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Abstract

Singularly perturbed ordinary differential equations often exhibit Stokes’ phenomenon,
which describes the appearance and disappearance of oscillating exponentially small
terms across curves in the complex plane known as Stokes lines. These curves originate
at singular points in the leading-order solution to the differential equation. In many
important problems, it is impossible to obtain a closed-form expression for these
leading-order solutions, and it is therefore challenging to locate these singular points.
We present evidence that the analytic leading-order solution of a linear differential
equation can be replaced with a numerical rational approximation using the adaptive
Antoulas–Anderson (AAA) method. Despite such an approximation having completely
different singularity types and locations, we show that the subsequent exponential
asymptotic analysis accurately predicts the exponentially small behaviour present in the
solution. For sufficiently small values of the asymptotic parameter, this approach breaks
down; however, the range of validity may be extended by increasing the number of poles
in the rational approximation. We present a related nonlinear problem and discuss the
challenges that arise due to nonlinear effects. Overall, our approach allows for the study
of exponentially small asymptotic effects without requiring an exact analytic form for
the leading-order solution; this permits exponential asymptotic methods to be used in a
much wider range of applications.
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1. Introduction

In this study, we focus our attention on a singularly perturbed linear ordinary
differential equation in the limit that ε → 0, whose leading-order solution u0 contains
two branch points, namely

ε2u′′(x) + u(x) =
1

√
x + i

+
1

√
x − i

, (1.1)

with the boundary conditions

lim
x→−∞

u(x) = 0, lim
x→−∞

u′(x) = 0. (1.2)

Differential equation (1.1) possesses a closed-form solution in terms of the exponential
integral function, but we will instead take an alternative approach and determine
an asymptotic expansion for the solution in the limit that ε → 0. To determine this
expansion, we write a series solution to (1.1)–(1.2) in the form

u(x; ε) ∼
∞∑

n=0

ε2nun(x). (1.3)

By substituting this expression into (1.1) and matching powers of ε in the limit that
ε → 0, we find that

u0(x) =
1

√
x + i

+
1

√
x − i

. (1.4)

The solution u(x) can be shown to contain nondecaying oscillations in the region x > 0.
These oscillations cannot be described using the power series (1.3), as the amplitude
of the oscillations is exponentially small in the limit ε → 0. Exponential asymptotic
techniques are asymptotic methods that may be used to study behaviour that occurs on
this scale [2–6, 21].

We will perform an exponential asymptotic analysis on (1.1)–(1.2), using the
method proposed in [21], to calculate the form of the exponentially small oscillations,
denoted uexp. As is typical of exponential asymptotic techniques, this method requires
the explicit calculation of the leading-order solution (1.4) of the differential equation.
We will find that the exponentially small oscillations appear as special curves in
the complex x-plane, which originate at singularities of u0 in the complex plane
[17] and are known as “Stokes lines”, are crossed. It is important to note that the
asymptotic size of uexp as ε → 0 typically depends on the location and strength of
the singularity. Knowing the analytical form of the leading-order solution u0 near
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[3] Exponential asymptotics using rational approximation 3

singularities often provides enough information to calculate the Stokes lines and
approximate the exponential contributions [7].

For many practical problems, it is impossible to calculate the leading-order solution
u0 analytically [9, 14–16]. In this case, the leading-order solution must instead be
approximated numerically. There is growing evidence that numerical methods for
analytic continuation, including numerically stepping into the complex plane [9] and
rational approximation methods [15], can be used in conjunction with exponential
asymptotics.

The purpose of this paper is to determine whether numerical rational approximation
can be combined with exponential asymptotics to correctly approximate exponentially
small asymptotic effects. We wish to consider settings in which the solution has been
numerically approximated on some discrete set of points along the real axis which
we then seek to analytically continue into the complex plane. This setup makes the
adaptive Antoulas–Anderson (AAA) algorithm [20] particularly well suited for our
purpose. This algorithm is described in Section 1.1, and produces a rational function,
denoted here as û0, which approximates the leading-order behaviour.

We will sample the true leading-order solution u0 on a discrete set of points and
use these data as the input for an AAA approximation û0. We will apply the same
exponential asymptotic method on this leading-order expression to obtain ûexp. By
comparing the analytic form of uexp and ûexp, we will see that the two expressions have
significantly different asymptotic behaviour in the limit ε → 0. We will then show
that, despite this difference, ûexp is able to accurately approximate uexp for a range of
values of ε, and that this range can be extended by increasing the accuracy of the AAA
approximation (that is, reducing the L2 error threshold on the set of sample points).

The difference in asymptotic behaviour between uexp and ûexp is a consequence
of the fact that all singularities in û0 must be simple poles; if u0 contains other
singularities, such as branch points, the branch will typically be approximated as
an accumulation of simple poles instead [18, 24, 26]. Hence, the strength of the
singularity in u0 is generically different to the simple poles present in û0. Recall
that the asymptotic behaviour of uexp depends on the strength of the singularity. It is
therefore remarkable that, despite such a numerical approximation having completely
different singularity types and locations, the asymptotic behaviour uexp can be well
approximated by ûexp.

Finally, we will provide evidence that the threshold value of ε below which ûexp is
inaccurate is proportional to the difference between the true branch point location in
u0 and the pole nearest to this point in û0. This difference may be thought of as the
approximation error of the true branch point location from the rational approximation
algorithm.

