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shear flow
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At low Reynolds numbers, axisymmetric ellipsoidal particles immersed in a shear flow
undergo periodic tumbling motions known as Jeffery orbits, with the orbit determined by
the initial orientation. Understanding this motion is important for predicting the overall
dynamics of a suspension. While slender fibres may follow Jeffery orbits, many such
particles in nature are neither straight nor rigid. Recent work exploring the dynamics
of curved or elastic fibres have found Jeffery-like behaviour along with chaotic orbits,
decaying orbital constants and cross-streamline drift. Most work focuses on particles with
reflectional symmetry; we instead consider the behaviour of a composite asymmetric
slender body made of two straight rods, suspended in a two-dimensional shear flow, to
understand the effects of the shape on the dynamics. We find that for certain geometries
the particle does not rotate and undergoes persistent drift across streamlines, the magnitude
of which is consistent with other previously identified forms of cross-streamline drift. For
this class of particles, such geometry-driven cross-streamline motion may be important in
giving rise to dispersion in channel flows, thereby potentially enhancing mixing.

Key words: slender-body theory

1. Introduction

The motion of a particle in a dilute suspension depends primarily on its interaction with
a background flow rather than on interactions with other particles. As one application,
understanding the dynamics of small particles in various flows is necessary to understand
the dispersion of suspensions. For example, a particle’s shape can cause cross-streamline
migration in Poiseuille flows (Chan & Leal 1979; Leal 1980; Nitsche & Hinch 1997;
Jendrejack et al. 2004; Słowicka, Wajnryb & Ekiel-Jeżewska 2013; Farutin et al. 2016) or
aid in separation of particles, either through chirality (Kim & Rae 1991; Marcos, Powers &
Stocker 2009; Ro, Yi & Kim 2016; Witten & Diamant 2020) or asymmetry of shape (Lopez
& Graham 2007; Masaeli et al. 2012; Berthet, Fermigier & Lindner 2013; Uspal, Eral &
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Doyle 2013; Bet et al. 2018). Shape can also affect the dispersion of particles in flows of
suspensions, either by altering diffusive properties (Han et al. 2006; Chakrabarty et al.
2013; Koens, Lisicki & Lauga 2017) or affecting Taylor dispersion in pipe flows (Taylor
1954; Kumar et al. 2021). Many relevant flows in microfluidic and other applications, such
as Poiseuille or Couette flows, are approximately a shear flow at sufficiently small scales.
Therefore, it is useful to understand the behaviour of different classes of small particles
in a simple shear flow at low Reynolds numbers in order to understand the behaviour of
suspensions of these particles in various engineering applications.

Slender particles or shapes are found in a range of examples in nature and industry, for
example as flagella used for biological propulsion (Keller & Rubinow 1976b; Lighthill
1976; Lauga & Powers 2009; De Canio, Lauga & Goldstein 2017), biological (Kantsler
& Goldstein 2012) and artificial filaments (Pawłowska et al. 2017; Nunes et al. 2021),
and polymers (Smith, Babcock & Chu 1999). By definition, these objects have a small
aspect ratio, defined as the ratio of the particle’s characteristic cross-sectional radius to its
length. This feature allows their dynamics to be well-approximated by either slender-body
theory (Batchelor 1970; Cox 1970; Johnson 1980) or the similar resistive force theory
(Gray & Hancock 1955; Keller & Rubinow 1976a). Slender particles in a pipe flow have
been shown to have increased axial dispersion (Kumar et al. 2021) as well as a tendency
to migrate across streamlines (Nitsche & Hinch 1997; Słowicka et al. 2012, 2013; Farutin
et al. 2016) driven by the interaction of their narrow shape with a given flow and the
confining boundaries.

Shapes with high symmetry tend to have relatively simple dynamics in low-Reynolds-
number flow. For example, a general axisymmetric ellipsoid placed in a simple shear flow
tumbles periodically (Jeffery 1922). This tumbling motion is characterized by unique
orbits, called Jeffery orbits, which are parameterized solely by the particle’s initial
orientation relative to the flow. The period with which the particle completes an orbit
is a function of the particle’s aspect ratio. Straight slender objects undergo Jeffery orbits
with very long periods (Cox 1971) and any axisymmetric object in a shear flow will follow
a Jeffery orbit, which may be classified in terms of an ‘equivalent’ ellipsoid (Bretherton
1962).

Brenner (1963) demonstrated that it is possible to construct objects that will adopt
stable orientations with respect to a three-dimensional shear flow, and can be accompanied
by persistent drift across streamlines. Shapes with these dynamics may be constructed
that are either asymmetric or bodies of revolution. The defining characteristic of such
shapes is that their aspect ratio is very small. This allows the body to experience two
very different regions of the flow, which can lead to such stable equilibrium dynamics.
Bretherton (1962) considers shapes that are either arrays of spheres and ellipsoids or
more complex bodies of revolution. Borker, Stroock & Koch (2018) extended this work to
consider the equilibrium dynamics of the bodies of revolution, illustrating the dependence
of the equilibrium dynamics on the body’s cross-section.

As the constraint of axisymmetry on a particle’s shape is relaxed, more complicated
dynamics become possible. For example, a triaxial ellipsoid will experience chaotic Jeffery
orbits in which the orbital constant is no longer fixed by the initial orientation (Hinch
& Leal 1979; Yarin, Gottlieb & Roisman 1997). Also, when slender filaments deform
elastically in shear flow they experience tumbling motions similar to a Jeffery orbit
but with orbital constants that decay or grow exponentially with time (Słowicka, Stone
& Ekiel-Jeżewska 2020) as well as experiencing other bending, curling and rotational
dynamics (du Roure et al. 2019; Zuk et al. 2021).

As many slender particles in nature and engineering processes are curved, due in part to
the prevalence of elastic slender particles, the previous results suggest that they may have
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more complex dynamics than a Jeffery orbit. Recent work has shown that, in a simple shear
flow, rigid, curved slender bodies that possess a plane of reflectional symmetry undergo
chaotic orbits (Thorp & Lister 2019) and persistent cross-streamline drift (Wang et al.
2012) depending on the particle’s shape and initial orientation. This behaviour is due to
a lack of symmetry in the particle’s orientation as it rotates in three dimensions (Thorp
& Lister 2019). A consequence of the cross-streamline drift is enhanced dispersion of the
particles (Wang, Graham & Klingenberg 2014).

We continue the exploration of slender particle motion in shear flow by considering
asymmetrically bent, rigid slender bodies. In particular, we study an asymmetric
boomerang shape, consisting of two rods of varying length joined end-to-end with a
variable angular offset. Composite bodies of straight slender rods qualitatively capture
the dynamics of more complex curvatures (De Canio et al. 2017) and so this shape is
analogous to a curved body. We choose to focus on this shape as most curved particles
in nature do not possess reflectional symmetry, such that they are not simply sections of
a circle. As previous studies have shown, even minor reductions in a particle’s symmetry
can have major effects on the dynamics.

