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Introduction.

There is, in the second (Cambridge, 1911) edition of Burnside's
Theory of Groups of Finite Order, an example on p. 371 which must
have aroused the curiosity of many mathematicians; a quartic
surface, invariant for a group of 24.5! collineations, appears without
any indication of its provenance or any explanation of its remarkable
property. The example teases, whether because Burnside, if he
obtained the result from elsewhere, gives no reference, or because, if
the result is original with him, it is difficult to conjecture the process
by which he arrived at it. But the quartic form which, when equated
to zero, gives the surface, appears, together with associated forms, in
a paper by Maschke1, and it is fitting therefore to call both form and
surface by his name.

Maschke, who solved his problem to perfection, was concerned
with the forms which are invariant for a group of 26.6! quaternary
linear substitutions; any such invariant form gives, when equated to
zero, a surface which is invariant for a group of 24.6! quaternary
collineations. This latter group is the famous one discovered by
Klein and associated with a set of six linear complexes any two of
which are in involution; it so happens, and will be explained
geometrically below, that there are six quartic surfaces inherent in
Klein's figure which are transitively permuted by this group, and
each of which is therefore invariant for a group of 24.5! collineations.
Burnside's example is thus " rationalised," and the quartic surface
which occurs there is identified. But the geometry of the figure, and
the place of the quartic surface in it, require elucidation; it is the
purpose of the following paragraphs to make some contribution to
this end.

1 Math. Anncden, 30(1887), 496-515.
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94 W. L. EDGE

Dyck's Plane Configuration.

1. A quartic curve D whose equation is of the form

ax* + py4- + yz* = 0

is invariant for a group of 96 ternary collineations. Such a curve
was first encountered by Dyck1, and is generally named after him.
The triangle A to which the curve is referred has notable relations
with it; the intersections of the sides of A with D are flecnodes, i.e.,
points at which the tangents of D have four-point contact. Dyck
called these points the a-points of D, and the tangents at the four
a-points on a side of A are concurrent at the opposite vertex of A.

The 12 flecnodal tangents count among the bitangents of D;
there are 16 other bitangents, which will be called /-lines. Their
equations, together with those of the flecnodal tangents, were found
by Cayley2, and the properties of the configuration can easily be
deduced either from these equations or from the fact of invariance
under the group of collineations.

The /-lines fall into four sets of four, forming four quadrilaterals,
qu qz, q3, q4, each of which has A for its diagonal triangle. On each
side of A there are two pairs of points, each harmonic to the two
vertices of A which lie on that side and each constituting a pair of
opposite vertices of two of the four quad/ilaterals; on one side of A
q2 and qs have a common pair of opposite vertices, as also have qx and
q±; on another side of A the quadrilaterals are coupled q3 with q1 and
q2 with q4, while on the remaining side of A q± is coupled with q2 and
q3 with q4. The 12 points so arising on the sides of A are collinear in
triads on the 16 /-lines, four /-lines passing through each of the 12
points. Further: not only are the two pairs of points on a side of A
harmonic to the vertices of A, but they are harmonic to each other,
so that we have, on each side of A, three pairs of points such that
each pair is harmonic to both the others; this arrangement of three
pairs is sometimes called a regular sextuple.

The whole figure can be constructed linearly when A and one of
the /-lines are given; it can also be constructed linearly when one of
the quadrilaterals is given.

It is important, for a future application, to point out that the
tetrad of a-points on a side of A is uniquely determined by the

1 Math. Annalen, 17 (1880), 510-516.
2 Educational Times, 36 (1881), 64 ; Mathematical Papers, 10, 603.
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regular sextuple on that side. The three pairs of any regular sextuple
give, when squared, binary quartics belonging to the same pencil.
The tetrad of a-points on any side of A belongs to the corresponding
pencil, being that member which is, in the pencil, the harmonic
conjugate, of the quartic which arises from the square of the pair of
vertices of A, with respect to the quartics which arise from the
squares of the other two pairs of the sextuple.

It may, lastly, be remarked that the points of contact of B with
any /-line constitute the Hessian duad, on that line, of the triad of
points in which the. line is met by the sides of A.

Klein's Space Configuration.

2. This, one of the best-known of all configurations, arises from
a set of six linear complexes any two of which are in involution1; it
contains 15 pairs of directrices, each pair being a pair of opposite
edges of three of 15 fundamental tetrahedra. It would be superfluous
to give a detailed account of so well-known a figure; but it must here
be emphasised that the section of Klein's configuration by a face of a
fundamental tetrahedron is Dyck's configuration.