1.1. Numerical analytic continuation In general, the leading-order solution to an
ordinary differential equation can be computed on a real domain using any one of
a variety of standard numerical methods [19]. Using the result of numerical com-
putations to describe the complex plane behaviour of these solutions is challenging.
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It is well known that analytic continuation is ill-posed, and that small changes to the
function being continued, such as numerical error, can lead to significant changes in
the analytically continued result.

Despite this challenge, significant progress has been made on performing analytic
continuation using numerical methods, which typically require the output function to
take a particular algebraic form. The most commonly used methods for numerical
complex analytic continuation are methods that give a rational function as an output.
These rational approximation methods include Padé approximation [1] and the AAA
algorithm [20].

Rational approximation methods typically approximate some function f (x) as a
rational expression,

f (x) ≈ n(x)
d(x)

, (1.5)

where n(x) and d(x) are polynomials.
Historically, the most widely used method for obtaining rational approximations is

Padé approximation, which is constructed using the Taylor coefficients of f (x) at a
particular point. We want to study data that take a different form; where values of f (x)
are calculated numerically on some discrete support set of points. While it is possible
to approximate Taylor coefficients using values of the function on a discrete set of
points, there are other methods more well suited to input data with this form.

One such method is the AAA approximation, which works by iteratively solving a
minimisation problem to produce an optimal rational approximation. The explanation
that follows is a high-level description of the AAA algorithm; for a detailed explana-
tion, see [20].

The algorithm is based on expressing the rational approximation in the form

f (x) ≈ n(x)
d(x)

=

m∑
j=1

wjfj
x − xj

/ m∑
j=1

wj

x − xj
. (1.6)

The points xj for j = 1, 2, . . . , m, are known as support points. They are drawn from the
sample set X, which consists of the points on which f (x) is known; we define fj = f (xj).
The algorithm solves an optimisation problem to determine the weights wj, and then
generates another support point xj+1. This process then repeats iteratively.

The weights wj are generated by solving a linear least-squares problem over a set of
points in the restricted domain X(m) = X \ {x1, . . . , xm}; these points are labelled X(m)

i .
The weight vector w = (w1, w2, . . . , wm)T is chosen to minimise ||fd − n||X(m) subject
to ||w||m = 1, where ||·||X(m) is the discrete 2-norm over X(m) and ||·||m is the discrete
L2 on m-vectors. If the 2-norm of the approximation residuals on X(m) are beneath
some specified tolerance (relative to the maximum value taken by |f (xj)|), the algorithm
terminates.

If the algorithm does not terminate, the value of xm+1 is determined for the next
iteration. It is found by choosing the value of xm+1 ∈ X(m) that maximises the quantity
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m∑
j=1

wjf (xm+1)

xm+1 − xj
−

m∑
j=1

wjfj
xm+1 − xj

. (1.7)

The process then repeats until the termination criteria are reached.
The key information for our purposes is that the method takes in the function values

on a set of points and returns a rational approximation that minimises the L2-norm of
the approximation error on the data support set, and that it is an iterative process that
increases the number of poles in the solution until some predetermined tolerance is
met. We often write the approximation in the form

f (x) ≈
m∑

j=0

aj

x − pj
, (1.8)

where aj are the residues of the function at each pole location pj.
As previously alluded to, one potential obstacle in applying rational approximation

methods is that these methods produce meromorphic functions; all singularities in
the approximation are isolated simple poles. Previous studies of AAA approximation
[18, 24, 26] showed that the rational function approximation of a target function with a
branch point contains an exponential clustering of poles (and zeroes) in the approxima-
tion approaching the branch point. This configuration of poles accurately approximates
the effects of the branch cut. The distribution of poles when approximating branch cuts
in rational approximations has been studied rigorously in the related problem of Padé
approximation [23].

In the following study, we show that if we approximate the leading-order solution
of an ordinary differential equation with a rational function of the form (1.8), it is
possible to use exponential asymptotics on this rational function to approximate the
exponentially small terms that appear in the solution due to Stokes’ phenomenon.

1.2. Paper outline In Section 2, we perform an exponential asymptotic analysis of
the system (1.1)–(1.2) to determine the Stokes switching behaviour in the solution.
In Section 3, we use an AAA rational approximation to solve (1.1)–(1.2) with ε = 0,
and use this as the basis for an exponential asymptotic analysis. In Section 4, we
compare the results from the two preceding sections, and show that the AAA rational
approximation can correctly describe the Stokes switching behaviour. Finally, in
Section 5, we discuss how this method can be applied to study a nonlinear ordinary
differential equation, and describe the additional challenges to this method caused by
nonlinearity.

2. Exponential asymptotic analysis

2.1. Asymptotic power series We propose an asymptotic series solution to
(1.1)–(1.2) of the form presented in (1.3). By substituting this expression into the
ordinary differential equation (1.1) and matching powers of ε in the limit that ε → 0,
we find that the leading-order behaviour is given in (1.4).

https://doi.org/10.1017/S1446181124000038 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000038


6 C. J. Lustri, S. Crew and S. J. Chapman [6]

FIGURE 1. Magnitude of series terms from (1.3) evaluated at x = 0 for ε = 0.1. As n increases, the terms
become smaller until a minimum value is reached at n = 5, after which the terms increase in size due to
the factorial contribution to the numerator of un in (2.2). The series (1.3) must therefore be divergent, and
the optimal truncation point occurs at the minimum value.

