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Abstract
The present study aimed to investigate whether arginine (Arg) promotes porcine type I muscle fibres formation via improving mitochondrial
biogenesis. In the in vivo study, a total of sixty Duroc × Landrace × Yorkshire weaning piglets with an average bodyweight of 6·55 (SD 0·36) kg
were randomly divided into four treatments and fed with a basal diet or a basal diet supplemented with 0·5, 1·0 and 1·5 % L-Arg, res-
pectively, in a 4-week trial. Results showed that dietary supplementation of 1·0 % Arg significantly enhanced the activity of succinate
dehydrogenase, up-regulated the protein expression of myosin heavy chain I (MyHC I) and increased the mRNA levels of MyHC I, troponin
I1, C1 and T1 (Tnni1, Tnnc1 and Tnnt1) in longissimus dorsimuscle compared with the control group. In addition, ATPase staining analysis
indicated that 1·0 % Arg supplementation significantly increased the number of type I muscle fibres and significantly decreased the number of
type II muscle fibres. Furthermore, 1·0 % Arg supplementation significantly up-regulated PPAR-γ coactivator-1α (PGC-1α), sirtuin 1 and cyto-
chrome c (Cytc) protein expressions, increased PGC-1α, nuclear respiratory factor 1 (NRF1), mitochondria transcription factor B1 (TFB1M),
Cytc and ATP synthase subunit C1 (ATP5G) mRNA levels and increased mitochondrial DNA content. In the in vitro study, mitochondrial
complex I inhibitor rotenone (Rot) was used. We found that Rot annulled Arg-induced type I muscle fibres formation. Together, our results
provide for the first time the evidence that Arg promotes porcine type I muscle fibres formation through improvement of
mitochondrial biogenesis.
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Skeletal muscle is the most abundant tissue of mammals, compris-
ing 40–50% of the total body mass. It is a heterogeneous tissue
comprised of a variety of functionally diverse muscle fibre types
with contractile and metabolic properties(1). Skeletal muscle fibres
are generally classified into two major groups: type I muscle
fibres expressingmyosin heavy chain I (MyHC I) and type IImuscle
fibres expressing MyHC IIa, MyHC IIx and MyHC IIb(2). It is well
known that type I muscle fibres have more mitochondria and type
IIb muscle fibres contain fewer mitochondria(3). Mitochondrial
biogenesis and function may be a newmediator of skeletal muscle
fibre type(4). Improvement of mitochondrial biogenesis and
function has been reported to promote the formation of type I
muscle fibres(5,6).

L-Arginine (Arg) is a nutritionally essential amino acid for
animals(7). Previous studies have suggested that Arg plays multiple

physiological functions in animals, such as antioxidant activity,
reproductive performance and fat deposition(8–11). A few recent
studies have shown that Arg promotes more type I muscle fibres
formation in mice and MyHC I expression in porcine skeletal
muscle satellite cells(12–14). However, no information has been
reported about the effect of Arg on type I muscle fibre type forma-
tion in weaning piglets. It has been reported that Arg modulates
mitochondrial function(15,16). But it remains unclear whether Arg
affects type I muscle fibres formation by improving mitochondrial
biogenesis and function.

It is well known that the increase of the proportion of type I
muscle fibres is beneficial to the improvement of meat quality in
animal husbandry(17). Here, the aim of the present study was
to investigate the role of Arg in mitochondrial biogenesis
and function-related marker expression, mitochondrial DNA
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(mtDNA) content and muscle fibre type composition in weaning
piglets. For further studies, mitochondrial complex I inhibitor
rotenone (Rot) was used to investigate the mechanism of Arg
affecting type I muscle fibres formation.

Materials and methods

Ethics statement

All animal procedures were performed according to protocols
approved by the Animal Care Advisory Committee of Sichuan
Agricultural University.

