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SUBREGULAR SPREADS AND INDICATOR SETS 

A. BRUEN 

1. I n t r o d u c t i o n . In a previous paper [3] we introduced indicator sets in 
order to facilitate the s tudy of partial spreads and spreads in S = PG(3, q). 
The idea enabled us to disprove a conjecture in the l i terature by constructing 
a spread tha t contained no regulus. More recently there have been some notable 
advances in the theory of spreads. One such advance is Denniston's theorem 
tha t packings of spreads always exist in 2 . This result can be very nicely inter
preted in terms of indicator sets [1], Another notable advance is the result on 
subregular spreads due to W. F. Orr [4; 5] which is discussed below. In this 
note we develop further some ideas on indicator sets in [3] and then use these 
results to give an al ternat ive proof of this result of Orr. Pa r t of our intention 
also is to show how indicator sets clarify and complement certain details in 
Orr 's work. 

As in [2; 4; 5] we define a subregular spread H of 2 to be a spread obtainable 
from a regular spread by a sequence of steps of reversing reguli. The signifi
cance of subregular spreads is discussed in Bruck [2]. Orr 's result [4; 5] is t h a t 
H is always obtainable from some regular spread S by reversing a set of disjoint 
reguli of S. (This theorem follows from another interesting result, namely tha t 
no "new" reguli are created unless H is obtained by reversing a linear set of 
reguli in S - s e e Theorem 11.) Because of the connection (see [3]) between 
deriving certain translation planes (and in particular those of order p2 with p 
a prime) and reversing reguli in the corresponding spread, Orr 's theorem also 
settles the analagous outs tanding question for translation planes of order p2 

(T. G. Ostrom has posed the question in this form in [6]). 

As s tated earlier, our purpose is to develop the theory of indicator sets and 
then to give an al ternat ive proof of Orr 's theorem. Our proof makes use of a 
new result which is of interest in its own right (Theorem 6) concerning a 
part i t ioning of a finite field K t ha t uses additive translates of certain multi
plicative subgroups of K. In Section 4 it is shown tha t our proof of Orr 's 
theorem also ties in nicely with an even stronger result which has been proved 
by J. Thas for q even and which has been shown in the case of q odd by Orr. 
The result is t ha t a complete set of q — 1 disjoint reguli in a regular spread is 
linear. As is pointed out in [4, p. 5] this actually implies Orr 's theorem above 
on subregular spreads. The proof of the stronger result for q even (due to 
Thas) is quite short, but the proof for the case of q odd (due to Orr [5]) is long 
and appears quite complicated. 
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2. F i n i t e fields. Let F C K with F = GF(q), K = GF(q2). We denote by 
a the involutory automorphism of K fixing F. For each element x of K we 
define the norm M(x) of x by M(x) = xxa. Set iVi = {x G X|Af(x) = 1}. Then 
iVi is a subgroup of X* (the multiplicative group of non-zero elements of K) of 
order q + 1. The cosets TVi, iV2, . . . , Nq-i of iVi in K* will be referred to as 
norm sets (classes). 

Notation. Greek letters and subscripted Greek letters will always denote 
elements of F throughout . If A, B are arbi t rary sets then A — B means those 
elements of A which are not in B. The cardinal i ty of the set X will be denoted 
by \X\. 

L E M M A 1. Let t G K — F with M(t) = y G F. Then the irreducible quadratic 
over F which is satisfied by t is of the form x2 = a\X + a2 where 0 9e a2 = —7. 
If q is even a\ 9^ 0. 

Proof. K is a quadrat ic extension of F, so t satisfies a unique monic irre
ducible quadrat ic over F, say t2 = a\t + a2. Then (ta)2 = a\ta + a2. Since 
2 ^ /*, /* = ai - t. T h u s 7 = M(t) = //* = -t2 + c^/ = - a 2 . Finally, if q 
is even, every element of F has a square root in L so a\ 9^ 0 in this case. 

COROLLARY 2. Le/ TV be any norm class, and assume that q ^ 4. Le/ 5 &e awy 
element of F = GF(q). Then there exists at least one t G N with t G K — F such 
that XiX2

-1 9^ ô where the irreducible quadratic satisfied by t over F is given by 
t2 = Xi* + X2. 