We consider the asymmetric boomerang confined to a plane perpendicular to the
flow’s vorticity. Recent papers examine similarly restricted particle motion in microfluidic
channels (Georgiev et al. 2020) or for flexible fibres (Słowicka, Wajnryb & Ekiel-Jeżewska
2015) while others have studied the two-dimensional diffusivity of symmetric boomerangs
(Chakrabarty et al. 2013; Koens et al. 2017). Others have studied the gravitaxis (ten Hagen
et al. 2014) and self-propulsion (ten Hagen et al. 2015) of similar asymmetric boomerangs
as well as the Brownian motion of asymmetric, complex shapes (Cichocki, Ekiel-Jezewska
& Wajnryb 2012; Kraft et al. 2013; Cichocki, Ekiel-Jezewska & Wajnryb 2017). We
expect that such a particle would have interesting dynamics, as the boomerang becomes
a two-dimensional analogue of the ellipsoidal array proposed in figure 5 of Bretherton
(1962) for high degrees of asymmetry. However, the shape we consider is much simpler
and more likely to be seen in a natural setting than the arrays discussed by Bretherton
(1962). By focusing on the particle’s behaviour in a plane we may proceed analytically
using first-order slender-body theory and find new features of the dynamics due to the
shape of the particle without the complications of chaotic orbital dynamics. Thus, we are
able to show that particle drift transverse to the streamlines can result from shape alone
instead of requiring asymmetry in tumbling motions.

We first present in § 2 a theoretical discussion of the motion of a general body confined
to a two-dimensional shear flow. We show that particles will either undergo tumbling
motion with periodic cross-streamline motion of the centre of mass, consistent with the
‘scooping’ observed by Wang et al. (2012), or will adopt a fixed orientation and drift
across streamlines. We provide the geometric condition that determines the dynamics of
the particle. We next consider in § 3 the asymmetric boomerang shape and compute which
variations of the shape enable persistent drifting motion. We analyse the characteristics
of the drift and show that while it results from a different mechanism than previously
identified in the literature, it is consistent in magnitude with the cross-streamline drift
previously observed for symmetric shapes. Finally, we discuss some features of the
particle’s motion in both the fixed (§ 3.2) and periodically rotating regimes (§ 3.3).

2. Motion of particles in shear flow

The Reynolds number Re characterizes the motion of a fluid with viscosity μ, density ρ

and characteristic velocity U around an immersed body of characteristic length L, and is
defined as Re = ρUL/μ. For Re � 1, and an incompressible flow of a Newtonian fluid,
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E∞ = 1/2u∞ = γ ye′
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ω∞ = –γe′
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γ
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Figure 1. Decomposition of a linear shear flow into a rotational component and a rate-of-strain component.
The shear flow u∞(x) = γ̇ ye′

1 may be written as u∞(x) = 1
2 ω∞ ∧ x + E∞ · x, where the values of ω∞ and

E∞ are given in the figure relative to the e′
1 − e′

2 − e′
3 laboratory reference frame. The dynamics of the

particle in the shear flow is a linear combination of the particle’s dynamics in each component flow. The flow
decomposition for particles whose centre does not fall on y = 0 will also include a constant velocity translation,
U∞, in the direction of the shear, as the decomposition into rotational and extensional components assumes
that the particle’s centre is located at x = 0. However, for force and torque-free particles, U∞ will serve only
to advect the particle downstream.

the fluid stress σ , pressure p and velocity u of the flow are well-approximated by the Stokes
equations,

∇ · σ = −∇p + μ∇2u = 0, (2.1)

∇ · u = 0. (2.2)

An arbitrary flow linear in position x can be decomposed into a constant component U∞,
a rotational component due to the vorticity of the flow ω∞ and a rate-of-strain component
E∞ as

u∞(x) = U∞ + 1
2ω∞ ∧ x + E∞ · x. (2.3)

Note that this decomposition satisfies (2.1) and (2.2). The decomposition of a shear flow
with shear rate γ̇ , u∞(x) = γ̇ ye′

1, is depicted in figure 1. In a shear flow, vorticity and the
rate-of-strain balance to cancel out vertical motion and produce horizontal velocity that
varies linearly with the vertical coordinate y.

A rigid particle, with domain V and surface S, immersed in a flow will undergo a rigid
body translational (U) and rotational (Ω) motion described by

ubody(x ∈ V) = U + Ω ∧ x, (2.4)

where Ω changes the particle’s orientation. The solution to the flow problem is a velocity
field that produces hydrodynamic stresses that exactly balance any external forces or
torques acting on the particle.

2.1. Resistance and mobility tensors
The resistance problem deals with determining the hydrodynamic force F , torque T and
stresslet S exerted by a fluid on a particle as a function of the particle’s motion. These
quantities may be determined by integrating the fluid stress σ over the surface of the
particle.

As a result of the linearity of the governing equations, (2.1) and (2.2), and the external
flow, (2.3), the contributions of the flow’s constant, rotational and straining components
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may be calculated individually. Dimensional analysis then sets the relationship between
the motion and the hydrodynamics as (Brenner 1963; Happel & Brenner 1983; Kim &
Karrila 1991, chapter 5)

⎡
⎣F

T
S

⎤
⎦ = μ

⎡
⎣A B̃ G̃

B C H̃
G H M

⎤
⎦ ·

⎡
⎣U∞ − U

1
2ω∞ − Ω

E∞

⎤
⎦ , (2.5)

where A, B and C are second-order tensors, G and H are third-order tensors and M is a
fourth-order tensor, which collectively are known as the grand resistance tensor. The tilde
notation follows that defined by Kim & Karrila (1991, chapter 5); e.g. for second-rank
tensors Bij = B̃ji while for third-rank tensors Gijk = G̃kij. The grand resistance tensor
is usually written in a reference frame fixed to the particle, so that the values of the
resistance coefficients remain constant even as the particle’s orientation changes. The
grand resistance tensor is symmetric and positive definite; this fact was proved for the
force and torque relationships by Happel & Brenner (1983) and then more generally
for the entire grand resistance tensor by Hinch (1972) (see also Kim & Karrila (1991),
chapter 5).