Each directrix contains pairs of vertices of three fundamental
tetrahedra, and the three pairs form a regular sextuple (Klein, §6).
Thus a face TT of a fundamental tetrahedron To gives a triangle A
formed by the edges of To in TT, while on each side of A is a regular
sextuple with two vertices of A forming one of its three pairs. More-
over there are (Klein, § 8) 320 lines each of which contains vertices of
three tetrahedra while at the same time lying in faces of three other
tetrahedra; the number of such lines lying in a face, such as TT, of a
fundamental tetrahedron is therefore (320 x 3)/(4 x 15), or 16; these
are the /-lines of the Dyck configuration in TT, and the triad of vertices
of tetrahedra on one of these /-lines is constituted by its intersections
with the sides of A.

An examination of much of the literature concerned with the
Klein configuration has not disclosed any explicit acknowledgment of
the Dyck configurations in the faces of the fundamental tetrahedra.
But two remarks in Klein's § 8 are concerned with those planes and
lines of the figure which go through a vertex of a fundamental tetra-
hedron : these statements may, as Klein himself remarks, be dualised,

1 Klein : Zur Theorie der Linienkoraplexe des ersten und zweiten Grades : Math.
Annalen, 2 (1870), 198-226 ; Gesarnmelte Math. Abhandlungen, 1, 53-80.
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and, when they are, the Dyck configuration instantly appears. The
section of the figure by a face of a fundamental tetrahedron is
alluded to by E. Hess in the course of a long paper1; these allusions,
however, which occur on pp. 125-6, 128, 164, are but slight. The
nomenclature for the /-lines has been adopted from Hess.

The 15 fundamental tetrahedra can be grouped, if we may borrow
a phrase from Sylvester2, into six synthematic totals of five; the five
tetrahedra of any total account, by their 30 edges, for all the
directrices. Each tetrahedron belongs to two totals. If

/T7 /T7 fp nr\ /ri
1 0» J 1> J 2> J 3. J 4

be tetrahedra of a total, a face -n of To is met, by the faces of
Tu T2, T3, Tit respectively, in the quadrilaterals qx, q2, q3, q4 of the
Dyck configuration.

Any two tetrahedra of a total belong to a desmic triad. There
are ten different pairs of tetrahedra in a total, and the ten tetrahedra
which complete the desmic triads are the remaining tetrahedra, other
than the five in the total, of the configuration. The tetrahedron
which makes up a desmic triad with Tt and Tj may be denoted by

Maschke's Quartic Surfaces.

3. Since there is a Dyck configuration in each face of a funda-
mental tetrahedron, there is a curve D in each face too. Now, as
was pointed out in § 1, the four a-points in which D meets a side of
A are uniquely determined by the regular sextuple on that side; it
therefore follows that any two of the four curves in the faces of To

meet the edge which is common to these faces in the same four points.
Hence the four curves D in the faces of To, or of any other funda-
mental tetrahedron, lie on a pencil of quartic surfaces: a detailed
proof of this statement is given in Proc. London Math. Soc. (2), 47
(1941), 132-133. It can next be shown that the two pencils of quartic
surfaces that are associated with two fundamental tetrahedra
belonging to the same total have a surface in common.

1 Nova Ada Leap., 55 (1891), 97-167.
2 Elementary Researches in the Analysis of Combinatorial Aggregation : Phil.

Mag., 24 (1844), 285-296 ; Mathematical Papers, 1, 91102. The 15 synthemes formed
by Sylvester from a set of six objects are, when these objects are linear complexes
mutually in involution, equivalent to Klein's 15 fundamental tetrahedra.
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For consider the pencil of quartic curves in which the face n of
TQ is met by the pencil F^ of quartic surfaces associated with Tx.
The curve D which lies in a face of Tx has the side of qlt in which this
face meets n, as a bitangent, and its points of contact are the same as
those of the curve D in n; for, owing to the desmic relationship of To

and T-i, the line meets the sides of A in points which are also on edges
of Tlt and the Hessian duad of this triad is the pair of points of
contact, with the line, of both plane curves. Thus every surface of
Ilj touches the curve D in n at each of eight points; wherefore one
surface of U1 contains the whole curve. Since this may be identified
as that surface of IIj which contains any one of the four a-points on
any one of the three sides of A (for none of these 12 pdints belongs to
the base curve of ITj), it follows that the same surface also contains
those curves D which lie in the other three faces of To, and therefore
that it contains the whole of the base curve of the pencil II0

associated with To. The surface thus belongs both to Il0 and to Ili.
Let this surface be called M. It contains all the 20 curves D in

the faces of the tetrahedra of the total; for it has been obtained as con-
taining eight of them, and it touches any one of the others at each of
16 points. The Klein configuration therefore involves six quartic
surfaces M, one associated with each total. Two surfaces M
associated with different totals intersect in the four curves D which
lie in the faces of the tetrahedron common to the totals; thus the
pencil determined by any two of the six surfaces M includes a
member which consists of the four faces of a tetrahedron, and all 15
fundamental tetrahedra are accounted for in this way.

