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Abstract

Duffing's differential equation in its simplest form can be approximated by a variety of
difference equations. It is shown how to choose a 'best' difference equation in the sense
that the solutions of this difference equation are successive discrete exact values of the
solution of the differential equation.

1. Introduction

A differential equation, such as the simple Duffing equation [2]

*(/) + ax(t) + bx\t) = 0, (1.1)

can be approximated by difference equations in a variety of ways. In numerical
analysis, the aim is to choose a difference equation (A£) which gives a high-order
approximation to the differential equation (DE) and which can be solved
computationally in a stable way without trouble from round-off errors.

The simplest A£ approximation to (1.1) is

h-\xn+1 - 2xn + *„_,) + axn + bxl = 0, (1.2)

where h is a chosen constant time interval, but for theoretical purposes this is not
suitable because it cannot be solved in closed form, nor can the general behaviour
of its solutions be analysed.
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In a recent paper [3] it has been shown that an alternative A£ approximation,
namely

h-2(xn+i - 2xn + *„_,) + axn + \bxl(xn+l + *„_,) = 0, (1.3)

can be solved in closed form and for appropriate choice of the value of h periodic
solutions are obtained with the same qualitative features as the solutions of the
DE(l.\).

The problem solved in this paper is: find a best LE approximation to the DE
(1.1).

By "best" we shall mean the following: if x(t) is the solution of a DE, then a
best A is approximation to the DE using a time interval h is one for which the
solution xn of the A£ is given by

xn = x(nh). (1.4)

Geometrically, the xn satisfying the AE are required to be points on the solution
curve x(t) of the DE at successive values t = nh, where n is an integer.

In previous papers [4], [5] this question has been answered for linear ODE's
with constant coefficients and for some non-linear ODE's describing ecological
problems. To answer the question for the Duffing equation (1.1) we consider the
three cases which arise giving the Jacobian elliptic functions en, dn and sn as
periodic solutions and a further case of a non-periodic solution.

In general, there will be more than one A if with the property (1.4), but the
particular difference equations we derive are simple in form and directly recogniz-
able as approximations to the DE.

2. Case I

Consider first the equation (1.1) with initial conditions

x(Q) = A and x(Q) = 0, (2.1)

and for the range of parameter values

a > -\bA2 where b > 0. (2.2)

Then the well-known [2] solution of (1.1) is

x(t) = A cn[(a + bA2)]/2t | {bA2/ {a + bA2)], (2.3)

using the notation of [1].
To find a A£ satisfied by this function we use the following.
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LEMMA. / /

* ( ' 2 )= / I>2 - ' i>* ( ' i ) ] foralltltt2 (2.4)

and

xn = x(nh) where n is an integer (2.5)

then

*-+i =/[*.*„]. (2-6)
and

xn^=f[-h,xn]. (2.7)

The proof of the lemma is immediate.
For the function

x(t) = A cn[/(/0 + /,) | m] = A cn[l(t0 + t)] (2.8)

the addition formula for en can be used to derive from

x(t2) = A cn[/(/2 - r,) + /(/0 + ?,)] (2.9)

the relation

*(/2){l - msn2[l(t2 - ?,)]sn2[/(r0 + /,)]}

= ^cn[ / ( / 2 - / 1 ) ]cn[ / ( / 0 + /,)]

-A sn[/(/2 - /,)]sn[/(r0 + r,)]dn[/(/2 - /,)]dn[/(/0 + /,)]•

(2.10)

Use of the lemma gives the AE

(xn+i + xn_,){l - msn2(lh)[l - A-2xl}} = 2xncn(lh). (2.11)

Specific application to (2.3) accordingly gives

(xn+i + xn_,){dn2 + xl\\b/{a + bA2)]sn2} = 2*,, en, (2.12)

where, in this A£\ we use the abbreviated notation

sn = sn[(a + bA2)l/2h \ {bA2/ (a + bA2)] (2.13)

and similarly for en and dn.
For t0 = 0 and x0 = A, x, = JC_, and the solution of (2.12) is

xn = Acn[(a + bA2)W2nh\{bA2/ (a + bA2)]. (2.14)
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The AE (2.12) is thus a best approximation to the DE (1.1) in the sense that,
comparing (2.3) with (2.14),

xn = x(nh). (2.15)

It should be noted that that the constant time interval h does not need to be
'small' in any sense, nor is it restricted to being positive. As h is made smaller, the
points xn on the solution curve x(t) simply come closer together.

The fact that in the limit h -» 0 the AE tends to the DE can be verified as
follows. The AE (2.12) can be written

(*„+, - 2xn + xn_,)(a + M2)ns2dn2 + 2xn(a + bA2)m2(dn2 - en)

xn+l + xn^) = 0. (2.16)

And since

{a + bA2)ns2dn2 = h~2 + O(h-') (2.17)

and

2(a + M2)ns2(dn2 - en) = a + O(h) (2.18)

the AE (2.16) tends to the DE (1.1) as h -> 0.
It is interesting to note from (2.16) that this AE is obtained from the DE by

replacing x by (xn+x — 2xn + *„_,)(# + ^M2)ns2dn2 instead of the usual
h~2{xn+\ — 2xn + xn_l). And as has been observed previously [3], x3 has been
replaced not by x3

n but by \x2
n{xn+x + *„_,).