The inverse to the resistance problem is known as the mobility problem. One may
similarly define a grand mobility tensor as

⎡
⎣U − U∞

Ω − 1
2ω∞

−μ−1S

⎤
⎦ =

⎡
⎣a b̃ g̃

b c h̃
g h m

⎤
⎦ ·

⎡
⎣μ−1F

μ−1T
E∞

⎤
⎦ . (2.6)

For convenience in subsequent work, we have adopted the opposite sign convention for
the mobility tensor to that used by Kim & Karrila (1991, chapter 5). The choice of
sign is arbitrary and only effects the relationships between the resistance and mobility
coefficients. In practice, it is usually easier to calculate resistance coefficients for a
given body and then use these to calculate the mobility coefficients rather than directly
determining the mobility coefficients from the shape. Using our sign convention, the
components of the grand mobility tensor relevant to this work are related to the
components of the grand resistance tensor by

[
g̃
h̃

]
=
[

A B̃
B C

]−1

·
[

G̃
H̃

]
. (2.7)

Additional relationships for the remaining mobility coefficients in terms of the resistance
coefficients may be found in Kim & Karrila (1991, chapter 5) with the opposite sign than
that used here.

2.1.1. Extensional flow
A general rate-of-strain E∞ is a second-order tensor with nine components, but only five
are independent due to the constraints of symmetry, E∞

ij = E∞
ji , and incompressibility,
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E∞
ii = 0. Therefore, one possible basis for a general straining flow is

E(1) =
⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦ , E(2) =

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦ , E(3) =

⎡
⎣−1 0 0

0 −1 0
0 0 2

⎤
⎦ ,

E(4) =
⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦ , E(5) =

⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

so that a straining flow may be expressed using this basis as (Kim & Karrila 1991, chapter
5):

E∞ = 1
2(Exx − Eyy)E

(1) + ExyE(2) + 1
2 EzzE

(3) + ExzE
(4) + EyzE

(5). (2.9)

Note that the first two terms are two-dimensional, confined to the x–y plane while the final
three terms involve flow in the ez direction.

2.1.2. A convenient form of the rate-of-strain flow resistance and mobility coefficients
Due to the constraints of symmetry and incompressibility on the form of rate-of-strain
flows that lead to the general form of an extensional flow in (2.8), the third-order resistance
tensors G̃ and H̃ are reduced from each having 27 independent components to only 15
independent components each. Further, it is possible to express a general straining flow
E∞ as a five-component vector, E∞ = [E∞

1 , E∞
2 , E∞

3 , E∞
4 , E∞

5 ]T , where each component
of the vector is the coefficient of the corresponding basis term in (2.8), e.g. E∞

1 = 1
2 (Exx −

Eyy), E∞
2 = Exy, etc. Note that E∞ represents a vector quantity to be distinguished from

the rate-of-strain tensor E∞.
Using these facts it is convenient to define new second-rank resistance tensors Ĝ and

Ĥ which relate the vector form of straining flow to the force and torque acting on a rigid
particle. These new tensors are equivalent to the standard third-rank form,

[
G̃
H̃

]
· E∞ =

[
Ĝ
Ĥ

]
· E∞ =

[
Ĝ
Ĥ

]
· [E∞

1 E∞
2 E∞

3 E∞
4 E∞

5 ]T , (2.10)

but are second-rank tensors with dimensions of three by five and 15 components each. In
many cases, such as when using slender-body theory, it is more convenient to calculate the
components of Ĝ and Ĥ than to resolve the individual, non-independent components of G̃
and H̃ .

Similarly, we may define two new mobility tensors ĝ and ĥ that are equivalent to the full
third-rank forms, [

g̃
h̃

]
· E∞ =

[
ĝ
ĥ

]
· E∞. (2.11)

See Appendix A for a derivation of the components of ĝ in terms of the components of
the original third-rank mobility tensor. The relationship between these second-rank forms
of the straining flow mobility and resistance tensors is given by (2.7) with a substitution of
ĝ for g̃, and so forth. A proof of this relationship is presented in Appendix B.
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e′
2

e′
1

e2

O
θ (t)

e1

Figure 2. The laboratory reference frame for a shear flow is defined such that e′
1 is parallel to the streamlines,

e′
2 is parallel to the flow’s gradient and e′

3 is parallel to the vorticity. In this frame, a shear flow is written
as u∞(x) = γ̇ ye′

1. We also define a particle-fixed reference frame where the particle’s axes, {e1, e2, e3} are
defined conveniently for the particular geometry relative to some origin O. For a two-dimensional flow, the
particle’s e3 axis is defined such that e′

3 = e3, which allows the rotation angle θ(t) to completely describe the
relationship between the two frames. For a particle where point O does not fall on y = 0 for the shear flow,
it is possible to subtract a uniform background flow U∞ to create the situation illustrated. For a force-free
and couple-free particle, this background flow merely advects the particle downstream but does not affect the
rotational dynamics.

2.2. Motion in two-dimensional shear flow
To consider the motion of particles in a shear flow, we define laboratory and particle
reference frames in figure 2. The background shear flow is expressed as u∞(x) = γ̇ ye′

1.
Torques on the particle are calculated about the particle’s origin O. Vectors in the
laboratory frame may be expressed in the particle’s reference frame with the aid of a
time-dependent rotation tensor R as

x = R · x′. (2.12)

We will restrict our study to a consideration of systems of particles with sufficient
symmetry with respect to their orientation in the flow such that the dynamics may be
treated as two-dimensional. The effect of this symmetry is to ensure that a particle, which
is initially oriented relative to the flow such that e3 = e′

3, will not experience any rotational
motion except in the e′

3 direction. This results in a particle never changing its orientation
relative to the e′

1 − e′
2 plane, which in turn means that the dynamics are two-dimensional.

In terms of the components of the resistance tensors, such a particle must have coupling
coefficients B̃11 = B̃12 = B̃22 = Ĝ3j = Ĥ1j = Ĥ2j = 0 for j = 1, 2, 3, 4, 5.

For such two-dimensional dynamics, the angle θ(t) (see figure 2) is sufficient to relate
the two reference frames through the tensor

R =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦ . (2.13)

In this confined system, the general form of the grand resistance tensor, (2.5), reduces
to three translational coefficients, one rotational coefficient, and two coupling coefficients
relating the translational and rotational velocities to the force and torque (Koens et al.
2017). Furthermore, the straining component is a linear combination of only the basis
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matrices E(1) and E(2) (see (2.8)). We may write any two-dimensional extensional flow as

E∞ = E∞
1 E(1) + E∞

2 E(2), (2.14)

or, in terms of the vector notation introduced in § 2.1.2 as E∞ = [E∞
1 , E∞

2 ]T . This
restriction on the form of E∞, along with the conditions on the form of the coupling
tensors, reduces the mobility tensors ĝ and ĥ to four and two components, respectively.

Neglecting the stresslet term, which has no effect on the particle’s dynamics, and
making use of the notation defined above, we write the two-dimensional equivalent of
(2.6) for a force-free and torque-free particle as⎡

⎢⎣ U1 − U∞
1

U2 − U∞
2

Ω3 − 1
2ω∞

3

⎤
⎥⎦ =

⎡
⎣ĝ11 ĝ12

ĝ21 ĝ22
ĥ31 ĥ32

⎤
⎦ ·

[
E∞

1
E∞

2

]
. (2.15)

In the absence of a straining flow, a force and torque-free particle will rotate with the
vorticity of, and be advected by, the background flow. It is a rigid particle’s resistance to
straining that gives rise to dynamics in excess of advection of the centre of mobility. For
the bodies of interest in our problem we complete the derivation of ĝ and ĥ by calculating
the necessary resistance coefficients using slender-body theory (see § 3.1) then relating
them to the mobility coefficients by (2.7) or its two-dimensional equivalent, (B5). See
Appendix A for an alternative derivation of (2.15) in terms of components of the third-rank
mobility tensors.