Animal experimental design

Sixty Duroc × Landrace ×Yorkshire piglets with an average
body weight of 6·55 (SD 0·36) kg were randomly assigned to four
treatments. Each treatment consisted of five replicate pens of
three piglets per pen. The piglets were provided a basal diet
or a basal diet supplemented with 0·5, 1·0 or 1·5 % of Arg during
a 28-d experimental period, while adjusting alanine to maintain
the diets isonitrogenous. The basal diet was formulated accord-
ing to the nutrient requirements for 7–10 kg and 11–25 kg pigs
(Nutrient Requirements of Swine, 11th revised edition, 2012).
The composition and nutrient levels of the diets are listed in
Table 1. L-Arg (catalogue no. A8094) was obtained from
Sigma. Water and feedstuff were given ad libitum during the
experimental period. Individual body weight was measured at
the beginning and end of the experimental period. Feed intake
was recorded every day.

Sample collection

At the end of the experiment, one piglet from each pen was
slaughtered in a humane manner. Then, the longissimus dorsi
muscle was collected, immediately frozen in liquid N2 and stored
at −80°C until further use.

Succinic dehydrogenase enzyme assay

The activity of succinic dehydrogenase (SDH) in longissimus
dorsi muscle was determined using a commercial kit from
Nanjing Jiancheng Bioengineering Institute. SDH activity was
normalised to the total protein concentration.

Assay of nitric oxide synthase activity and nitric oxide
content

The nitric oxide synthase (NOS) activity and nitric oxide (NO)
content in longissimus dorsi muscle were detected by commer-
cial biochemical kits (Nanjing Jiancheng Bioengineering
Institute) following the manufacturer’s instructions. The total
protein concentration was measured using the Coomassie
brilliant blue method (Nanjing Jiancheng Bioengineering
Institute).

Analysis of mitochondrial DNA content

The relative mtDNA content was determined by real-time
quantitative PCR as described above. The genomic DNA was
isolated from the longissimus dorsi muscle of weaning piglet

using a DNAiso reagent according to the manufacturer’s
instructions (TaKaRa). The primers for amplification of mtDNA
(accession No. AF276923) were as follows: forward primer
5 0-ACACCCTATAACGCCTTGCC-3 0 and reverse primer
5 0-AGGTGCCTGCTTTCGTAGC-3 0. The primers for amplifica-
tion of β-actin (accession No. DQ452569) were as follows: for-
ward primer 5 0-CAAAGCCAACCGTGAGAAGATG-3 0 and
reverse primer 5 0-TGGCAAAGAGAGGCAAGAGAG-3 0.

ATPase analysis

Longissimus dorsi muscle was collected and frozen in an
optimal cutting temperature compound (Cat No. 4583,
Sakura) before sectioning. The transverse serial sections were
incubated with calcium chloride solution (pH 10·4) for 5 min
and calcium chloride (pH 9·4) solution for 30 min. Then, the
sections were stained with calcium chloride, cobalt nitrate
and ammonium sulphide solutions. Finally, the sections were
dehydrated with absolute ethyl alcohol. Sections were