Proof. Le t iV = \x\M(x) = y}. P u t L = (K - F) C\ N and let u G L. Then 
u satisfies u2 = \iu + X2 say where, by Lemma 1, X2 = —7. Suppose tha t 
XiX2

_1 = 8. There is a t most one other element, say v, in L satisfying the same 
quadrat ic as u and having XiX2

_1 = £. Since \L\ ^ q — 1, \L — \u, v\\ ^ 
q — 3 ^ 1 since q ^ 4. Then any element / in the set L — \u, v\ has the 
desired property. 

L E M M A 3. Let q be even. Assume there exists an element d G K and a norm 
class N such that the q - 1 sets y(N + d) = {y(n + d)\n £ N} with 0 j* y G L 
form a partition of K*. Then d G L. 

Proof. Because of the part i t ioning, the set T = N -\- d must contain a unique 
element fi G L*. T h u s there exists a unique v £ N with v + d = (3. Suppose 
y G F. Then , as in Lemma 1, va = v + ax with 0 =̂  «i G L. Clearly Af(fl) = 
M(va), so ^ G iV. Now va + d = (z; + d) + «i G L. We are given a part i t ioning 
of non-zero elements, and v is unique. We conclude t ha t v G L. Since d = v + f3 
we have d (z F. 

L E M M A 4. J^7fe /fee hypotheses of Lemma 3 we fea^e d = 0. 

Proof. By Lemma 3, d £ F. We show t h a t if J 7̂  0 then N -\- d contains 
two distinct elements denoted by 5, / such t h a t (s + d) (/ + d ) - 1 G -F. Then 
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Lemma 4 will immediately follow. Choose any element t G (K — F) C\ N. 
Let N = [x\M(x) = p}. Then t satisfies t2 = t\i + X2 say, with Ai, A2 in r. 
Since q is even we have from Lemma 1 that Xi ^ 0 and X2 = p. Set s = ta + P 
with a, P to be determined in F. Then, as in Lemma 1, s G N if and only if 

(1) \2a
2 + Xictf + P2 = X2. 

Since Xi ^ 0, (s + d) (t + d)~l G F if and only if 
(2) p + d = ad. 
Since d G .F and since x2 = xXi + X2 is irreducible over F} d cannot satisfy it. 

Solving the simultaneous equations (1), (2) we find that apart from the trivial 
solution a = 1, P = 0 there is one other solution, namely a = (d2 + X2) 
(d2 + d\! + \2)-\ P = d2\i(d2 + dM + Xa)"1. This yields the desired element 
s — ta + p such that (s + d) (t + d)~l G F proving the lemma. 

LEMMA 5. L ^ g ôe odd. Then there does not exist an element d G K and a norm 
class N such that the q — 1 sets y(N + d) with 0 ^ 7 G F partition K*. 

Proof. For any given N, d, we produce elements s, t in N with t £ K — F 
such that (5 + d) (t + d ) - 1 G i7, and this will establish the result. As before, 
set N = \x\M(x) = p}. Choose any t G (K - F) C\ N, and let t2 = t\i + X2, 
with Xi, X2 G F. By Lemma 1, X2 = —p. Since t £ K — F, every element of K 
can be written in the form tyi + 72 for unique elements 71, 72 G F. In particu
lar, we may write d = tœi + co2. As in Lemma 4, set s = ta + /3 with a, P (to be 
determined) in F. Now 5 G iV if and only if 

(1) X 2 a 2 - \&P - p2 = X2. 
The lemma is clear if any element of N + d is zero. Thus we may assume 

that * + d 9* 0. Then (s + d)(t + d)~l G F if and only if 
(2) aœ2 - 0(1 + coi) - co2 = 0. 
We seek an ordered pair (a, P) 9^ (1, 0) satisfying both (1) and (2). If co2 = 0 

the pair ( —1, 0) will satisfy. Assume co2 5̂  0. Then from (2) we obtain a = 
1 + OPj where 0 = (1 + coi)co2

_1 G F. Since the quadratic g(x) = x2 — XiX — X2 

is irreducible over F, we have g(0X2) F^ 0. Substituting a = 1 + 0/3 in (2) we 
obtain a solution pair (a, p) with 0 = X ^ X ^ " 1 - 20)[g(0X2)]"

1 and a = 1 + 0/3. 
Also, (a, P) 9e (1, 0) unless XiX2

_1 = 20. But by Corollary 2, we can choose t 
to avoid the case XiX2

_1 = 20 if q ^ 4. The case ç = 3 is easily handled separ
ately. This proves Lemma 5. 