Matching at O(εn) as ε → 0 gives

un = −u′′n−1, n ≥ 1. (2.1)

This recurrence relation can be used to calculate un exactly, giving

un =
(4n)! (−1)n

24n(2n)! (x − i)2n+1/2 + c.c., (2.2)

where c.c. denotes the complex conjugate contribution. The series (1.3) with terms
given by (2.2) is divergent for any fixed choice of x. Figure 1 depicts εnun at x = 0
with ε = 0.1. The magnitude of the terms decreases until n = 5, after which the size of
successive terms increases, causing the series to diverge.

Typically, truncating the series at the value of n that minimises ε2n|un| produces the
most accurate approximation that can be achieved by the series. This value of n is often
known as the “optimal truncation point”, which we denote as Nopt.

Divergence of an asymptotic series, such as that seen in Figure 1, indicates that the
solution contains exponentially small terms that cannot be described by the algebraic
series. Behaviour that occurs on this scale is smaller than any algebraic term in the
limit that ε → 0, and hence cannot be captured by the series expression.

Exponential asymptotic methods are built on the observation that truncating a
series optimally at n = Nopt produces a remainder that is exponentially small in the
asymptotic limit [3]. By rescaling to study the exact truncation remainder, we can
directly calculate exponentially small components of the asymptotic expansion.

2.2. Finding the Stokes lines The analysis presented here is a standard application
of the exponential asymptotic method developed in [21] to study Stokes’ phenomenon.
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[7] Exponential asymptotics using rational approximation 7

Nonetheless, this section will provide a relatively complete summary of the procedure
to make the analysis accessible.

The purpose of this analysis is to obtain the leading exponentially small correction
term to the series (1.3), and to therefore reveal the effects of Stokes switching in
the solution. We will concentrate on the contribution arising from the term explicitly
shown in (2.2), and note that a complex conjugate contribution is also present in the
solution, which we will include in the final expression.

We now truncate the power series (1.3) after N terms, giving

u(x; ε) =
N−1∑
n=0

ε2nun(x) + RN(x), (2.3)

where RN is the remainder. The optimal truncation point Nopt corresponds to minimis-
ing ε2N |uN |. The most straightforward way to find Nopt is to determine the value at
which consecutive terms have equal magnitude, or∣∣∣∣∣ (4n)! (−1)nε2n

24n(2n)! (x − i)2n+1/2

∣∣∣∣∣ = ∣∣∣∣∣ (4n + 4)! (−1)n+1ε2n+2

24n+4(2n + 2)! (x − i)2n+5/2

∣∣∣∣∣. (2.4)

Optimal truncation occurs after a large number of terms in the limit that ε → 0.
We can make use of this fact to find that the optimal truncation point must satisfy
Nopt ∼ |x − i|/2ε as ε → 0. We therefore set

Nopt =
|x − i|

2ε
+ ω, (2.5)

where ω ∈ [0, 1) is chosen such that Nopt is an integer. This expression for Nopt is
consistent with Figure 1 which has |x − i| = 1 and ε = 0.1, corresponding to Nopt = 5.
We will eventually use this value for N in (2.3), but for algebraic simplicity, we will
not make the substitution immediately.

We substitute the truncated series (2.3) into the governing equation (1.1) to obtain

N−1∑
n=0

ε2n+2u′′n +
N−1∑
n=0

ε2nun + ε
2R′′N + RN =

1
√

x + i
+

1
√

x − i
. (2.6)

Using (2.2) and (2.1) to simplify gives

ε2R′′N + RN = ε
2NuN =

(4N)! (−1)Nε2N

24N(2N)! (x − i)2N+1/2 . (2.7)

We will solve this differential equation using variation of parameters. The first step is
to determine the homogeneous solutions to (2.7), given by

RN(x) = K1eix/ε and RN(x) = K2e−ix/ε , (2.8)

where K1 and K2 are arbitrary constants. The next step is to permit the arbitrary
constants to vary in x, and then consider the full differential equation in (2.7).
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We will find that for (2.7), the second solution is the relevant one, so we set

RN(x) = K2(x)e−ix/ε = S(x)e−i(x−i)/ε , (2.9)

where K2(x) = S(x)e−1/ε , with the scaling chosen so that the exponent in (2.9) is equal
to 0 when x = i. When written in this form, S(x) is known as the Stokes multiplier. It
is constant except within a narrow region surrounding a Stokes line. In this region, S
varies rapidly from zero on one side of the curve to a nonzero value on the other. This
rapid variation generates Stokes switching in the solution.

Substituting (2.9) into (2.7) and simplifying gives

−2iεS′e−i(x−i)/ε =
(4N)! (−1)Nε2N

24N(2N)! (x − i)2N+1/2 . (2.10)

Recall that the optimal truncation given in (2.5) depends on |x − i|. This observation
suggests that the transformation i(x − i) = reiθ will simplify this expression in a useful
way, giving Nopt = r/2ε + ω. As in [21], we then fix r and consider only the faster
variation that occurs in the angular direction θ. From the chain rule,

d
dx
=

e−iθ

r
d
dθ

. (2.11)

Applying this transformation to (2.7) and rearranging gives

dS
dθ
= − i

√
ireiθ(4N)! ε2N−1

24N+1(2N)! (reiθ)2N+1/2 exp
(reiθ

ε

)
as ε → 0. (2.12)

We now finally substitute in the optimal truncation value Nopt = r/2ε + ω. Making use
of Stirling’s formula in the limit that ε → 0 gives

dS
dθ
∼ − i
√

2ir
ε

exp
( r
ε

(eiθ − 1 − iθ) + iθ
(1
2
+ ω
))

as ε → 0. (2.13)

As promised, this expression is exponentially small, except in the neighbourhood of
θ = 0, where the exponential term is algebraic. Hence, S varies rapidly in this region,
indicating that θ = 0 is a Stokes line.