Table 1. Composition and nutrient levels of the diets

Ingredients

Contents

0%
Arg

0·5%
Arg

1·0%
Arg

1·5%
Arg

Maize (%) 31·52 32·14 32·49 33·20
Extruded maize (%) 37·10 37·00 36·90 36·90
Maize protein power (%) 2·85 37·00 36·90 36·90
Whey power (%) 8·00 2·85 2·85 2·85
Soyabean protein concentrate (%) 3·35 8·00 8·00 8·00
Expanded soyabean (%) 2·50 3·50 3·41 3·39
Dehulled soyabean meal (%) 2·46 2·50 2·50 2·50
Fishmeal (%) 3·60 2·46 2·46 2·46
Soyabean oil (%) 1·00 3·60 3·60 3·60
Sucrose (%) 1·00 0·90 1·10 0·90
L-Lysine·HCl (%) 0·95 1·00 1·00 1·00
DL-Methionine (%) 0·16 0·95 0·95 0·95
L-Threonine (%) 0·34 0·16 0·16 0·16
L-Tryptophan (%) 0·09 0·33 0·34 0·33
Alanine (%) 3·25 0·09 0·09 0·09
L-Arginine·HCl (%) 0 2·07 1·08 0·00
Choline chloride (%) 0·10 0·62 1·24 1·84
Limestone (%) 0·50 0·10 0·10 0·10
Dicalcium phosphate (%) 0·70 0·50 0·50 0·50
NaCl (%) 0·20 0·70 0·70 0·70
Vitamin premix* (%) 0·03 0·20 0·20 0·20
Trace mineral premix† (%) 0·30 0·03 0·03 0·03
Total (%) 100 0·30 0·30 0·30
Nutrient levels‡
Digestible energy (Mcal/kg)§ 3·50 100 100 100
Crude protein (%) 18·60 3·50 3·50 3·50
Ca (%) 0·75 18·60 18·60 18·60
Available P (%) 0·33 0·75 0·75 0·75
Digestible tryptophan (%) 0·21 0·33 0·33 0·33
Digestible lysine (%) 1·29 0·21 0·21 0·21
Digestible methionine (%) 0·38 1·29 1·29 1·29
Digestible threonine (%) 0·76 0·38 0·38 0·38
Digestible arginine (%) 0·64 0.76 0·76 0·76

* The vitamin premix supplied the following per kg diet: vitamin A, 9000 IU; vitamin D3,
3000 IU; vitamin E, 24 IU; vitamin K, 3 mg; vitamin B1, 3 mg; vitamin B2, 7·5mg;
vitamin B3, 30mg; vitamin B6, 3·6mg; vitamin B12, 0·036mg; biotin, 0·15mg and folic
acid, 1·5mg.

† The trace mineral premix supplied the following per kg diet: Fe, 100mg; Cu, 6 mg;
Mn, 4 mg; Zn, 100mg; Se, 0·3mg and iodine, 0·14mg.

‡ Nutrient levels were calculated values.
§ To convert Mcal to MJ, multiply by 4·184.
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photographedwith a Nikon Eclipse E100microscope equipped
with a Nikon DS-U3 digital camera (Nikon Incorporation). The
ratio of type I:type II fibres was calculated by using Motic
Images Advanced 3.2 analysing systematical software. Light
grey-stained fibres are slow type I, and dark fibres are fast
type II.

Real-time quantitative PCR

The total RNA from longissimus dorsi muscle was extracted
using the RNAiso Plus reagent (TaKaRa) according to the man-
ufacturer’s instructions. The RNA concentration and purity were
determined using a Beckman DU-800 spectrophotometer
(BeckmanCoulter). Subsequently, reverse transcriptionwas per-
formed using a PrimeScript RT reagent Kit with gDNA Eraser
(TaKaRa) according to themanufacturer’s instructions. Real-time
quantitative PCR was performed using SYBR select Master Mix
(Applied Biosystems) by a 7900HT Real-Time PCR Detection
System (384-cell standard block) (Applied Biosystems).
Sequences of the primers used for real-time quantitative PCR
are listed in Table 2. Glyceraldehyde 3-phosphate dehydrogen-
ase (GAPDH ) mRNA was used as an internal control, and the
relative gene expression was calculated using the 2–ΔΔCt analysis
method(18).

Western blot analysis

Western blot analysis was performed as described before(12). In
brief, protein was isolated from longissimus dorsimuscle using
radio immunoprecipitation assay lysis buffer (Pierce). Protein
concentrations were determined using the bicinchoninic acid
protein assay kit (Pierce). Equal amounts of protein were sep-
arated by 8 % SDS-PAGE and transferred to a polyvinylidene