Combining Lemmas 4 and 5 we obtain 

THEOREM 6. There exists an element d G K and a norm set N such that the sets 
y(N + d) (with 0 5* y £ F) partition K* if and only if q is even and d = 0. 

Proof. If q is even, the elements of F* form a complete set of coset representa
tives for the subgroup Ni of K*. This proves the "if" part. The "only if" 
part follows from Lemmas 4 and 5. 

3. Background. We use the ideas on indicator sets etc. as discussed in [3] 
and we will try to combine our notation with that of Orr [4]. We have 2 C 2 * 
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where 2 = P G ( 3 , F) = P G ( 3 , q) and 2* = P G ( 3 , K) = P G ( 3 , g2). We use 
homogeneous coordinates in describing 2 ( 2 * ) in terms of a 4-dimensional 
vector space over F(K). T h e indicator plane ir(l) is the plane spanned by the 
vectors e\, e2, te% + e4 where {ei, e2, ez, e±\ form a basis for 2 ( 2 * ) over F(K) 
and £ is an element of K — F. Here I is the line of TT(1) spanned by e\, e2 and given 
by I = ( (1 , 0, 0, 0) , (0, 1, 0, 0 ) ) . Through each point of TT(1) - /, t h a t is, 
through each affine point of ir(l) there passes, by [3, Lemma 2.1], a unique line 
of 2 . Let u, v be the unique lines of 2 through the affine points U, V respec
tively. Then by [3, Theorem 2.4] u and v are skew if and only if the line UV 
meets I in a point of 2* — 2 . We say tha t U(V) indicates u(v). Each affine point 
of IT (I) has (homogeneous) coordinates of the form (x, y, t, 1). In particular 
the affine point (0, 0, /, 1) indicates the line m = (e3, e^) given by m = ((0, 0, 1, 0) , 
(0, 0, 0, 1)) . 

A regular spread S of 2 has the characteristic proper ty t h a t if x is any line of 
2 — 5 then the q + 1 lines of S meeting x form a regulus denoted by Rs(x) or, 
if no confusion can arise, simply by R(x). T h e set of points on an affine line of 
ir (I) (whose slope is in K — F) indicates a part ial spread U such t ha t U U / 
is a regular spread of 2 . If W denotes a family of disjoint reguli in 5 then Sw 

denotes the subregular spread obtained from 5 by reversing each regulus of W. 
For the isomorphism between a regular spread, with its lines and reguli, and 
the inversive plane over GF(q) with its points and circles we refer to [3, p . 536; 
4, p . 4; and 2, Theorem 4.5]. In part icular, if R is a regulus of 2 containing / 
then R — I is indicated by a set L of q affine collinear points of w(l) which are 
contained in a chain or projective subline in ir(l) (see [3, Lemma 3.3] and 
[3, p. 536]). If this set L contains (0, 0, t, 1), and say, (x, y, t, 1) then L = 

{(7x,7:y, U ) I Y e F}. 

4. T h e m a i n re su l t . We refer to [2, p . 437] for an account of the following 
results. 

L E M M A 7. The projective linear group P L ( 2 ) of 2 = P G ( 3 , q) is transitive on 
the regular spreads of 2 . 

L E M M A 8. Let S be a regular spread of 2 and let G be the subgroup of P L ( 2 ) 
mapping S upon S. Then G is transitive on the ordered triples of lines in S. 

Much of the following lemma is implicit in the work of Bruck [2] bu t for the 
sake of completeness and compactness we discuss it here. 

L E M M A 9. Let S be a regular spread of 2 consisting of I = ( (1 , 0, 0, 0) , 
(0, 1, 0, 0 ) ) together with those lines of 2 indicated by the set y = xt, that is, the 
lines indicated by {(x, xt, t, l)\x G K). Suppose N is a norm set in K. Then 

(i) Each subset of the form {(x + d, (x + d)t, t, l)\x G N} indicates a 
regulus R(d) of S. If R''(d) denotes the lines indicated by 

{(x + d, xt" + dt, t, 1 ) |* G N} 

then R''(d) is the opposite regulus of R(d). 
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(ii) Any regulus of S not containing I is equal to R(d) for some choice of N, d. 
(iii) For a fixed d and varying N, the g — 1 reguli R(d) form a complete linear 

set H(d) of reguli in S. In particular, if d = 0, this linear set H(0) has the lines m, 
I for common conjugate lines where 

m = <(0, 0, 1, 0) , (0, 0, 0, 1)) , / = <(1, 0, 0, 0) , (0, 1, 0, 0 ) ) . 