As illustrated in figure 1, a planar shear flow may be decomposed into a rotational
component ω∞′

3 = −γ̇ and a straining component E∞′
2 = 1

2 γ̇ . The corresponding
rotational and straining components in the body frame are ω∞ = R · ω∞′ and E∞ =
R · E∞′ · RT (Thorp & Lister 2019), which gives ω∞

3 = −γ̇ , E∞
1 = 1

2 γ̇ sin 2θ and E∞
2 =

1
2 γ̇ cos 2θ . Depending on the choice of origin, the decomposition may contain a uniform
background flow U∞′ = U∞′

1 e1. This uniform flow has no impact on the particle’s
tumbling dynamics, as it will only advect the particle downstream.

Shapes with sufficient symmetry, such as spheres and ellipsoids, have a fixed point
relative to the body, which is simply advected by a shear flow. However, for a general
shape at some origin point O we can write the flow experienced by the particle in the
particle’s frame of reference (U = 0) as the sum of the uniform background flow U∞ and
a term arising due to the relative motion of the particle with respect to the background
flow, Ũ . Hence, we write (2.15) for a particle in two-dimensional shear flow as⎡

⎢⎢⎣
−Ũ1 − U∞

1

−Ũ2 − U∞
2

θ̇ + γ̇

2

⎤
⎥⎥⎦ = γ̇

2

⎡
⎣ĝ11 ĝ12

ĝ21 ĝ22
ĥ31 ĥ32

⎤
⎦ ·

[
sin 2θ

cos 2θ

]
, (2.16)

where the rate of rotation of the particle is dθ/dt = θ̇ . The equation for the evolution of
the particle’s orientation is

θ̇ = γ̇

2
(−1 + ĥ31 sin 2θ + ĥ32 cos 2θ). (2.17)

This equation indicates that in this two-dimensional system a particle in a shear flow will
either rotate continuously or adopt a fixed orientation relative to the flow. If ĥ31 and ĥ32 are
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Motion of asymmetric bodies in two-dimensional shear flow

small compared with unity, then θ̇ < 0 for all θ and the particle will rotate continuously
with an angular velocity that varies with its orientation relative to the flow. As the rotation
rate is a periodic function of the orientation, the particle will have a preferred orientation,
θp, relative to the flow at which the rotation rate is minimized. This behaviour is similar to
an ellipsoid undergoing Jeffery orbits (Jeffery 1922; Bretherton 1962; Yarin et al. 1997).
A particle will spend most of its time with an orientation in the vicinity of θp or θp + π,
followed by rapidly transitioning to the other orientation.

To express the preferred angle for the minimum rotation rate in terms of the mobility
coefficients we find the extrema of (2.17) by evaluating dθ̇/dθ = 0 to find

θp = 1
2

(
tan−1

(
ĥ31

ĥ32

)
+ nπ

)
, n = 0, ±1, ±2, . . . . (2.18)

Evaluating d2θ̇/dθ2 at θp allows us to determine the value of n corresponding to the
preferred angle, with negative values of the second derivative indicating the preferred
orientation. Additionally, if a particle possesses a geometry such that ĥ31 = ĥ32 = 0, then
it will rotate continuously with a rotation rate θ̇ = −γ̇ /2, analogous to the rotational
motion of a sphere in shear flow. In this case, the particle has no preferred orientation.

For some particle shapes, the values of ĥ31 and ĥ32 allow an orientation θ0 such that
θ̇ (θ0) = 0. In this orientation, the particle can remain fixed relative to the background
flow, experiencing no rotational motion. From (2.17) we see that θ̇ is a periodic function
of orientation shifted by −1/2. In order for a fixed point to exist, θ̇ must be greater than 0
for some θ0, or

ĥ31 sin 2θ0 + ĥ32 cos 2θ0 > 1. (2.19)

The maximum value of the left-hand side occurs for θ0 such that dθ̇/dθ(θ0) = 0, which
yields

θ0 = 1
2

tan−1

(
ĥ31

ĥ32

)
. (2.20)

Inserting this value of θ0 into (2.19) and simplifying gives a geometric condition for a
stable fixed point to exist,

ĥ2
31 + ĥ2

32 > 1. (2.21)

Satisfying this condition leads to four fixed points of (2.17), two of which are stable
(dθ̇/dθ < 0) and two of which are unstable (dθ̇/dθ > 0). Owing to the symmetry of Stokes
flow, the sets of stable and unstable fixed points are separated from each other by a phase
of π. The stable fixed point that a particle will adopt depends on its shape and initial
orientation.

Thus, we have demonstrated that a force-free and torque-free particle in a
two-dimensional flow will either continuously rotate or adopt a fixed orientation relative
to the flow. The geometry of the particle, expressed in terms of its mobility coefficients
ĥ31 and ĥ32, determines which of the dynamics a particular particle will adopt.

2.3. Cross-streamline drift
By definition, the component of the uniform flow in the particle’s frame that arises due to
the motion of the particle relative to the background flow, Ũ , is related to the velocity of
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the particle in the laboratory frame, U ′ by

[
U′

1
U′

2

]
= −R ·

[
Ũ1

Ũ2

]
, (2.22)

where we have used the two-dimensional analogue of (2.13). If the particle continuously
rotates (θ̇ < 0 for all θ ∈ [0, 2π]), then cos θ and sin θ are periodic functions of time. As
Ũ1 and Ũ2 are functions of cos 2θ and sin 2θ , while R is a function of cos θ and sin θ ,
U′

1 and U′
2 will on average produce no net displacement of the particle relative to the

background flow.
However, when the stability condition, (2.21), is met, the particle will adopt some fixed

orientation θ0 and will, in general, experience net motion relative to the flow unless the
geometry of the particle is sufficient to make this motion identically zero. While a choice
of the particle’s origin may make U′

1 = 0, most geometries will also produce U′
2 /= 0,

which cannot be neglected no matter the choice of origin. Therefore, particles that adopt
fixed orientations relative to a shear flow will, in general, experience a persistent drift
across streamlines.