difluoride membrane (Millipore) using a wet Trans-Blot
System (Bio-Rad). After blocking with 5 % fat-free milk in
Tris-buffered saline-0·1 % Tween-20 for 1 h, the membrane
was incubated overnight with primary antibodies at 4°C.
Subsequently, the membrane was incubated with correspond-
ing horseradish-peroxidase-conjugated secondary antibody
for 1 h at 37°C. The primary antibodies used were: anti-Cytc
(catalogue no. 10993-1-AP, ProteinTech Biotechnology), anti-
MyHC I (catalogue no. M8421, Sigma), anti-sirtuin 1 (Sirt1)
(catalogue no. 8469S, Cell Signaling), anti-PGC-1α (PPAR-γ
coactivator-1α) (catalogue no. 2178S, Cell Signaling) and
anti-β-actin (catalogue no. 4967S, Cell Signaling). The protein
bands were visualised by the Clarity Western ECL Substrate
(Bio-Rad). The densities of bands were determined using the
Gel-Pro Analyzer version 4.2 (Media Cybernetics). β-Actin pro-
tein was used as a loading control.

Cell culture and treatments

The isolation and identification of porcine skeletal muscle satel-
lite cells were performed as described in our previous study(13).
Porcine skeletal muscle satellite cells were grown in Dulbecco's
modified Eagle’s medium/F12 supplemented with 15 % fetal
bovine serum and with 100 U/ml penicillin and 100 μg/ml strep-
tomycin at 37°C in a 5 %CO2 atmosphere. The isolated cells were
induced to differentiate in Dulbecco's modified Eagle’s medium/
F12 medium supplemented with 2 % of horse serum (Hyclone),
when cells were grown to about 80 % confluence. The differen-
tiation medium was replaced with a fresh medium every 24 h.
After 3 d of differentiation, the cells were treated with different
concentrations (0, 50, 100 and 200 μg/ml) of Arg for 3 d. To
explore themolecularmechanism, the cells were pretreatedwith

Table 2. List of genes, primer sequences, GenBank accession numbers and product sizes

Genes Primer Sequence (5 0 to 3 0) GenBank accession no. Size (bp)

MyHC I Forward GGTATCGCATCCTGAACCC NM_213855 144
Reverse GCCCTGCCTTGAAGAACAC

Tnni1 Forward CCTGCTGGGCTCTAAACACA NM_213912 125
Reverse TGGCCTCGACGTTCTTTCTC

Tnnc1 Forward GGCACAGTGGACTTCGATGA NM_001130243 183
Reverse CTCTGTGATGGTCTCGCCTG

Tnnt1 Forward GCAGAGAGAGCTGAGCAACA NM_213748 75
Reverse CTTCTCCTCCGCCAGCTTAG

PGC-1α Forward GCCCTCATTTGATGCACTG 0 NM_213963 150
Reverse AGCTGAGTGTTGGCTGGTG

NRF1 Forward CCTTGTGGTGGGAGGAATGTT XM_005657993 77
Reverse AGTATGCTGGCTGACCTTGTG

TFB1M Forward GCAAGCAGTGAAGCAGCTA NM_001128475 82
Reverse CAGACTGCCAGCTTTCCTTAC

Cytc Forward TGCGGAGTGTTAAACTTTTCAGG NM_001129970 191
Reverse TGCCTTAACAGGCTAGTGAACA

ATP5G Forward GTGAGTCAGTCACCTTGAGC NM_001025218 180
Reverse TCTGGCCTACTCAGGAAGGA

Sirt1 Forward ACTCTCCCTCTTTTAGACCAAGC NM_001145750 149
Reverse AAACCTGGACTCTCCATCGG

GAPDH Forward ACACTGAGGACCAGGTTGTG NM_001206359 98
Reverse GACGAAGTGGTCGTTGAGGG

MyHC I, myosin heavy chain I; Tnni1, troponin I1; Tnnc1, troponin C1; Tnnt1, troponin T1; PGC-1α, PPAR-γ coactivator-1α; NRF1, nuclear respiratory
factor 1; TFB1M, mitochondria transcription factor B1;Cytc, cytochrome c;ATP5G, ATP synthase subunit C1;Sirt1, sirtuin 1;GAPDH, glyceraldehyde 3-
phosphate dehydrogenase.
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Rot (catalogue no. R8875, Sigma) (dissolved in dimethyl sulfox-
ide) for 1 h before being treated with Arg.