Recall that i(x − i) = reiθ, so θ = 0 corresponds to x − i taking negative imaginary
values, or a vertical line extending downwards from the branch point x = i. If we
perform a corresponding analysis for the complex conjugate term in (2.2), we identify
that there is a second Stokes line extending vertically upwards from the branch point
x = −i. This Stokes structure is illustrated in Figure 2.

If we cross the Stokes line along Re(x) = 0, we expect that there will be an
exponentially small jump in the asymptotic solution.

2.3. Exponentially small contribution To determine the behaviour that appears as
the Stokes line is crossed, we define a new inner variable θ = ε1/2ϑ, which gives

dS
dϑ
∼ −i

√
2ir
ε

e−rϑ2/2 as ε → 0. (2.14)
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[9] Exponential asymptotics using rational approximation 9

FIGURE 2. Stokes’ phenomenon in the exact solution to (1.1) with boundary conditions (1.2). The
leading-order solution u0 contains branch points at x = ±i, with the branch cuts extending vertically away
from the real axis. The branch points generate Stokes lines, which connect the two points. On the left-hand
side of the Stokes lines, there are no exponential contributions. On the right-hand side of the Stokes lines,
the solution contains exponentially small oscillations of the form given in (2.18).

By comparing ϑ with the original coordinates, we see that x < 0 corresponds to
ϑ→ −∞, while x > 0 corresponds to ϑ→ ∞. Hence, the jump across the Stokes line
is given by

[S]+− = lim
ϑ→+∞

S − lim
ϑ→−∞

S ∼ −i

√
2ir
ε

∫ ∞
−∞

e−rϑ2/2 dϑ = −2i

√
πi
ε

. (2.15)

If the value of S changes by (2.15) as the Stokes line is crossed, the exponentially small
contribution to the solution for x > 0 is given by

[RN]+− ∼ −2i

√
πi
ε

e−i(x−i)/ε . (2.16)

If we add in the complex conjugate term, we obtain the jump in the exponentially small
terms uexp as the Stokes line is crossed from left to right,

[uexp]+− ∼ −2i

√
πi
ε

e−i(x−i)/ε + c.c. = 4
√
π

ε
e−1/ε cos

(x
ε
+
π

4

)
as ε → 0. (2.17)

Note that this expression has constant amplitude. By comparing this observation with
the boundary conditions in (1.2), we see that there cannot be any finite-amplitude
oscillations present as x→ −∞. This condition indicates that uexp = 0 on the left-hand
side of the Stokes line (x < 0), and that the exponentially small behaviour appears as
the Stokes line is crossed from left to right. On the right-hand side of the Stokes line,
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the exponentially small solution contribution uexp must be

uexp ∼ 4
√
π

ε
e−1/ε cos

(x
ε
+
π

4

)
, x > 0. (2.18)

This behaviour is illustrated in Figure 2.

3. AAA approximation

The analysis in Section 2 was a relatively straightforward application of the method
of [21]. It centred on the observation that singularities of the leading-order solution u0
in the complex plane, such as the branch points at x = ±i in (1.4), generate Stokes lines.
We can then optimally truncate and rescale the equation to study the exponentially
small contributions in the neighbourhood of these terms.

3.1. AAA approximation for u0 To simulate a problem where we only possess
a numerical description of the leading-order solution u0 from (1.4), we first define a
set of points xj separated by some Δx. We then evaluate (1.4) at each point to obtain
u0(xj). We will use this set of points xj and function values u0(xj) as the basis for an
AAA rational approximation.

We apply the AAA algorithm to obtain a rational approximation û0(x), given by

u0 ≈ û0 =

m∑
r=0

ar

x − pr
. (3.1)

For example, if we choose xj to be evenly distributed in the interval [−4, 4] with Δx =
0.1, applying the AAA algorithm with an error tolerance of 10−12 gives a rational
function with 15 poles. The poles and residues are shown in Table 1. We have given
each pair of poles a designation, so that we may refer to them later.

Note that there is a pole located on the real axis at x ≈ −6.066. The AAA algorithm
sometimes generates poles on the real axis that lie outside of the approximation
interval. These poles have no practical effect on the solution, and we will omit their
contributions from the sum in (3.1). The remaining poles appear as complex conjugate
pairs, as the solution is real when x is real.

The pole pairs are not restricted to the imaginary axis, which is where we defined
the branch cuts to be in the true solution u0 in (1.4). In fact, the AAA algorithm
places the poles along a curve, representing the branch cut, which we are not free
to prescribe. This limitation is a common feature of rational approximation methods,
and was studied in depth for Padé approximation in [23], using a quantity known as
the “condenser capacity” in the approximation. More recently, an explanation of the
branch curve selection for AAA that built on these ideas was presented in [25].

It is possible to adjust the rational approximation algorithm, for example, by using
the minimax algorithm from the chebfun package, to obtain an approximation which
forces the poles to align along the imaginary axis.
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TABLE 1. Poles and residues in the AAA approximation of u0, which contains branch points at x = ±i.
The approximation û0 was produced by sampling u0 on the domain x ∈ [−4, 4] at intervals of Δx = 0.1
with an error tolerance of 10−12. The poles in û0 accumulate at x = ±i, or the true branch points of u0.
An unpaired pole appears on the real axis outside the sampling interval, which we discard as a numerical
artefact. The remaining poles occur in complex conjugate pairs. The pole p1 is the nearest pole to the true
branch point at x = i, and this pole will play an important role in subsequent analysis.