This prediction of U′
2 /= 0 is similar to the cross-streamline drift previously observed for

symmetrically curved rigid slender bodies in three dimensions (Wang et al. 2012, 2014;
Thorp & Lister 2019). However, the mechanism leading to drift studied here is different,
as the two-dimensional dynamics is purely a result of the object’s geometric interaction
with the flow, whereas the drift observed by Wang et al. (2014) and Thorp & Lister (2019)
in three dimensions arises due to asymmetry in the relative rotation of the particle’s three
axes. Such asymmetry cannot occur in a two-dimensional system with only one orientation
angle. Instead, the mechanism is much more similar to that discussed by Bretherton (1962)
for an array of spheres and ellipsoids. A particle that is continuously tumbling can drift
in three dimensions while the two-dimensional case requires the particle to adopt a fixed
orientation relative to the flow.

3. Asymmetric bent slender rod

We now explore the behaviour of a model asymmetric particle in the context of a
two-dimensional shear flow to understand what geometries may yield drifting dynamics.
In particular, we focus on a composite slender particle, as such composite particles have
been shown to qualitatively capture the behaviour of more complex bodies (De Canio
et al. 2017). While rigid slender bodies in shear flow have been studied in terms of
straight (Cox 1971; Leal 1975) and curved bodies possessing reflectional symmetry in a
three-dimensional flow (Wang et al. 2012, 2014; Thorp & Lister 2019), we will instead
consider asymmetric slender bodies in an effectively two-dimensional flow, where the
particles’ orientation relative to the vorticity axis of the background flow does not change.

Studying slender particles is attractive because their motion is well-approximated by
slender-body theory (Batchelor 1970; Cox 1970; Johnson 1980), which describes the
motion of particles for which the ratio of the particle’s radius R to its length �, defined
as the aspect ratio ε, is small, i.e. ε = R/� � 1. Slender-body theory treats a particle at
leading order as a line distribution of Stokeslets, with a hydrodynamic force-density f
given in terms of the vector tangent to the body et, velocity difference U∞ − U , and drag
coefficient c⊥ = 4πμ/(ln 1/ε) as (Kim & Karrila 1991, chapter 3)

f (s) = c⊥
(

I − 1
2 etet

)
· (U∞ − U). (3.1)
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Motion of asymmetric bodies in two-dimensional shear flow

e′
2

e′
1

e2

e1

α

e′
3

O

s = � (1/2 – q ) 

s = � (q + 1/2 ) 

Figure 3. Schematic of the asymmetric bent rod. The particle’s reference frame is centred at the hinge point
O, with the e1 axis extending parallel to one arm while the other arm is offset by an angle α; the unit vector e2 is
defined as shown. The parameter q sets the asymmetry of the shape, with q = 0 corresponding to a symmetric
body while q = 1/2 is a straight rod. The laboratory frame {e′

1, e′
2, e′

3} is defined consistent with figure 2.
We consider the motion of this body in a two-dimensional shear flow, u∞ = γ̇ ye′

1. As long as e3 = e′
3, the

dynamics of the bent rod in shear will be two-dimensional.

At first order, a slender particle has effectively zero width, which means the orientational
dynamics of a straight slender particle in a shear flow cannot be captured, as there exist
orientations where the centreline of the particle becomes parallel with the streamlines.
In this orientation the particle does not see the flow gradient and so ceases to rotate. In
contrast, a straight body of finite thickness always rotates as a result of the shear gradient,
with a longer period as it becomes more slender (Cox 1971). In this case, to capture the
correct dynamics of a straight rod, one must resort to higher orders in the asymptotic
expansion to account for the particle’s finite thickness (Cox 1971; Leal 1975; Thorp &
Lister 2019).

As an alternative, restricting a non-straight particle to a plane perpendicular to the flow’s
vorticity allows first-order theory to approximate the dynamics of the object. Specifically,
if the vector describing a slender particle’s shape r(s), where s describes position along
the particle centreline, lies in a plane orthogonal to the vorticity vector of the shear flow,
then the radial symmetry of the first-order expansion will ensure that the particle does not
experience a torque causing it to change its orientation with respect to the vorticity vector.
This means the motion of the particle may be treated as two-dimensional, as described in
§ 2.2.

3.1. Resistance coefficients
Consider the composite slender body depicted in figure 3. The body has a total length
�, while the length of the arms vary with an asymmetry parameter q, which equals 0 for
symmetric arms and 1/2 for a straight rod. The two rods are joined at a hinge point O
separated by an angle α. The point O is the origin of a body-fixed coordinate system, with
e1 in the direction of the longer arm. We parameterize a vector r from O to a point on the
body in terms of the arc length s in the range [�(q − 1

2 ), �(q + 1
2 )] as

r(s) =
{−s(cos αe1 + sin αe2) s < 0,

se1 s ≥ 0.
(3.2)

We also define a vector tangent to the rod,

et(s) = dr
ds

=
{−(cos αe1 + sin αe2) s < 0,

e1 s ≥ 0.
(3.3)
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The angle θ relates the particle’s reference frame to the laboratory frame through the
rotation matrix R (see (2.13)), consistent with the depiction of θ in figure 2. The particle is
placed in a shear flow u∞ = γ̇ ye′

1 such that the particle’s e3 axis is parallel to the vorticity
axis, e′

3.
This bent rod is described by first-order slender-body theory for q ∈ [0, 1/2] and α ∈

[0, π]. Shapes in the interval α ∈ [π, 2π] experience equivalent dynamics but with the
velocity vectors mirrored. For values of α near π, as well as values of q near 1/2, the
particle’s shape is almost straight and first-order slender-body theory breaks down. We
neglect these values from future discussion. Interactions between the two arms of the rod
are O(1/ log(1/ε)) and so are neglected in this analysis.

We non-dimensionalize (3.1) in terms of the length of the particle �, shear rate γ̇ and
the drag coefficient c⊥, and then determine the components of the resistance matrices by
applying a series of test flows to the particle. Holding the body fixed U = 0 in a uniform
flow U∞ = u1e′

1, the dimensionless force acting on a particle with tangent vector et is
found by integrating equation (3.1),

F =
∫ q+1/2

q−1/2
f (s) ds =

⎡
⎣1

8 (5 − 2q + (2q − 1) cos 2α)
1
8(2q − 1) sin 2α

0

⎤
⎦ u1. (3.4)

The first column of the tensor A from the grand resistance tensor is the column vector
in (3.4). Continuing this process with more test flows, we find the relevant resistance
coefficients for the bent body,

⎡
⎢⎢⎢⎢⎢⎣

A11
A12
A22
B̃13
B̃23
C33

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
8 (5 − 2q + (2q − 1) cos 2α)

1
8 (2q − 1) sin 2α

1 + 1
4(2q − 1) sin2 α

−1
8 (1 − 2q)2 sin α

1
8 ((2q + 1)2 + (1 − 2q)2 cos α)

1
12 + q2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.5)

The resistance coefficients for the straining flow component are

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĝ11
Ĝ12
Ĝ21
Ĝ22
Ĥ31
Ĥ32

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
32(2(2q + 1)2 + 3(1 − 2q)2 cos α − (1 − 2q)2 cos 3α)