3. Case II

For the range of parameters

-bA2 <a< -{bA2 whereb > 0, (3.1)

we transform the results for case I using the reciprocal parameter [1]

H = m-] = 2(a + bA2)/(bA2) where 0 < J U < 1 , (3.2)

and

v = ($bA2)l/2h, (3.3)

so that

sa[(a + bA2)l/2h\\bA2/(a + bA2)] =[2(a + M2)/(M2)]1/2sn(e|/i),

(3.4)
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and similarly

| / i ) , (3.5)

dn = cn(o| / i ) . (3.6)

Hence (2.12) becomes

(*„+, + *n_,){cn2 + x2
nA~2sn2} = 2xndn, (3.7)

where

sn = sn[(\bA2Y/2h \ 2(a + bA2)/ (bA2)}, (3.8)

and similarly for en and dn.
For the range of parameters (3.1) the solution of the DE (1.1) is [2]

x(t) = Adn[(±bA2)l/2t\2(a + bA2)/ {bA2)], (3.9)

while the solution of (3.7) is

xn = A dn[(^bA2Y/2nh \ 2(a + bA2)/ (bA2)]. (3.10)

Again we have xn = x(nh) so that in the sense defined, (3.7) is a best A£
approximation to the DE (1.1) for the range of parameters (3.1).

4. Case III

For the range of parameters

a> -bA2 where b < 0, (4.1)

we use the 'negative parameter' transformation [1]

iu - , ~m - — = where 0 < \i < 1, (4.2)
1 - m 2a + bA2 ^ V '

and

v={a+{bA2)i/2h, (4.3)

so that

sn[(o + bA2)X/2h | {bA2/ (a + bA2)] = (a + bA2)x/\a + {bA2)'i/2sd(v\ M)

(4-4)

and similarly

en = cd(u| ju), (4.5)

dn = nd(u|/n). (4.6)
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Hence (2.12) becomes

(*„+, +Jtn_,){l + x2[b/(2a + bA2)]sn2} = 2xncndn, (4.7)

where

sn = sn[(o + *M2)1/2A | -\bA2/(a + {bA2)}, (4.8)

and similarly for en and dn.
For the range of parameters (4.1) the solution of the DE (1.1) satisfying the

conditions

x(0) = 0and \x\-A whenjc = 0, (4.9)

is

x{t) = A sn[{a + ±bA2)l/2t \ -\bA2/ (a + \bA2)]. (4.10)

A solution of the A£ (4.7) is

xn = A cd[(a + {bA2)W\t0 + nh) \ -{bA2/(a + \bA2)]. (4.11)

If we choose t0 so that

{a+±2bA2)l/2t0=-K, (4.12)

where K is the quarter-period of sn, then

xa = A sn[{a + {bA2)l/2nh \ ~{bA2/ {a + $bA2)] (4.13)

satisfying x0 = 0 and max x — A. Comparing (4.13) with (4.10) we again see that
xn =x(nh).

5. A case of a non-periodic solution

The Duffing equation

x + w2x - 2u2A~2x3 = 0, (5.1)

with

x(0) = A and x(0) = 0,

has values for the parameters outside the ranges considered in the above three
cases since a = - \bA2 < -bA2 and b < 0. The DE (5.1) has the non-periodic
solution

x(t) = Asccut. (5.2)
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A best approximating A£ to the DE (5.1) in this case is obtained using the
addition formula for sec, namely

A sec(«f2) = A sec[io(/2 — tx) + utt]

= A/ (cos u(t2 — f,)cos to?, — sin u(t2 — ?|)sinw/,},

so that

or

(xn+i - 2xn + * „ _ , ) / (4w-2sin2>/i) + u>2xn

- JA-*xl(xm+l + xn^)cos2^h = 0. (5-4)

Again the A £ (5.3) or (5.4) is a best approximation to the DE (5.1) in the sense
that the solution of the A is is

xn = A sec(unh) = x(nh). (5.5)

The form (5.4) is revealing in showing that x in (5.1) is replaced by
(*„+, - 2xn + xn_,)/(4w-2sin2iwA) and x3 by \x2

n{xn+x + xn_,)cos2 ±uh.

6. Discussion

This paper has shown that it is possible to find from the infinite choices
available a difference equation which in an obvious sense is a best approximation
to Duffing's differential equation in its simplest form. The result extends to an
important classical non-linear differential equation a general theory applicable to
linear differential equations with constant coefficients. Because the method is
based on the knowledge of the solution of the differential equation it cannot be
expected to apply to equations for which closed form solutions are not known.
For these, recourse is often made to perturbation methods, as for example in
Duffing's equation (1.1) when there is an additional small friction term ex. Then
it is an advantage to use for the unperturbed equation the difference equation
derived above.
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