Pole index: r Pole pair name Pole locations: pr Pole residues: ar

1, 2 Pair 1 −0.0015 ± 1.0178i 0.1256 ∓ 0.1155i
3, 4 Pair 2 −0.0142 ± 1.1647i 0.1319 ∓ 0.1204i
5, 6 Pair 3 −0.0444 ± 1.4872i 0.1458 ∓ 0.1312i
7, 8 Pair 4 −0.1052 ± 2.0575i 0.1725 ∓ 0.1513i

9, 10 Pair 5 −0.2369 ± 3.0523i 0.2283 ∓ 0.1898i
11, 12 Pair 6 −0.6072 ± 5.0113i 0.3780 ∓ 0.2791i
13, 14 Pair 7 −2.5372 ± 10.7492i 1.1038 ∓ 0.6053i

15 Unpaired −6.6066 + 0.0000i −0.0003 + 0.0000i

In Figure 3, we present the real and imaginary parts of the true leading-order
solution u0, and the approximated leading-order solution û0. Note that the true solution
possesses vertical branch cuts originating at ±i, while the approximated solution
possesses simple poles that simulate the effect of a branch cut. The solutions appear
visually identical except in a region surrounding the branch cut/poles. In this, and all
subsequent analysis, we denote p1 as the pole nearest to x = i.

In Figure 4, we present the error between the two on a logarithmic plot. The
data in this figure confirm that the approximation error is small except in a region
surrounding the branch cut/poles, where the error becomes significant. Given that the
approximation is highly accurate everywhere on the sample domain except near the
branch cut, we hope that the exponential asymptotic analysis will produce equivalently
accurate results.

3.2. Asymptotic power series In effect, we are using the AAA approximation in
place of the inhomogeneous term in (1.1). Hence, we are determining the asymptotic
behaviour of

ε2û′′(x) + û(x) =
m∑

r=0

ar

x − pr
. (3.2)

By expanding the solution as a series (1.3) and matching powers of ε, we can again
obtain a recurrence relation for the series terms un. The recurrence relation gives

û0(x) =
m∑

r=0

ar

x − pr
, ûn(x) = −û′′n−1(x). (3.3)
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FIGURE 3. The real and imaginary parts of the true leading-order solution u0 and the approximated
leading-order solution û0 described in Table 1. The two expressions are visually indistinguishable except
on the imaginary axis. The function u0 contains vertical branch cuts. The function û0 is a rational function
which can only contain simple poles; these poles are arranged in such a way that they approximate the
effect of a branch cut in the solution. (Colour available online.)

FIGURE 4. The error |u0 − û0|, using u0 and û0 from Figure 3. Note that the error is extremely small except
in a region near the imaginary axis, where the true branch cut lies. (Colour available online.)
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Solving this recurrence relation gives

ûn =

m∑
r=0

ar(2n)!
(x − pr)2n+1 . (3.4)

Each of the poles pr will generate a Stokes line, and lead to an exponentially small
contribution appearing in the solution.

3.3. Stokes lines and exponentially small terms To determine the location of the
Stokes lines, and the quantity that appears as they are crossed, we proceed with an
almost identical analysis to that of Sections 2.2 and 2.3, with the only significant
difference being the form of the series terms in (3.4).

This analysis reveals that there are exponentially small contributions in the solution
associated with each pole. These contributions appear across Stokes lines that extend
vertically from the corresponding pole and intersect the real axis. This behaviour is
shown for the example problem in Figure 5. We will later find that the most significant
exponential contributions in this example appear across the Stokes lines generated by
pole pairs 1, 2 and 3.

Using an essentially identical set of steps to Section 2.3, we can determine the form
of the exponentially small remainder. We will determine the contribution that appears
across the Stokes line generated by a pole in the upper-half plane located at at x = pr.
The Stokes line extends vertically downwards from the pole along Re(x) = Re(pr) and
intersects the real axis at x = Re(pr).

We denote the optimally truncated remainder as R̂N . On the left-hand side of the
Stokes line, we have R̂N = 0. On the right-hand side of the Stokes line, we find that

R̂N ∼
2πar

ε
e−i(x−pr)/ε as ε → 0. (3.5)

Once all of the Stokes lines have been crossed from left to right, we find that the
combined exponentially small contribution, which we denote as ûexp, is therefore
given by

ûexp ∼
m∑

r=0

2πar

ε
e−i(x−pr)/ε as ε → 0. (3.6)

For example, for the set of poles presented in Table 1, we find that all of the
exponentially small contributions are present in the solution on the right-hand side
of the Stokes line that intersects the real line at x = −0.0015.

Note that the exponential contributions in (3.6) associated with upper-half
plane poles at x = pr decay exponentially as Im(pr) increases (with the complex
conjugate contributions exhibiting corresponding exponential decay). This observation
suggests that the poles nearest to the real axis will produce the largest exponential
contributions.
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FIGURE 5. Stokes structure in the solution to (3.2), which uses û0 as the leading-order solution. The
solution contains seven pairs of poles, with locations given in Table 1. Each pair of poles generates
Stokes lines that extend vertically from the poles, intersecting the real axis. As each Stokes line is crossed
from left to right, an exponentially small asymptotic contribution appears in the solution. Note that the
poles accumulate near the true branch points of u0 at x = ±i. We will later find that the largest exponential
contributions arise from the poles that are nearest to x = ±i.