1
8(1 − 2q)2 sin3 α

− 1
16 (1 − 2q)2(2 + cos 2α) sin α

1
32(4(2q + 1)2 + 3(1 − 2q)2 cos α + (1 − 2q)2 cos 3α)

1
24 (2q − 1)3 sin 2α

1
24((2q + 1)3 − (2q − 1)3 cos 2α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.6)

The values of the mobility coefficients follow from the two-dimensional equivalent of
(2.7) given by (B5).
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Motion of asymmetric bodies in two-dimensional shear flow

0

π/4

π/2

3π/4

π

0.1 0.2 0.3

q

α

0.4 0.5

Figure 4. The grey region in q−α parameter space represents the bodies for which stable fixed points exist. In
this region, the bent rod depicted in figure 3 will adopt a fixed orientation relative to the flow and drift across
streamlines. We see that this behaviour only occurs for shapes with high asymmetry and a fairly small bend
angle. Outside of this region, the bodies rotate continuously while experiencing periodic motion relative to the
background flow. Shapes on the boundary of the region have a quasistable fixed point for θ = 0. Representative
bodies for different areas of the phase diagram are included.

3.2. Fixed orientations and cross-stream drift
Making use of the values of the mobility coefficients for the bent rod, we can evaluate
the stability condition, (2.21), over the q–α parameter space in order to determine which
shapes will have stable orientations. The results are shown in figure 4, where the grey
region indicates values of the geometric parameters that give rise to persistent drift across
streamlines. Drifting occurs only for bodies with a high degree of asymmetry and a
relatively low bend angle. The minimum asymmetry required for the onset of drift is
q = 0.274 while drift occurs only for α < π/2. Particles with shapes in this region will
rotate to one of the stable orientations and then drift.

For a bent rod with q = 0.4 and α = π/4 the orientations of the stable and unstable fixed
points relative to the background shear flow are illustrated in figure 5. The orientation of
the rod, θ0, relative to the streamlines of the flow has been exaggerated for clarity. All the
fixed points are small deflections of the long arm of the particle from alignment with the
streamlines of the flow; in general, the highly asymmetric shapes tend to align with the
flow direction.

In orientations (a) and (b) shown in figure 5 the rod is stable and will drift in the direction
indicated. Orientations (c) and (d) are unstable and are shown to highlight the relatively
small angle between a stable orientation and an unstable one. This difference is due to
the fact that while the fixed point condition (2.21) is met, the coefficients ĥ31 and ĥ32 are
such that θ̇ is only greater than zero for a small range of angles, which leads to a small
angular separation between fixed points. In a stable orientation, a disturbance of sufficient
magnitude in the direction of one of the unstable points can cause the rod to rotate.

The actual angular displacements θ0 associated with orientation (a) of figure 5 is
plotted for the entire stable region of q–α space in figure 6(a). The angular displacements
adopted by the bent rods is small, indicating that the particle drifts with the long arm
almost completely aligned with the flow. The angular displacement θ0 is maximized for
shapes that are far from being straight, while geometries close to the boundary of the
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(c)

(d)

VV

V V(b)

Rotationally stable

θ
0

Rotationally unstable

(a)

Figure 5. Illustrative stable and unstable orientations for an asymmetric rod with q = 0.4 and α = π/4 shown
relative to the background shear flow. The orientation angle for this shape, θ0 ≈ 0.038 has been exaggerated
here for clarity. In general, the fixed points for the bent rod system are small deflections from an alignment with
the long arm pointing in the direction of flow. Orientations (a) and (b) are stable with respect to perturbations
while (c) and (d) are unstable. Orientations (a) and (c) will drift upward across streamlines while rods (b) and
(d) will drift downward. Note that the angular separation between pairs of stable and unstable points is small,
indicating that a disturbance towards the nearest unstable orientation need not be large to cause the particle to
flip to the alternate stable fixed point.

2.0 × 10–3

Ũ2

1.5 × 10–3

1.0 × 10–3

q

(a) (b)

q

α

4.0 × 10–2

2.0 × 10–2

1.0 × 10–2

3.0 × 10–2

θ0

0.25 0.30 0.35 0.40 0.45 0.50
0

π/8

π/4

3π/8

π/2

0

π/8

π/4

3π/8

π/2

0.25 0.30 0.35 0.40 0.45 0.50
5.0 × 10–4

Figure 6. Fixed orientation and drift: (a) steady-state angular displacement θ0 in radians and (b) magnitude
of vertical drift Ũ2 for the bent rod shapes that satisfy the stability condition (see (2.21)). There are no stable
states in the white areas of the graph. The angular displacements correspond to orientation (a) of figure 5 and
are very small, indicating only a slight perturbation of the long arm of the rod from pointing in the direction of
the streamlines. The deflection increases to a maximum away from values of q and α that are close to a straight
rod. The drift rate is maximized along the stability boundary. The drift rate is orders of magnitude smaller than
the shear rate, but is similar in magnitude to the drift observed by Wang et al. (2012) for three-dimensional
curved fibres, though owing to a different mechanism. Note that the angular displacements of (a) would
be accompanied by a downward drift, with a magnitude given by (b). On both plots the maximum angular
displacement is denoted with a star, and the shape corresponding to this maximum is shown in the inset in (a).

stable region approach the behaviour of straight rods. The angular displacement associated
with orientation (b) of figure 5 is the same as plotted except with an additional phase of
π radians. The angular displacements of the unstable points (c) and (d) are not shown but
are of the same order of magnitude and with similar distribution. The maximum angular
displacement is achieved for q = 0.36 and α = 0.73. This shape also has the maximum
separation between stable and unstable orientations.

The magnitudes of the vertical drift rates for the stable orientations (a) and (b) in figure 5
are plotted in figure 6(b) for the stable region. Each stable orientation has the same drift
rate, with direction given by figure 5. Similarly to the angular displacement, θ0, the vertical
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00

1.2

0.8

0.4

0

– 0.4

1.2

0.8

0.4

0

– 0.4
π/2 πππ/2

(a) (b)

q = 0.0 q = 0.2

α α

αc

ĥ31

ĥ32

Figure 7. Variations in mobility coefficients ĥ31 and ĥ32 with bend angle α for (a) q = 0 and (b) q = 0.2. For
q near zero, the coefficient ĥ32 has two zeros, which disappear as the magnitude of q increases. For q = 0, one
zero of ĥ32 occurs at the same value of α as a zero of ĥ31. At this αc = cos−1(2

√
3 − 3) the bent rod has no

preferred angle and rotates with a constant rotation rate. As q grows, ĥ32 grows, becoming completely positive
for the entire range of α. ĥ32 approaches a value of 1 as q approaches 1/2 while ĥ31 becomes positive but
decreases in amplitude, approaching 0 as q increases to 1/2.

drift is maximized for rod shapes that are least straight, but, unlike the angular drift,
achieves a maximal value along the stability boundary. There is an order of magnitude
difference in drift rate for particle shapes closest to the maximum (occurring for q = 0.31
and α = 0.72) and for shapes that are close to being straight. However, even the maximum
drift rate is still several orders of magnitude smaller than the background shear rate. The
magnitude of the drift speed is consistent to within an order of magnitude of the drift
speed observed for curved slender particles in a three-dimensional flow by Wang et al.
(2012) and described in Thorp & Lister (2019), although the mechanisms driving the drift
are different.