(iv) Set Sf = SH(0). Then S' is a regular spread, S C\ S' = \l,m\ and S' — \l\ 
is indicated by the line y = xta that is, by the set {(x, xt°, t, l ) | x G K). Moreover, 
if x is any line of S' — {I, m\ indicated by the point {x, xta, t, 1) then x lies in the 
reverse of a unique regulus R&{x) of S. This regulus is a regulus of H(0) indi
cated by {(y, yt, t, l)\y £ N} with N being the norm class of K containing x. 

Proof, (i) can be seen from the following argument . Let A be the point 
(y + d, (y + d)t, t, 1) with y Ç TV. Let B be the point (z + d, zt° + dt, t, 1) 
with z Ç N. Then the line AB meets I in a point of 2 , namely (1, y, 0, 0) where 
y — {zta — yt) (z — y)*1 G F. Thus (Section 3) the lines a, b indicated by A and 
B intersect. Let t ing x vary over N we obtain q + 1 distinct lines a which, being 
contained in S, are pairwise skew. From the above, each of these q + 1 pairwise 
skew lines in R(d) intersects each line of R'{d). Thus , R'(d) is contained in a 
regulus, and since \R'(d)\ = q + 1, we have tha t R' (d) is a regulus, with 
opposite regulus R(d). 

(ii) is easily established by counting. 
For (iii) see Bruck [2, p. 509]. 
Pa r t (iv) is proved in a manner similar to (i), using the fact tha t a linear 

indicator set yields a regular spread minus the line /. 

Comment. If we think of the real inversive plane most of the above results 
become rather clear. For example, (ii) says tha t every circle (regulus) not 
passing through the point a t infinity has a centre (at d) and a radius (corres
ponding to the norm class N). 

We proceed to the main result (Theorem 11). One of the major differences 
between our approach and tha t of Orr [4] occurs in the proof of the following 
result which corresponds approximately to Lemma 2 in [4]. 

LEMMA 10. Let U = Sw where S is a regular spread and W = }Ri,R2,... ,RQ-i} 
is a set of q — 1 disjoint reguli of S. Suppose Ris a regulus of Sw with \R C\ R/\ = 
1,1 ^ i S q — 1. Then q is even and W is a complete linear set. 

Proof. Let S C\ Sw = \u, v\ say, where S - \JtRt= [u, v}. Then R H 5 = 
{u, v\. The property of being a complete linear set is invariant under collinea-
tions of 2 . Using Lemma 7, we can thus assume tha t S is the regular spread of 
Lemma 9 consisting of / = (ei, e2) together with the lines of S indicated by 
y = xt. Using Lemma 8 we can also assume tha t u = I above and v = m = 
(ez, e4). Thus R contains /, m. Fur thermore, Rt C\ {I, m) = 0, 1 ^ i ^ q — 1. 
Let R C\ Ri = b. By 9 (ii) the regulus Rly being disjoint from /, is equal to 
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R(d) for some choice of N, d. By 9 (i), Ri is indicated by 

{(x + d,xtff + dt, t, l ) | x 6 N}. 

In particular, b is indicated by (xo + d, x4a + dt, t, 1) for some x0 G N. 
Since R contains / and also {m, b}, R — / i s indicated by a projective subline 
(see Section 3) containing the two points indicating m, b. T h u s R — {I, m\ is 
indicated by 

{( 7 (x 0 + d), y(xoP + dt), t, 1 ) | 7 G / * } . 

We now find R C\ R/. By 9 (i) and 9 (ii), R/ is indicated by 

{(2 + duzt° + dtt,t, l)\z e Nt} 

where Nt is some norm class. Since \R P\ R/\ = 1 there must be a unique 
7o G F* such tha t 

z + dt = 7o(x0 + d) 

zt° + df/ = 7 0 ^ 0 ^ + dt). 