The six totals were taken by Klein1 as representative of a sextic
resolvent of a sextic equation; the resolvent may, we now perceive,
equally well be represented by the six surfaces M.

There are, according to Schubert2, 600 points on a non-singular
quartic surface at which the tangent plane meets the surface in a
curve with a biflecnode at the point of contact. For M, 120 of the 600
points can be identified immediately; they are the intersections of M

1 Uber eine geometrische Representation der Resolventen algebraischer
Oleichungen : Math. -Afonalen, 4 (1871), 346-368 ; Oesammeltt Math. Abhandlungen, 2,
262-274. The fact that a sextic equation has a sextic resolvent distinct from the
equation itself is due to the existence, first pointed out by Sylvester in 1844 in the
paper to which reference has already been made above, of a function of six variables
which, when the variables are permuted, takes six different values.

2 Kalkiil der abzcihlenden Geometrie (Leipzig, 1879), 246.
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with the edges of the tetrahedra of the associated total. For any
such intersection is an a-point on both the curves D which lie in the
faces of the tetrahedron which pass through the edge, so that the
lines which join the point to the two vertices on the opposite edge are
both flecnodal tangents of M.

Maschke's Quartic Forms.

4. Let us take To as tetrahedron of reference. Then, since Tx is
desmic to To, we may suppose the equations of its faces to be

—z + y + z + t=0, x—y + z+t = 0, x+y — z+-t=0, x + y+z—t—0.

In the face t = 0 of To there is a Dyck curve which has the four
sides

— x + y + z = 0, x — y + z = 0, x + y — z = 0, x + y + z = 0,
of the quadrilateral qx as bitangents; the equation of this curve is of
the form ax* + fly* + yzx = 0. Now it is easily shown that this curve
has the line Ix + my + nz = 0 for a bitangent if, and only if,

a: j3: y = I*: m*: TO4.

Thus a = /J = y. This discussion shows that the four curves D in the
faces of To have equations

=0\ ti+xi+yi==O
)f z = 0

They therefore constitute the base of the pencil of quartic surfaces
S4 + y* + z4 + <* + hxyzt = 0; as A varies this surface generates the
pencil IT0.

Now a corresponding argument can be applied to the four curves
D in the faces of Tx; from this it appears that they constitute the
base of the pencil of quartic surfaces

(y + z + t - x)* + {z + t + x - y)* +(t + x + y - z)* + (x + y + z -tf
+ li,(y + z + t - x) (z + t + x - y) (t + x + y — z) (x + y + z - t) =0,

the surface generating the pencil nx as p. varies.
If, now, n0 and I^ have a surface in common, it must be possible

to choose X and p. so that the left-hand sides of the two equations
are proportional. In order that terms such as y2z2 should disappear
from the equation of a surface of Hu the value of /z must be — 12; the
left-hand side of the equation is then 16 (a;4 + y4 + 24 + t* — \2xyzt),
so that the equation of the Maschke surface, common to II0 and nif

is
z4 + y* + z4 + t* — \2xyzt = 0.
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The quaternary quartic on the left of this equation is, in Maschke's
notation (see his equations numbered 11 and 7), —|<&6.

A harmonic inversion with respect to any face and opposite
vertex of To interchanges any two tetrahedra, such as Tt and Z70»,
which form a desmic triad with To; the total

rp rp rp rp rp
J 0< •*• 1> J 2> J 3> J 4>

therefore becomes the second total

-M)> ^01> ^M)2> ^03> U0*>

to which TQ belongs, and the Maschke surfaces associated with these
two totals are interchanged by the harmonic inversion. Now such
an inversion is accomplished analytically by changing the sign of one
of the four coordinates; hence the equation of the Maschke surface
associated with the second total is

z4 + y* + z4 + t* + 12zyzt = 0.

The form on the left of this equation is, in Maschke'e notation,
— i<t>5, and is the one given by Burnside.

Any one of the four remaining totals contains a pair of tetra-
hedra Ti and UOi, so that it is not changed by harmonic inversion
with respect to any face and opposite vertex of To. Wherefore the
Maschke form associated with it can only contain even powers of the
coordinates. It will be enough to obtain one of these four outstand-
ing forms, say that associated with the total

^ 0 1 > J- 1> ^ 1 2 ) ^ 1 3 J " 14 '

This form, when taken with xi + y* + z4 + t* + \2xyzt, must determine
a pencil of which one member is

x* + y* + z4 + t* - 2 (y222 + z2*2 + x2y2 + x3t2 + y2t2 + z2t2) -f Sxyzt,

for this latter form, when equated to zero, gives the four faces1 of
£7Oi- Thus Maschke's form, since it is not to contain the term in
xyzt, must be

<&! = 3 {x* + y* + z* +1* - 2 (i/2z2 + z V + x2y2 + x2t2 + yH2 + z2t2) + Sxyzt)
- 2 {x* + y* + z* + t* + \2xyzt)

= x* + y* + z4 + t* — 6 (y2z2 + 2
2a;2 + x2y2 + x2tz + y2t2 + z2t2).