3.3. Continuous rotation and preferred angles
Particle geometries that do not meet the stability condition, (2.21), continually overturn
as they are advected by the shear flow. They also experience cross-streamline motion, but
this motion is periodic and, for a bent rod, only generate displacements that are at most
around 10 % of the particle’s length. As the rotation rate of these particles depends on their
orientation relative to the flow, (2.17), there are orientations for which the rotation rate is
minimized, giving rise to a preferred orientation θp (see (2.18)). Due to (2.17), particles
have two preferred orientations in the range θ ∈ [0, 2π), offset by an angle of π. As θp is
defined at the minimum value of θ̇ , particles tend to spend most of the rotational period
nearly aligned with the preferred angle, before rapidly overturning to the other preferred
angle.

From (2.18) we see that the preferred angle depends on the mobility coefficients ĥ31 and
ĥ32. These coefficients are plotted as functions of bend angle α for q = 0 and q = 0.2 in
figure 7. The coefficient ĥ32 has two zeros for small values of q, but becomes positive and
approaches a constant value of 1 as q increases towards 1/2. In contrast, ĥ31 tends to zero
as q increases, but also becomes positive as the asymmetry increases. Of particular note,
for q = 0 both ĥ31 and ĥ32 have zeros for a critical value of the bend angle, αc,

αc = cos−1(2
√

3 − 3). (3.7)

At this angle, (2.17) reduces to θ̇ = −1/2, and so the particle rotates with a constant rate.
This behaviour is the same as the rotational motion of a sphere in shear flow and similar
to the equivalent ellipses discussed for straight slender shapes by Bretherton (1962).
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T

Figure 8. Rotating dynamics: (a) preferred angle and (b) period of rotation for non-drifting bent rod
geometries, with a few representative bent rod geometries included in (a). The bent rods tumble in the flow
with a periodic vertical motion, similar to the scooping motions described by Wang et al. (2012) and Thorp &
Lister (2019), with a particular angle θp toward which they are preferentially oriented for most of the period
of rotation. Here, we plot the angle β = θp + α/2, which gives the preferred orientation of the bisector of the
bent rod relative to the streamlines. For small q, the transition from β = 0 to β = π/2 occurs in a small region
around αc. As q becomes larger, β varies mostly with α as the preferred angle θp approaches zero. The period
of rotation tends to be lower for shapes closer to the constant rotation rate, and increases by several orders of
magnitude as the rod gets progressively more straight.

However, unlike either spheres or ellipses, bent rods experience periodic motion relative
to the flow, termed scooping by Wang et al. (2012). We note that this critical bend angle αc
is almost π/3, which would correspond to a particle making up two sides of an equilateral
triangle.

The zeros of ĥ32 that exist for small values of q have the effect of creating singularities
in (2.18), leading to jump discontinuities in the preferred angle θp. For a bent rod with a
small value of q it is useful to introduce the angle β defined as

β = θp + α

2
, (3.8)

which gives the preferred angle between the bisector of the bend and the flow’s
streamlines. The variations in β for the rotating bent rod geometries are plotted in
figure 8(a). For q = 0, the presence of a zero in ĥ32 at αc leads to a jump discontinuity
in the preferred angle β. For α < αc, the rod prefers to orient its bisector in the direction
of flow while for α > αc it prefers to orient with its bisector perpendicular to the flow.
For α = αc there is no preferred orientation. The discontinuity in β at α = π/2 is
removable; examining (2.17), we observe that for ĥ32 = 0, the preferred orientation of the
rod will be θc = π/4. The zero of ĥ32 for small but non-zero q also produces a removable
discontinuity with a value of θc = π/4. For non-zero q, the transition from β = 0 to
β = π/2 is a smooth curve.

As q increases, the preferred angle β is increasingly dominated by its contribution from
α because as q approaches 1/2, the value of θp → 0. Highly asymmetric bent rods tend to
want to align with their long arm almost parallel to the flow. Such shapes also tend to have
long periods of rotation, as shown in figure 8(b), which is consistent with the rotational
behaviour of long ellipses (Bretherton 1962). In contrast, the rod with q = 0 and α = αc
has the minimum rotational period. Increasing the slenderness of the asymmetric shapes
tends to increase their rotational period by several orders of magnitude.
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4. Conclusion

We have shown that a general force-free and torque-free particle placed in the plane
of a two-dimensional shear flow will undergo one of two possible dynamics: periodic
cross-streamline motion while tumbling or persistent cross-streamline drift at a fixed angle.
The particle’s geometry alone determines which of the two states the particle will adopt. In
terms of the mobility coefficients, the condition for stable orientation and persistent drift
is that ĥ2

31 + ĥ2
32 > 1 (see (2.21)). If this condition is not satisfied, the particle will instead

rotate with a rotation rate that depends on the particle’s orientation relative to the flow. This
leads to the particle having a preferred orientation relative to the flow, which again depends
on the mobility coefficients. Additionally, particles that rotate will in general experience
periodic cross-streamline motion, consistent with the scooping behaviour identified by
Wang et al. (2012) for symmetric curves. Only shapes with high degrees of symmetry will
not experience such scooping motion.

We analysed an asymmetric boomerang particle to determine what sorts of geometries
lead to persistent drift. This particle was chosen due to its qualitative analogy to
an asymmetrically curved fibre and due to recent interest in the literature regarding
symmetric boomerang shapes. This particle geometry is amenable to analysis with
first-order slender-body theory. We determined that for values of the geometric parameters
q and α corresponding to high asymmetry (q ≥ 0.274) and relatively shallow bend angle
(α < π/2) there exist geometries that will adopt a fixed orientation and drift across
streamlines. The magnitude of the drift is several orders of magnitude smaller than that
of the background flow and varies by an order of magnitude depending on the values of
the geometric parameters. At its maximum, this drift is of a similar magnitude to that
observed by Wang et al. (2012) and Thorp & Lister (2019) but arises due to the fixed
orientation of the particle rather than asymmetries in a particle’s flipping motions similar
to the mechanism discussed by Bretherton (1962). While the mechanisms driving these
two cross-streamline drift phenomena are different, in practice cross-streamline dispersion
of particles driven by either process requires a substantial amount of downstream distance
to achieve modest vertical separation.