Since /* ^ t, we have d* = yod, z = 70X0. T h u s one line in i £ / , call it p, is 
indicated by (70 (xo + d), yoXot' + yodt, t, 1). A vir tue of indicator sets is t ha t 
we can now easily determine Rf from this as follows. We have p £ i £ / . T h u s 
Ri will be the unique regulus of the regular spread 5 whose q + 1 lines pass 
through the q + 1 points of p (in terms of the notat ion of Section 3, Ri = 
Rs(p)). Thus , to find Riy we look for a regulus in S all of whose lines intersect/?. 
Since 0 9e 70 is fixed and the norm function is multiplicative, the set 
7oiV = {7ox|x Ç N] is a norm class. Also d is fixed. By 9 (i) the set 

T = {(7o(x + d), 7 o ( x + d)t, t, 1 ) |* G ^ } 

is a regulus of S. Since x0 G N, the line p is in the opposite regulus T' by 9 (ii). 
T h u s T is a regulus of 5 , and p meets each line of T. Therefore T = Rt. (We 
note t ha t different values of i yield different values of 70.) Now for x G K*, 
the point (x, xt, t, 1) indicates a line ^ l, m oî S which must be contained in 
some Ri, since {JiRt = S — {I, m\. T h u s the q — 1 sets 7(TV + d) with 
y d F* part i t ion K*. By Theorem 6, q is even and d is zero. In this case, by 
Lemma 9 (iii), the Rt form a complete linear set. This completes the proof of 
Lemma 10. 

We now come to the main result. T h e proof is similar to t h a t in [4], a l though 
it is somewhat more streamlined, and is simplified, we feel, by the use of 
indicator sets. 

T H E O R E M 11. Let Sw be a subregular spread in 2 = PG(3, q) obtained from a 
regular spread S by reversing a non-linear set W — {Ri, Ri, . . . , Rk] of pair wise 
disjoint reguli of S. Then every regulus R contained in Sw is either 

(i) a regulus in S, or 
(ii) the reverse of some Rt, 1 ^ i ^ k. 
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Proof. Any two disjoint reguli of S are extendable to a complete linear set. 
Thus since W is non-linear we have k ^ 3. The maximum number of disjoint 
reguli in S is q — 1. Thus, 3 S k S q — 1, so g ^ 4. Suppose that R C Sw is 
neither in class (i) or (ii) of the theorem. Then \R C\ S\ ^ 2, since 5 is regular, 
and \R H R/\ ^ 2 for 1 ^ i rg k. Since g ^ 4 this implies that i^ contains 
lines from at least two of the reguli R/. 

First we claim that \R Pi R/\ ^ 1, 1 ^ i ^ fe. For suppose that |2? Pi i^/I = 
2, say. i£ contains lines from at least one more of the R/, say R2 , so that 
\R r\ R2'\ ^ 1. The pair Ri, R2 extend to a complete linear set J in S with 
common conjugate lines u, v. By Lemmas 7 and 8 we may assume that u = I = 
(ei, e2), v = m = (e3, e4), and that S — / is indicated by y = xt. Since / can 
be recovered from {/, m\ we have by 9 (iii) that J = H(0) = H say. Set S' = 
SJ. Then S' is regular, with 5 P i 5 ' = {/, m\. Since S' contains Ri , R'2, 
\R H 5' | ^ 3. So R C S'. Put T = i? - {/, m}. As in 9 (iv), each line x G T 
is in the reverse of a unique regulus Rs(x) of 5. Now, since x £ R, x £ S'. 
Also x ?£ I, m. By definition, each line of 5 ' apart from {/, m) lies in (exactly) 
one of the reguli R(. In particular, x lies in one of the reguli R{, say x Ç RJ'. 
Since i?a is in fact a regulus of S, we see that Rs(x) = ^a and, by 9 (iv), 
Rs(x) G i ï . Since \Rr\Ri\ ^ 2 , it follows that the number n of reguli 
Ri, R2, . . . , Rn that are also reguli of H is at least | | r | . Also, |T| ^ g — 1. 
Thus n ^ J(g — 1). Since Wis nonlinear, there exists at least one regulus Rj £ 
W with Rj (? J. Then each line of Rj is either /, w or a line of the q — 1 — n 
reguli of / that are contained in / — {Ri, R2, . . . , i£w} ; moreover, Rj has at 
most two lines in common with any of these last reguli. This yields that 

2(q- 1-n) +2^q + l, 

so that n ^ J(g — 1). From the above we see that n = \{q — 1). On the one 
hand this implies that {/, m) C R and, on the other hand, that {/, m\ C Rj. 
Now since R/ C Sw, and {/, m} C Rj neither / nor m is in Sw. However, from 
the above, {/, m) C R C «S .̂ This is a contradiction, and we conclude that 
\RC\RJ\ ^ 1, U i g i . 