Statistical analysis

Data are expressed as mean values with their standard errors.
Statistical analysis was performed using SPSS 22.0 statistical
software. All data were analysed by one-way ANOVA followed
by Tukey’s test. A value P< 0·05 was considered to be
statistically significant.

Results

Effect of arginine on growth performance of pigs

Compared with the control group, dietary Arg supplementation
had no effect on growth performance of pigs, including final
body weight, average daily gain, average daily feed intake
and feed-gain ratio (Table 3).

Effect of arginine on succinic dehydrogenase activity of
skeletal muscle of pigs

As shown in Fig. 1, 1·0 and 1·5 % Arg supplementation signifi-
cantly increased (P< 0·05) the activity of SDH in the longissimus
dorsi muscle and there was no significant difference between
0·5, 1·0 and 1·5 % Arg treatment groups.

Effect of arginine on nitric oxide synthase activity and
nitric oxide content of skeletal muscle of pigs

TheNOS activity was significantly increased (P< 0·05) in 0·5 and
1·0 % Arg treatment groups compared with the control group
(Fig. 2(A)). As shown in Fig. 2(B), 1·0 and 1·5 % Arg treatment
groups significantly increased (P< 0·05) the NO content
compared with the control group.

Effect of arginine on muscle fibre type composition of
skeletal muscle of pigs

As shown in Fig. 3, 1·0 % Arg supplementation significantly
increased (P < 0·05) the MyHC I, troponin I1, C1 and T1

0 % Arg
0·0

20·0

16·0

12·0

8·0

4·0

0·0

0·5

1·0

1·5

2·0

2·5

0·5 % Arg 1·0 % Arg 1·5 % Arg

0 % Arg 0·5 % Arg 1·0 % Arg 1·5 % Arg

c

a,b
a

b,c

c

b,c

a
a,b

N
O

S
 a

ct
iv

ity
 (

U
/m

g 
pr

ot
ei

n)
N

O
 c

on
te

nt
 (

µm
ol

/g
 p

ro
te

in
)

(A)

(B)

Fig. 2. Effect of arginine (Arg) on nitric oxide synthase (NOS) activity and nitric
oxide (NO) content in longissimus dorsi muscle of weaning piglets. (A) NOS
activity. (B) NO content. Results are mean values with their standard errors from
five piglets. a,b,cValues with unlike letters are significantly different (P< 0·05).

Table 3. Effect of arginine (Arg) on growth performance of piglets (n 15)
(Mean values with their standard errors)

Items

0% Arg 0·5% Arg 1·0% Arg 1·5% Arg

Mean SE Mean SE Mean SE Mean SE

Initial weight (kg) 6·55 0·03 6·56 0·05 6·54 0·03 6·57 0·04
Final weight (kg) 14·15 0·89 14·07 0·17 14·62 0·40 15·42 0·28
ADG (g) 271·66 31·31 268·10 4·99 288·57 13·99 316·19 10·61
ADFI (g) 456·50 41·60 443·64 15·57 495·33 26·50 517·17 6·47
F:G 1·70 0·06 1·65 0·04 1·72 0·06 1·64 0·04

ADG, average daily gain; ADFI, average daily feed intake; F:G, feed-gain ratio.
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Fig. 1. Effect of arginine (Arg) on succinic dehydrogenase (SDH) activity in
longissimus dorsimuscle of weaning piglets. Results are mean values with their
standard errors from five piglets. a,bValues with unlike letters are significantly dif-
ferent (P< 0·05).
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(Tnni1, Tnnc1 and Tnnt1) mRNA levels. Furthermore, ATPase
staining analysis showed that 1·0 % Arg supplementation sig-
nificantly increased (P < 0·05) the number of type I muscle

fibres and significantly decreased (P< 0·05) the number of type
II muscle fibres compared with the control group (Fig. 4).
Compared with the control group, dietary supplementation
of 1·0 or 1·5 % Arg significantly increased (P < 0·05) the protein
expression of MyHC I (Fig. 6).

