrum for varying 1/Ro and for Ra = 3 × 109.

where d̂ ≡ d/‖d‖. Because the flow we are considering is homogeneous in φ but not in θ ,
we choose d such that d · eθ = 0, with ‖d‖ representing the linear (not geodesic) distance
between two points on the sphere that have the same latitude.

For a two-dimensional turbulent flow, the BO59 scaling predictions are (Boffetta &
Mazzino 2017)

SU
N ∝ d3N/5, (4.5)

ST
N ∝ dN/5. (4.6)

For sufficiently small scales where molecular effects become important, the temperature
and velocity fields are smooth and these scalings must give way to the alternative scaling
ST

N ∝ SU
N ∝ dN that may be demonstrated using a Taylor-series expansion.

One issue with computing the structure functions on the bubble is that the uniform
grid used to solve the governing equations on the stereographic plane corresponds to a
non-uniform grid on the curved bubble surface. This could then introduce a bias into the
computation of the structure functions because only regions where the grid spacing is ≥ d
can contribute to the computation of the structure functions at scale d. Therefore, in order
to compute the structure functions we used a high-order method to interpolate U and T
on to a grid that corresponds to points uniformly spaced on the surface of the bubble.
Furthermore, in order to reduce statistical noise, we computed the structure functions by
averaging over θ , as well as over φ and time, which is consistent with how the spectral
quantities were computed. One difference, however, is that for the structure functions we
only average over the region θ ∈ [π/18, π/2] (unlike the earlier spectral results which had
to be computed by averaging over all θ owing to the method of computation in terms
of spherical harmonics). This is because close to the equator at θ = 0, the boundary
layers, which are not accounted for in BO59, strongly influence the results (especially for
the temperature). By only averaging over the region θ ∈ [π/18, π/2], the effect of these
boundary layers on the computed structure functions is greatly reduced.

The results for SU
N are shown in figure 13 for N = 1 to N = 8 and for different 1/Ro. For

d/R ≤ O(0.01), the smooth scaling SU
N ∝ dN emerges, but above this and for 1/Ro = 0,

there is a clear range where BO59 seems to describe the behaviour well for each N
considered. This indicates the absence of intermittency in the velocity field, as is expected
for two-dimensional turbulent flows Boffetta & Ecke (2012), including those driven by
buoyancy Boffetta & Mazzino (2017). As 1/Ro is increased, the BO59 scaling is still
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Figure 13. Velocity structure functions for Ra = 3 × 109 and for different 1/Ro.

observed but over a region that becomes smaller as 1/Ro is increased. This is again
simply owing to the fact that for fixed Ra, as 1/Ro is increased, the Coriolis force affects
increasingly smaller scales in the flow, and BO59 does not apply to scales significantly
affected by the Coriolis force. As 1/Ro is reduced, the values of SU

N at the larger scales
decrease. This can be understood by noting that for sufficiently large d/R, SU

N is related to
the Reynolds stress component σφφ , and as shown in figure 8 and discussed earlier, this
significantly reduces going from 1/Ro = 0 to 1/Ro = 10.

In figure 14 we show the results for ST
N ∝ dN . For d/R ≤ O(0.01), the smooth scaling

ST
N ∝ dN emerges. Above this and for 1/Ro = 0, there is a clear range where BO59 seems

to describe the behaviour well for smaller N, but significant departures are observed for
larger N. While some of these deviations could be owing to the particularities of the
rotating bubble flow we are considering, the study in Celani, Mazzino & Vozella (2006)
found similar behaviour in a non-rotating, two-dimensional Rayleigh–Taylor flow with
flat geometry. Therefore, as was also concluded in Celani et al. (2006), the deviations we
observe from BO59 scaling for ST

N are most probably because of intermittency, something
that is not captured in a mean-field theory like BO59. Note that the intermittency for
the temperature field is much stronger than that for the velocity field. This is commonly
observed in turbulent flows, and is usually explained in terms of the fact that the scalar
equation (here temperature) does not have a pressure term, and it is the pressure term,
via the incompressibility constraint, that hinders the growth of strong velocity gradients in
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Figure 14. Temperature structure functions for Ra = 3 × 109 and for different 1/Ro.

the flow. Indeed, for this reason even a scalar field advected by a random Gaussian velocity
field exhibits strong intermittency (Falkovich, Gawȩdzki & Vergassola 2001).

As 1/Ro is increased, the behaviour remains the same, except that the range of d/R
over which BO59 is accurate for small N reduces owing to the Coriolis force affecting the
larger scales of the flow, which is not accounted for in BO59. For sufficiently large 1/Ro,
the Coriolis force would make a leading order contribution at all scales in the flow, and
BO59 scaling would not be observed at any scale or for any N.

5. Conclusions

We have used DNS to study the two-dimensional flow of a rotating, half soap bubble that
is heated at its equator. This set-up replicates the experimental study of Meuel et al. (2018),
but the DNS enables us to consider the flow in greater detail. The heating at the equator
of the bubble produces buoyancy, while rotation generates a Coriolis forces in the fluid.
However, owing to the curved surface of the bubble, the buoyancy and Coriolis forces
vary with latitude on the bubble. This yields a flow that is strongly inhomogeneous and
anisotropic, with rich flow behaviour.