4. Comparison

We have now calculated the exponentially small contributions that appear in the
asymptotic solution to the differential equation (1.1) with boundary condition (1.2),
given by uexp in (2.18). We have also calculated the exponentially small contributions
that appear in the asymptotic solution to the approximate problem (3.2) with the same
boundary condition, given by ûexp in (3.6). The remaining question is whether the
approximate exponential contributions are able to accurately approximate the true
exponential contributions.

Note that (2.18) and (3.6) cannot be identical as ε → 0, due to the following
differences.
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FIGURE 6. Exponentially small oscillations in the asymptotic solution to (1.1) and (3.2) for ε = 0.2.
The true exponential contribution uexp is shown as a black dashed curve. The approximate exponential
contribution ûexp is shown as a red curve. This contribution was generated using the poles and residues
from Table 2. The two curves are visually indistinguishable. The contribution ûexp is the sum of
contributions from each of the seven pole pairs. These contributions are shown individually as blue
curves; it is apparent that the largest contributions arise from the pole pairs that are nearest to x = ±i
(that is, pole pairs 1, 2 and 3), with the amplitude of the contributions decaying as the distance of the pair
from x = ±i increases. (Colour available online.)

• The algebraic prefactor of uexp is proportional to ε−1/2, while the algebraic
prefactor of the approximate exponential behaviour ûexp is proportional to ε−1.
This difference in exponent will be generic: the AAA rational function must have
simple poles that generate algebraic prefactors that are proportional to ε−1, while
more general singular points lead to prefactors whose algebraic power depends
on the strength of the singularity.

• The exponential scaling of each expression is determined by the location of
singular points in the leading-order solutions u0 in (1.4) and û0 in (3.3). The
branch points in u0 that produce (2.18) are located at x = ±i, while the poles in
û0 that produce (3.6) are located at x = pr, where |Im(pr)| > 1. Hence, the two
expressions have different exponential decay as ε → 0, which can be seen by
directly comparing the two expressions.

These differences appear to suggest that the two expressions uexp and ûexp cannot
possibly describe the same behaviour, due to the difference in the strength and position
of the singular points between the exact and approximate leading-order behaviour.
Indeed, the two expressions must be different in the limit that ε → 0, as all of the
exponential terms in (3.6) are smaller than the exponential terms in (2.18) in the
asymptotic limit (even though the algebraic prefactor is larger).

Despite this difference in asymptotic behaviour, we find that ûexp is able to
accurately approximate uexp for some range of ε. We compare the two contributions for
our sample problem with ε = 0.2 over a segment of the positive real axis in Figure 6.
The contributions uexp and ûexp appear indistinguishable in this figure.

In addition to the exponentially small contributions, Figure 6 also shows the
contribution to ûexp from each pole pair, and reveals that the largest contributions
come from pole pairs 1–3. This observation indicates that pairs which are nearest to
the branch points at x = ±i also have the most significant effect on the exponentially
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FIGURE 7. Ratio of the amplitudes of the approximate exponential contribution ûexp and the true exponen-
tial contribution uexp as ε is varied. If ûexp is an accurate approximation of uexp, this ratio is close to 1. The
two expressions have different behaviour as ε → 0, so it is impossible for the approximation to remain
accurate indefinitely as ε is decreased. This behaviour is apparent in the figure as each approximation
is accurate until some lower threshold value of ε is reached, beyond which the approximation becomes
inaccurate. Increasing the tolerance, and hence the number of poles in the AAA approximation, reduces
this threshold value of ε. We also identify the value of ε equal to |p1 − i| on each curve. This value of
ε corresponds to a roughly constant value of the error in each curve, suggesting that the approximation
error of the exponential terms is related to the quantity |p1 − i|. (Colour available online.)

small behaviour of the solution, which is consistent with the exponential decay of the
solution contributions as |Im(pr)| increases.

In Figure 7, we compare the amplitude of uexp and ûexp over a range of ε values. We
depict several different curves, each of which shows the results for a different AAA
algorithm tolerance.

For each curve, the ratio is approximately 1 (indicating that the approximation is
accurate) until some threshold value of ε is reached from above; below this threshold
value, the ratio tends to 0. This behaviour is consistent with the algebraic expressions
for the two terms, as the exponential contributions in ûexp are smaller than the
contributions in uexp as ε → 0.

Reducing the error tolerance of the AAA algorithm has the effect of decreasing
the value of ε for which the approximation of the exponential terms is accurate.
Furthermore, this reduction does not happen in a uniform fashion. Changing the
tolerance from 10−9 to 10−10 or from 10−12 to 10−13 does not change the number of
poles in the approximate leading-order behaviour, and we see that this change has
little effect on the threshold value of ε.

It is apparent from Figure 7 that higher AAA tolerances produce approximations
with more poles, which are accurate for smaller values of ε. In Table 2, we show the
effect of the error in branch cut prediction, or the difference in location between the
true branch point (at x = i) and the nearest pole in the approximation (at x = p1), or
|p1 − i|. We compare this value with the relative error in the amplitude, measured by

Relative Error = 1 −
Amplitude of ûexp

Amplitude of uexp
. (4.1)
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TABLE 2. The distance between the true branch point in u0 at x = i and the nearest pole in û0, denoted
as p1, for the different AAA approximations presented in Figure 7. As the tolerance of the approximation
increases, the distance |p1 − i| decreases. The relative approximation error is evaluated for ε = |p1 − i|, and
the values are roughly constant. This observation suggests that the approximation error depends on the
quantity |p1 − i|, or how accurately the AAA approximation predicts the location of the true branch point.