Effects of arginine on mitochondrial biogenesis and
function-related marker expression and mitochondrial
DNA content of skeletal muscle of pigs

As shown in Fig. 5(A), 1·0 % Arg supplementation significantly
increased (P< 0·05) the mRNA expressions of nuclear respira-
tory factor 1 (NRF1), mitochondria transcription factor B1
(TFB1M) and cytochrome c (Cytc) compared with the control
group. Cytc protein expression (Fig. 6) and ATP synthase subunit
C1 (ATP5G) mRNA expression (Fig. 5(A)) were also significantly
increased (P< 0·05) in the 1·0 % Arg and 1·5 % Arg treatment
groups. As shown in Fig. 5(B), mtDNA content of Arg-treated
groups was significantly increased (P< 0·05) compared with
the control group.

In addition, the PGC-1α mRNA level in longissimus dorsi
muscle was significantly increased (P< 0·05) in 1·0 % Arg treat-
ment group compared with the control group (Fig. 5(A)). As
shown in Fig. 6, PGC-1α protein expression of Arg-treated
groups was significantly increased (P< 0·05) compared with
the control group. In addition, protein expressions of Sirt1 of
0·5 and 1·0 % Arg treatment groups was significantly increased
(P< 0·05) compared with the control group (Fig. 6).

Rotenone inhibits mitochondrial biogenesis and function-
related protein expression in porcine skeletal muscle
satellite cells

We found that mitochondrial complex I inhibitor Rot signifi-
cantly decreased the expression of mitochondrial biogenesis
and function-related proteins PGC-1α and Cytc (Fig. 7). We also
observed that 0·5 and 1·0 μM Rot could damage cell morphology
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Fig. 4. Effect of arginine (Arg) on the proportion of type I and type II muscle
fibres by ATPase staining analysis. Results are mean values with their standard
errors from five piglets. a,bValues with unlike letters are significantly different
(P< 0·05). , 0% Arg; , 0·5% Arg; , 1·0% Arg; and , 1·5% Arg.
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(data not shown). Therefore, Rot was supplemented with 0·1 μM
in the following studies.

Arginine affects the formation of type I muscle fibres by
improving mitochondrial biogenesis in porcine skeletal
muscle satellite cells

To investigate the effect of Arg on mitochondrial biogenesis
and function-related protein expression and type I muscle
fibres formation, porcine skeletal muscle satellite cells were
treated with different concentrations of Arg (0, 50, 100 and
200 μg/ml). Western blot result showed that the maximal
up-regulation of MyHC I, Cytc, PGC-1α and Sirt1 protein
expression was observed in 100 μg/ml Arg treatment group
(Fig. 8). In the following studies, Arg was supplemented with
100 μg/ml.

To determine whether mitochondrial biogenesis contributes
to Arg-induced type I muscle fibres formation, mitochondrial
complex I inhibitor Rot was used. As shown in Fig. 9, Arg
increased MyHC I protein level, whereas Rot annulled the
positive effect of Arg on MyHC I protein expression.

Discussion

Arg is classified as a semi-essential or conditionally essential
amino acid in mammals. Arg is the unique natural precursor

in the biosynthesis of NO by NOS(19). A large number of studies
showed that NO or NOS plays an important role in regulating
muscle fibre type composition(20–22). In the present study, we
found that dietary supplementation of 1·0 % Arg increased NO
content, NOS activity, protein expression of MyHC I and
mRNA expressions of type I muscle fibres-related genes
(MyHC I, Tnni1, Tnnc1 and Tnnt1) in longissimus dorsimuscle
of weaning piglets. Some studies had indicated that type I and
type II muscle fibres can be identified by myosin ATPase
staining(23,24). Our data showed that 1·0 % Arg supplementation
significantly increased the number of type I muscle fibres and
significantly decreased the number of type II muscle fibres by
ATPase staining analysis. Previous reports showed that the type
Imuscle fibres had higher SDH enzyme activity(25). In the present
study, the SDH activity was significantly increased by Arg in
longissimus dorsi muscle. Taken together, these findings
showed that dietary supplementation of Arg promoted type I
muscle fibres formation in weaning piglets.