We began by exploring the single-point properties of the flow, including the Reynolds
Re and Nusselt Nu numbers, mean fields and Reynolds stresses, all as a function of latitude.
Increasing the Rayleigh number Ra increases Re and Nu, associated with an increasingly
strong production of turbulence owing to convection in the flow. For a given Ra, we
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observe a non-monotonic dependence of the flow on the Rossby number Ro for a range
of different flow quantities. Moreover, the large-scale mean circulations that appear owing
to convection are found to be strongly influenced by rotation, with the mean circulation
becoming increasingly strong as Ro decreases.

We then considered flow quantities that characterise the multiscale nature of the
flow, including spectra and spectral fluxes of kinetic and thermal energy, enstrophy and
structure functions of velocity and temperature. The fluxes show that just for non-buoyant
two-dimensional turbulence on a flat surface, there is an upscale flux of kinetic energy
at larger scales, and a downscale flux of enstrophy at smaller scales. The kinetic energy
spectrum and velocity structure functions are well described by BO (BO59) scaling
at scales where the effects of rotation are weak. The thermal energy spectrum and
temperature structure functions are sensitive to contributions from the thermal boundary
layer, where most of the thermal fluctuations are contained. Provided the temperature
statistics are computed away from this boundary layer they are found to satisfy BO59
scaling quite well for low-order structure functions, but deviations are strong at higher
orders owing to intermittency. This is unlike the velocity structure functions, which satisfy
BO59 scaling at all orders owing to the absence of intermittency in the velocity field,
associated with the inverse energy flux in the flow.

One interesting direction for future work would be to perform the DNS at much
larger Ra for which the scale separation in the flow will be large. This will allow
researchers to explore scales of the flow where, for example, Coriolis forces and buoyancy
forces approximately balance or else Coriolis and inertial forces approximately balance
(depending on the flow parameters) as well as scales much smaller than the buoyancy
scale where the role of temperature fluctuations become dynamically passive and inertially
dominated dynamical ranges may emerge.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.610.
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Appendix A. Spherical harmonic decompositions

Let Ψ be an arbitrary scalar field which can be expanded in a series of spherical harmonic
functions

Ψ (θ, φ) =
+∞∑
l=0

+l∑
m=−l

Ψ m
l Ym

l (θ, φ), (A1)

where Ym
l is the spherical harmonic function, defined as

Ym
l (θ, φ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
l (cos(θ))eimφ, (A2)
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and Pm
l is the corresponding adjoint Legendre polynomial. The expansion coefficient of

Ψ m
l can be calculated based on the orthogonality of the spherical harmonic functions, with

the following formula:

Ψ m
l =

∫ 2π

0

∫ π/2

0
Ψ (θ, φ)[Ym

l (θ, φ)]∗ sin(θ) dθ dφ, (A3)

where ∗ denotes the complex conjugate. Note that the integral over φ in the preceding
formula actually corresponds to calculating the Fourier transform, and we may write

Ψl =
( +l∑

m=−l

|Ψ m
l |2

)1/2

. (A4)

Using this, the power spectrum of the function Ψ can be calculated as

|Ψ |2 =
+∞∑
l=0

Ψ 2
l =

+∞∑
l=0

+l∑
m=−l

|Ψ m
l |2. (A5)

We refer to the square of the temperature as the thermal energy, whose power spectrum is
calculated by

|T|2 =
+∞∑
l=0

T2
l =

+∞∑
l=0

l∑
m=−l

|Tm
l |2, (A6)

with

Tm
l =

∫ 2π

0

∫ π/2

0
T(θ, φ)(Ym

l (θ, φ))∗ sin(θ) dθ dφ. (A7)

Similar spherical harmonic decompositions may also be used to calculate the energy,
enstrophy and thermal energy fluxes. The formula for calculating the energy flux is

ΠU(l′) =
∫ +∞

l′

+l∑
m=−l

Im
l · (Um

l )∗ dl, (A8)

where Um
l is the spherical harmonic decomposition coefficient of the velocity field

Um
l =

∫ 2π

0

∫ π/2

0
U(Ym

l (θ, φ))∗ sin(θ) dθ dφ, (A9)

and Im
l is the coefficient obtained after spherical harmonic decomposition of the nonlinear

term of the Navier–Stokes equation

Im
l =

∫ 2π

0

∫ π/2

0
(U · ∇)U(Ym

l (θ, φ))∗ sin(θ) dθ dφ. (A10)

The flux of enstrophy can be obtained by

Πω(l′) =
∫ +∞

l′

+l∑
m=−l

Zm
l · (ωm

l )∗ dl, (A11)
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where

ωm
l =

∫ 2π

0

∫ π/2

0
ω(Ym

l (θ, φ))∗ sin(θ) dθ dφ, (A12)

and

Zm
l =

∫ 2π

0

∫ π/2

0
(U · ∇)ω(Ym

l (θ, φ))∗ sin(θ) dθ dφ. (A13)

Finally, the thermal energy flux is

ΠT(l′) =
∫ +∞

l′

+l∑
m=−l

Hm
l (Tm

l )∗ dl, (A14)

where

Hm
l =

∫ 2π

0

∫ π/2

0
(U · ∇)T(Ym

l (θ, φ))∗ sin(θ) dθ dφ. (A15)
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