AAA tolerance No. of pairs |p1 − i| Rel. err. at ε = |p1 − i|

10−6 4 0.0450 0.1607
10−7 5 0.0327 0.1642
10−8 6 0.0264 0.1619
10−9 7 0.0193 0.1656
10−10 7 0.0178 0.1643
10−11 8 0.0151 0.1670
10−12 9 0.0121 0.1670
10−13 9 0.0121 0.1670
10−14 10 0.0096 0.1671

Table 2 suggests that, no matter what AAA tolerance is chosen, the relative
error remains relatively similar at ε = |p1 − i|. The points ε = |p1 − i| are also marked
in Figure 7. This figure shows that for ε � |p1 − i|, the approximated amplitudes
are inaccurate, while for ε 
 |p1 − i|, the approximate amplitudes are accurate. We
conjecture that if there is a singularity in the true leading-order behaviour at x = xs and
the nearest pole to this point in the rational approximation is at x = p1, the exponential
asymptotic predictions will be accurate as long as |p1 − xs| � ε.

Obviously, this method is most valuable for problems in which xs is not known
beforehand, so |p1 − xs| is not known. It is possible to estimate xs by carefully
examining the accumulation rate of poles in the complex plane [26]. We intend to
study this accumulation in more detail in future work, and to explain the dependence
of the threshold value on |p1 − xs|.

5. A nonlinear differential equation

From this analysis, it appears that rational approximation methods can be used to
apply exponential asymptotic methods to linear ordinary differential equations, as long
as care is taken to ensure that ε is not too small. The next natural question is whether
we can extend these methods to nonlinear ordinary differential equations, using the
exponential asymptotic method of [7].

Resolving this question is a challenging problem, because we can no longer add
the pole contributions in ûexp independently. From [27], we know that singularities in
nonlinear problems that are near to each other (that is, within a neighbourhood whose
width is proportional to a particular power of ε) can interact, and that the resultant
asymptotic behaviour changes due to these interactions. This behaviour is likely to
occur for leading-order solutions û0 generated using rational approximation methods
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due to the accumulation of poles near the true singular point. In future work, we
will determine the asymptotic corrections to uexp due to pole interactions in nonlinear
problems.

In many problems, it is possible to determine the strength of the singular points in
u0 using asymptotic balancing arguments, even if it is not possible to easily determine
their location. In this case, another possible method for studying these problems is
to apply a map to the sampled data so that the AAA algorithm is being fitted to a
function with simple poles, then to invert the map so that it contains singularities with
the correct order.

Consider the following simple example:

ε2u′′(x) + u(x)2 =
81

1024

( 1
√

x − i
+

1
√

x + i

)2
, (5.1)

with the boundary conditions in (1.2). The constant 81/1024 was chosen to make
the exponential asymptotic analysis particularly convenient. The true leading-order
behaviour is given by

u0 =
9
32

( 1
√

x − i
+

1
√

x + i

)
. (5.2)

We can sample this leading-order solution u0 on a set of points xj to obtain data points
u0(xj), as in Section 3.1, and use these data as the basis for an approximation û0.
Using this approximation, we can compute the exponential contributions that appear
across each Stokes line in the solution independently and add them together. If we
do so, however, we obtain predictions of the exponentially small behaviour that are
inaccurate, because the analysis does not take into account nonlinear interactions
between pole contributions.

We instead sample the leading-order solution u0 on xj and then square the output,
to obtain u0(xj)2, which is equivalent to taking samples of

u2
0 =

81
1024

( 1
x − i

+
1

x + i
+

2
√

x2 + 1

)
. (5.3)

We can obtain an AAA rational approximation for u2
0 based on these data, which we

denote û2
0. Finally, we can take the square root of this rational approximation to obtain

u0 ≈ (û2
0)1/2 =

√√ m∑
r=0

ar

x − pr
. (5.4)

This expression can then be used as the leading-order solution for an exponential
asymptotic analysis using the methods from [7]. In Figure 8, we present the true
exponentially small terms uexp and the approximated exponentially small terms ûexp

obtained using this method for ε = 0.1. The rational approximation used was generated
using sample points on x ∈ [−10, 10] with Δx = 0.1. We present the exponential
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FIGURE 8. Comparison of the true exponential terms and the AAA-approximated exponential terms for
the nonlinear differential equation (5.1) with ε = 0.1. The AAA-approximated exponential terms were
obtained using the leading-order from (5.4). To show that this method captures nonlinear effects, we
show the expression on the entire real axis, but note that this contribution is only actually present in the
asymptotic solution for x > 0. The two contributions are visually similar but not completely identical, due
to nonlinear effects caused by the subdominant branch points at x = ±i in (5.3).

contribution on x ∈ [−20, 20] to demonstrate that this method accurately captures
nonlinear wave effects, but we actually expect this contribution to appear as the Stokes
line intersecting x = 0 is crossed from left to right, and therefore only be present in the
asymptotic solution for x > 0. The qualitative match seen in this figure shows that the
exponentially small terms in (5.1) can be accurately approximated using this method.

The accuracy of this approximation compared with naively approximating the
exponential terms based on û0 can be understood by comparing the poles and residues
of the AAA approximation of u0 and u2

0, using the parameters from Figure 8. These
are presented in Table 3.