We also analysed the motion of the boomerang undergoing tumbling motion.
A symmetrically bent rod has a special bend angle αc = cos−1(2

√
3 − 3) where the

particle has a constant rotation rate for all orientations, analogous to a sphere. Otherwise,
the particle’s motion is such that its long axis is preferentially aligned with the streamlines.
As the particle’s asymmetry increases this leads to increased periods of rotation as the
particle’s dynamics becomes more like that of a simple straight rod. Only the degenerate
case of a straight particle has no motion relative to the background fluid; such a particle is
degenerate as first-order theory is insufficient to capture the dynamics in a shear flow.

While the two possible dynamics for a particle in a shear flow that we discuss are
general for force-free and torque-free particles in a two-dimensional flow, the results for
the asymmetric boomerang assume that first-order slender-body theory is sufficient to
describe the particle. This is not true in close proximity to the hinge point or when the bend
angle α is very small, as at sufficiently small scales the hydrodynamic interactions between
the two rods become important. However, these effects are higher-order contributions to
the dynamics and are neglected. Additionally, this theory cannot capture the dynamics
of particles too close to straight, as discussed by Cox (1971); this fact also limits us to
discussion of two-dimensional flows. Going forward, we are interested in examining the
behaviour of these asymmetric particles in a full three-dimensional flow, which would
likely introduce chaotic behaviour similar to that observed by Thorp & Lister (2019).
Such an analysis would require the addition of higher-order terms to capture the effects
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of the particle’s small but non-zero width. We would use this three-dimensional analysis
to determine the stability of the two-dimensional stable solutions to small perturbations
out of the flow plane, which is important to know for experimental applications.

We are also interested in extending this work in two dimensions by considering particles
joined by a flexible hinge, by analogy to a more general elastic rod. This would allow for
the particle to change its shape in response to a flow, potentially opening up new periodic
dynamics or increasing the range of shapes which might adopt fixed, drifting orientations.

Finally, shear-driven cross-streamline drift may contribute to the enhancement of
dispersion in suspensions of particles (Griffiths & Stone 2012; Wang et al. 2014). Next
steps include analysis of these particles in suspension to determine whether their drifting
motion may enhance Taylor dispersion. We are also interested in investigating whether
the disturbance flows generated by the overturning particles may enhance mixing of other
substances in a flow, both near to the particle and on the scale of the bulk flow. If so,
particles added to a flow could provide passive means to enhance mixing at a microfluidic
scale.
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Appendix A. Derivation of the two-dimensional mobility equation

This appendix contains an alternative derivation of the two-dimensional mobility
expression, (2.15). We start from an expression for the general three-dimensional mobility
problem, which relates the velocity U , rotation Ω and stresslet S of an arbitrary particle
to the external force F ext and torque T ext acting on the particle as well as the extensional
contribution of the flow in the far-field E∞:⎡

⎢⎣
U − U∞

Ω − 1
2ω∞

μ−1S

⎤
⎥⎦ =

⎡
⎣mUF mUT mUE

mΩF mΩT mΩE

mSF mST mSE

⎤
⎦ ·

⎡
⎣μ−1F ext

μ−1T ext

E∞

⎤
⎦ . (A1)

The second- (mUF, mUT , mΩF, mΩT ), third- (mUE, mΩE, mSF, mST ) and fourth-order
(mSE) mobility tensors appearing in this expression are functions purely of the rigid body’s
geometry and are equivalent to the mobility tensors following the notation of Kim &
Karrila (1991) in (2.6).

Neglecting the stresslet terms, which do not contribute to the present analysis, and
considering a body that is force- and torque-free, the above expression simplifies to

U − U∞ = mUE : E∞ (A2)

Ω − 1
2ω∞ = mΩE : E∞. (A3)

Due to the constraints on the extensional flow that the tensor E∞ be symmetric (E∞
ij =

E∞
ji ) and traceless (E∞

ii = 0), the tensors mUE and mΩE each have 15 independent
components, which completely characterize the motion of a general rigid body placed
in a linear flow.
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In two dimensions the velocity vector reduces to two components U1 and U2 while the
rotation reduces to one component Ω3. Adopting the notation of (2.8) and (2.14) we can
write the first component of the particle’s velocity as

U1 − U∞
1 = (mUE

111 − mUE
122)︸ ︷︷ ︸

ĝ11

E∞
1 + (mUE

112 + mUE
121)︸ ︷︷ ︸

ĝ12

E∞
2 , (A4)

where ĝ11 and ĝ12 correspond to the mobility coefficients as defined by (2.11) and
used in (2.15). The remaining mobility coefficients used in (2.15) follow in the same
manner. For the bodies of interest in this work the mobility coefficients are calculated
by first determining the body’s resistance coefficients using slender-body theory and then
transformed into mobility coefficients following (2.7) or the equivalent equation (B4).

Appendix B. Derivation of resistance and mobility tensor coupling relations

Here we show that the mobility and resistance tensors for straining flow defined using our
second-rank tensors Ĝ, Ĥ , ĝ and ĥ are related by an equivalent expression to (2.7). The
form of this derivation follows that presented by Kim & Karrila (1991, chapter 5) modified
following our sign conventions and use of these second-rank tensors.

Taking (2.5), neglecting the stresslet component, and using Ĝ and Ĥ , the force and torque
on a rigid particle may be written as[

F
T

]
= μ

[
A B̃
B C

]
·
[

U∞ − U
1
2ω∞ − Ω

]
+ μ

[
Ĝ
Ĥ

]
· E∞. (B1)

We may rewrite the particle’s motion terms using the mobility tensors, (2.6), along with
our new mobility tensors ĝ and ĥ as[

F
T

]
= −μ

[
A B̃
B C

]
·
([

a b̃
b c

]
·
[
μ−1F
μ−1T

]
+
[

ĝ
ĥ

]
· E∞

)
+ μ

[
Ĝ
Ĥ

]
· E∞. (B2)

In order for this equality to hold we require

[
a b̃
b c

]
= −

[
A B̃
B C

]−1

, (B3)

[
ĝ
ĥ

]
=
[

A B̃
B C

]−1

·
[

Ĝ
Ĥ

]
. (B4)

Note that (B4) is identical in form to (2.7) and that both (B3) and (B4) are consistent
with those presented by Kim & Karrila (1991) when accounting for our opposite sign
convention, as discussed in § 2.1.

In two dimensions, (B4) reduces to the form⎡
⎣ĝ11 ĝ12

ĝ21 ĝ22
ĥ31 ĥ32

⎤
⎦ =

⎡
⎣A11 A12 B̃13

A21 A22 B̃23
B31 B32 C33

⎤
⎦−1

·
⎡
⎣Ĝ11 Ĝ12

Ĝ21 Ĝ22
Ĥ31 Ĥ32

⎤
⎦ . (B5)

Note that Aij = Aji is symmetric and Bij = B̃ji.
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