Mitochondria are well-known organelles that provide energy
for eukaryotic cells(26). PGC-1α, a major regulator of mitochon-
drial biogenesis, is expressed in skeletal muscle(27). Sirt1 modu-
lates PGC-1α expression and activity(28) and plays an important
role in regulating mitochondrial function(29,30). PGC-1α and Sirt1
control mitochondrial biogenesis and function via the induction
and activation of several downstream nuclear transcription fac-
tors, such as NRF1, mitochondria transcription factor B1
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(TFB1M), ATP5G and cytochrome c (Cytc)(6,29,31). Furthermore,
there is some evidence that improvement of mitochondria bio-
genesis and function may play a key role in promotion of type
I muscle fibres formation and may be a new mediator of skeletal
muscle fibre type(4–6). Type I (slow-twitch) muscle fibres are rich
in themitochondria(3,32). It has been reported that some nutrients
(such as leucine and resveratrol) can regulate type I (slow-
twitch)muscle fibres expression by improving themitochondrial
biogenesis and function(29,30,33). In the present study, our data
found that dietary supplementation of 1·0 % Arg significantly
increased the PGC-1α, Sirt1 and Cytc protein expressions, the
PGC-1α, NRF1, TFB1M, Cytc and ATP5G mRNA expressions
and the mtDNA content, suggesting that Arg plays an important
role in regulating mitochondrial biogenesis and function.

It should be noted that there might be an optimal dietary
supplementation of Arg in weaning piglets. In the present
study, we showed that for many of the outcome measures,
1·5 % Arg was statistically lower than 1·0 % Arg, suggesting that
the effectiveness of Arg might be optimal at 1·0 %. The reason
might be that dietary supplementation with 1·0 % Arg could
meet the needs of pigs, but excessive supplementation was
disadvantageous. The exact reasons need to be further studied
in the future.

Roteone (Rot) is a common pesticide and has been reported
as a specific inhibitor of mitochondrial electron transport chain
complex I, the first step in the electron transport chain(34). There
is evidence that the inhibition of mitochondrial electron trans-
port chain can lead to mitochondrial dysfunction(33). Rot has
been proven to induce mitochondrial dysfunction(35). Here,
we observed that the cellular morphology changed gradually
following the increase in Rot concentration, and no obvious
damage effects were observed in porcine skeletal muscle
satellite cells with 0·1 μM Rot treatment, which was consistent
with the result of the previous study in PC12 cells(36). Our data
indicated that 0·1 μM Rot could effectively inhibit mitochondrial
electron transport chain. Interestingly, inhibition of mitochon-
drial electron transport chain by Rot down-regulated the
expression of PGC-1α (a major regulator of mitochondrial
biogenesis) and annulled Arg-induced type I muscle fibres
formation.
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About 80% confluent porcine skeletal muscle satellite cells were cultured in the
differentiation medium (Dulbecco's modified Eagle’s medium/F12, 2% horse
serum) for 3 d and then treated with different concentrations of Rot (0, 0·1,
0·5 and 1·0 μM) for 24 h. PGC-1α and Cytc protein levels were determined by
Western blot analysis. The amount of PGC-1α and Cytc was normalised to
the amount of β-actin. The mean values with their standard errors of the densi-
tometry results from three independent experiments are shown in the lower
panel. a,b,c,dValues with unlike letters are significantly different (P< 0·05).
, 0 μM Rot; , 0·1 μM Rot; , 0·5 μM Rot and , 1·0 μM Rot.
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In conclusion, we reported that Arg promotes the formation
of porcine type I muscle fibres, which is dependent on the
improvement of mitochondrial biogenesis. Our study not only
brings new information on the nutritional function of Arg but
also deeply understands the mechanism of Arg regulating the
formation of type I muscle fibres.
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