In u0, the only true singularities are the branch points at x = ±i. In Table 3, we see
that the residue of each pole of û0 is similar in magnitude, as these poles approximate
the effect of the branch cuts. In u2

0, there are simple poles at x = ±i, as well as branches
that also originate at these points. The dominant behaviour for this expression is the
simple poles. In Table 3, we see that the poles located closest to ±i have a larger
residue, with the other poles having a smaller residue. This behaviour occurs because
the poles nearest to ±i in the AAA approximation are reproducing the simple pole
behaviour in the true expression for u2

0, and the remaining poles are approximating the
subdominant branch cut behaviour.

Because the strongest singularities in u2
0 from (5.3) are simple poles, the AAA

approximation can be used as the basis for an accurate exponential asymptotic analysis.
However, this expression does still contain branch cuts originating at x = ±i. These
branch cuts produce strings of additional poles in the AAA approximation. Hence, any
higher-order corrections to the exponential terms, such as those studied in [8, 22], will
be inaccurate unless pole interaction effects are taken into account. A more thorough
analysis of nonlinear differential equations using rational approximation methods is
beyond the scope of this article and will be the subject of future work.
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TABLE 3. Comparison of the six pole pairs nearest to x = ±i contained in a rational approximation for
u0 from (5.2) with the six nearest pole pairs in the approximation for u2

0 from (5.3). The poles in û0 have
residues with similar magnitude, as the singularities in u0 are branch points at x = ±i. In (̂u2

0)1/2, the poles
nearest to x = ±i have a larger residue than the remaining poles, as it approximates the contribution from
the simple poles in (5.3). The remaining poles mimic the behaviour of the subdominant branch cut.

û0 (û2
0)1/2

pr |ar | pr |ar |
Pair 1 0.0020 ± 1.0172i 0.2173 0.0018 ± 1.0004i 0.2845
Pair 2 0.0180 ± 1.1582i 0.2210 −0.0067 ± 1.1204i 0.1342
Pair 3 0.0507 ± 1.4604i 0.2287 −0.0207 ± 1.3724i 0.1329
Pair 4 0.1014 ± 1.9686i 0.2404 −0.0381 ± 1.7959i 0.1335
Pair 5 0.1728 ± 2.7620i 0.2566 −0.0550 ± 2.4573i 0.1330
Pair 6 0.2726 ± 3.9795i 0.2793 −0.0665 ± 3.4701i 0.1374

6. Conclusions and discussion

In this study, we applied exponential asymptotic methods from [21] to study
Stokes’ phenomenon in a linear ordinary differential equation in the small-ε limit.
The leading-order solution u0 in (1.4) contains two branch points, located at x = ±i.
These branch points produce Stokes lines, and oscillating exponentially small terms
appear in the solution as these Stokes lines are crossed at x = 0 on the real axis. We
calculated the form of these exponentially small oscillations, uexp in (2.18).

We then repeated this process using a rational approximation for the leading-order
behaviour. Instead of using the exact leading-order solution u0, we sampled the
leading-order behaviour on a discrete set of points and used the AAA algorithm to
produce a rational approximation for the leading-order solution based on the sampled
data, û0 in (3.1). We then performed an exponential asymptotic analysis and found
that each pair of poles in the solution produced Stokes lines, each of which generated
exponentially small oscillations. Taking the sum of these oscillations produced the
total exponentially small behaviour ûexp in (3.6).

Finally, we compared uexp and ûexp, and found that ûexp is able to accurately approx-
imate uexp for nonzero values of ε, despite having different asymptotic behaviour in
the limit that ε → 0. If ε is too small, however, the approximation is inaccurate. By
reducing the tolerance of the AAA algorithm, and therefore increasing the accuracy of
the rational approximation, we can reduce the threshold value of ε beyond which the
approximation loses accuracy.

Empirical tests suggest that this threshold value of ε is proportional to the distance
between the branch point in u0 and the nearest pole in û0. This result provides a
measure of how accurately the rational approximation predicts the true singularity
location. While the true branch point (or other singularity) in u0 cannot typically be
calculated in practice, it is possible to estimate the true location by studying the rate at
which the poles in û0 accumulate [26].
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There are two promising avenues available for extending this method to study
nonlinear ordinary differential equations. The first is to determine the asymptotic
corrections to the approximated exponentials that are caused by nonlinear interactions
between nearby simple poles. The second is to use asymptotic arguments to determine
the strength of singularities in the leading-order behaviour, and apply the AAA
algorithm to a mapped version of the data that contains simple poles instead of other
singularities. We briefly showed in Figure 8 that this method can be used successfully
for a nonlinear ordinary differential equation, and plan to explore this and related
problems in future work.

This approach has connections to recent work [10, 11] where Padé approximants
are generated from numerical truncated power series data (as is typically available in
Borel plane analyses [13]). These approximations generate accumulations of simple
poles near branch points in the original Borel-transformed function. The authors use
conformal mappings to convert these into poles, which may be more easily studied. It
is likely that a variant of the the conformal map techniques developed in [11] could be
applied to the AAA approximation of u0(z) developed in the present work, as well as
more complicated leading-order behaviour.

Finally, it is important to determine how robust this method is to noisy input data.
The effect of noise on numerical rational approximation has been studied in [12],
where the authors study the effects of noise on conformal maps generated using Padé
approximation, and in [28], where the authors study the effects of noise on rational
approximations generated using the AAA algorithm. It would be valuable to use
similar methods to study the effect of noise on exponential asymptotic analyses.
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