Finally, since |i?| = g + 1 and |i? C\ S\ ^ 2 we obtain k = q — I and 
|i£ P\ i ? / | = 1,1 ^ i S q — 1. An appeal to Lemma 10 completes the proof. 

Comment. Theorem 11 shows that by reversing the reguli of a non-linear 
disjoint set in the regular spread S we cannot obtain any "new" reguli. 

Finally, we sketch a proof of the following result, the details of which may 
be found in [4]. 

COROLLARY 12. Every subregular spread in 2 = PG(3, q) is obtainable from 
some regular spread S by reversing a set of disjoint reguli of S. 

Outline of proof. Let U be a subregular spread obtained from the regular 
spread 5 by a sequence of steps of reversing reguli. That is, there is a sequence 
S = So, Si, . . . , Sk of spreads such that Si = (Si-i)Ri for some regulus Rf in 
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Si-i, 1 ^ i ^ k. We proceed by induction. Clearly Si is obtainable from S = So 
by reversing a (singleton) set of reguli. For 1 ^ i < k, suppose t ha t Sf is 
obtainable from some regular spread 5* by reversing a set L of disjoint reguli 
in 5*, so t ha t 5\- = (S*)L. If L is non-linear we may exploit Theorem 11. Now 
suppose L is linear. Then L is extendable to a complete linear set H in S. If 
ç > 3 and if Ri+i is not in S*, then, as in the proof of Theorem 11, Ri+i is 
contained in the regular spread (5*)H . For each regulus R in H — L, Ri+i is 
disjoint from R and 7v' the opposite regulus of R. T h e set W of the regular 
spread (S*)H consisting of Ri+\ and each R' (where R £ H — L) is a set of 
disjoint reguli, and moreover, St+\ = ((S*)H)W. T h u s the corollary holds for 
Si+i and, by induction, for Sk provided q > 3. For q ^ 3 we can use the known 
s t ructure of spreads of P G ( 3 , g) to prove the result also in these cases. 

Remark. Let us suppose tha t W is a complete set of q — 1 disjoint reguli of 
the regular spread S. Denote by u, v the two lines "left over" . I t has been shown 
by J. T h a s [7] t ha t for q even, W is linear with common conjugate lines u, v. 
Subsequently this result has also been shown for q odd by W. Orr. By a col-
lineation (Lemma 7) we assume tha t S is indicated by y = xt and (Lemma 8) 
tha t u = /, v = m. Using the ideas in this section we can then see t ha t the 
above result of Thas (for q even) and of Orr (for q odd) is equivalent to the 
following s ta tement . 

COROLLARY 13. Let there be given a partition of K* by q — 1 sets of the form 

Ni + at, with Nf being a norm set in K and at G K. Then each at is zero, and 
Ni P\ Nj = 0 if i 9^ j so that each norm set in K* is equal to one of the sets Nh 

1 ^ i S q - 1. 

REFERENCES 

1. A. Beutelspacher, On parallelisms in 3-dimensional finite projective spaces, to appear, 
Geometriae Dedicata. 

2. R. H. Bruck, Construction problems ojfinite projective planes, Proceedings of the Conference 
in Combinatorics held at the University of North Carolina at Chapel Hill, April 10-14, 
1967 (University of North Carolina Press, 1969), 426-514. 

3. A. Bruen, Spreads and a conjecture oj Bruck and Bose, J. Algebra 23 (1972), 519-537. 
4. W. F. Orr, A characterization of sub regular spreads infinite 3-space} text of lecture presented 

to the American Mathematical Society at the Annual Meeting in Dallas, Texas, January 
25-29, 1973. (See abstract no. 351, A. M. S. Notices, January 1973.) 

5# The miquelian inversive plane IP(q) and the associated projective planes, Doctoral 
Dissertation, University of Wisconsin, 1973. 

6. T. G. Ostrom, Translation planes, Proc. Conf. on Combinatorial Mathematics and its 
Applications, Chapel Hill, April 1967 (University of North Carolina Press, Chapel Hill, 
North Carolina, 1969). 

7. J. Thas, Flocks of finite egglike inversive planes; in Finite geometric structures and their applica
tions, C.I.M.E. II ciclo 1972, Ed. Cremonese, Rome, 1973, pp. 189-191. 

University of Western Ontario, 
London, Ontario 

https://doi.org/10.4153/CJM-1975-119-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-119-4