1 The equations of all the faces and the coordinates of all the vertices of the
fundamental tetrahedra, referred to one of them as tetrahedron of reference, are given
by Hess : loc. cit., 107-8.
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The remaining Maschke forms are found to be

(D2 = ^ + ^ + z <4 . | * + 6 ( - y2z2 + z2x2 -f- xhj2 - x2t2 + y2fl + zH2),
$ 3 = J 4 + !/' + 24 + «* + 6 (y2z2 - z2x2 + x2y2 + zH2 - y2t2 + z2t2),
O4 = x* 4- y4 4- z* + I* + 6 (y2z2 + z2x2 - x2y2 + xH2 + yH* - zH2).

Maschke's Forms and Segre's Four-Dimensional Configuration.
5. The six Maschke forms <J>j are such that their sum vanishes

identically; they may then be regarded as homogeneous coordinates
of a point in a [4]. But, since they are homogeneous polynomials in
only four variables, they must satisfy one further identical relation;
this appears, quite casually, in the course of Maschke's work, and is

4 2 (D; O,- $>k O, = {£ <Df %}2.

But this, when the O{ are homogeneous coordinates, whose sum
vanishes, in [4], is the equation of the quartic primal with 15 nodal
lines which constitute the famous configuration studied by Segre1 and
Castelnuovo2, and expounded in great detail by Baker3. The
equations of one of the nodal lines are

<D1 = O2, O3 = <r>4> 0>5 = <E)6;

any one of the lines is given by three such equations, and the lines
answer to the synthemes of Sylvester.

The situation thus is that to every point (x, y, z, t), with the con-
sequent values of <&i( there corresponds a unique point of this primal
F; whereas, given a point of T, there correspond to it all those
points in [3] for which the six forms Of take the necessary values.
There are, in general, 16 such points, forming a Kummer set. For
the group of 26.6! quaternary substitutions is the direct product of a
group of order 6!, which subjects the six Maschke forms to all possible
permutations, and a group of 26 quaternary substitutions for which
each individual O,- is invariant. But each, of x, y, z, t can be multiplied
by the same fourth root of unity* without altering the position of the
point of which they are the homogeneous coordinates, and the 26

quaternary substitutions give, for this reason, only 2* collineations.
This representation, of Kummer sets of 16 points in [3] by points of

1 Atti d. Reale Accad. di Scienze di Torino, 22 (1887), 791, where the dual configura-
tion of 15 planes appears. . .._ . .. .

2 Atti 1st. Veneto (6), 6 (1888), 547-565. Several forms for the equation of the
primal are given by Richmond : Quart. J. of Math., 34 (1903), 142 et seq.

3 Principles of Geometry, 4 (Cambridge, 1925 and 1940), Chapter 5.

https://doi.org/10.1017/S0013091500024378 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024378


GEOMETRICAL CONSTRUCTION OF MASCHKE'S QTJARTIC SURFACES 101

F, is given by Baker1, whose manner of obtaining it, however, makes
no use of the Maschke forms; it seems doubtful whether the founda-
tions of the representation can properly be apprehended, or its
symmetry sufficiently clearly displayed, without them.

If a point of Y is on one of the nodal lines, it is found that the
corresponding Kummer set becomes a set of eight points, counted
twice, of which four lie on each of a pair of directrices of the Klein
configuration. Baker, while pointing out that each nodal line of P is
associated with a pair of directrices, omits to explain that to different
points of the nodal line correspond different sets of points on the
directrices; perhaps, therefore, the following brief analytical sub-
stantiation should be given.

If <!>! = <D2, O3 = 0>4, <D5 = G>6,

simultaneously, then

z2t2 + x*yz = z2a;2 + yH2 = xyzt = 0;

any point whose coordinates satisfy these latter equations lies either
on the line x — t = 0 or on the line y = z = 0, and these two lines
constitute a pair of directrices. Conversely: any point on x = t = 0
has coordinates (0,17, £, 0) and, for this point

O3 = <*>* = ^ + £4 + 6 T?2£2,

The ratios of these values of O4 to one another vary with ij: £; but
the eight points

(0, r,, $, 0), (0, I, 7,, 0), (0, - , , I, 0), (0, I, - v, 0),

fo, 0, 0, £), (£, 0, 0, V), ( - ij, 0, 0, C), (£, 0, 0, - r,),

of which four lie on x = t = 0 and four on y = z = 0, all give the same
values for the O .̂

If ij = I the above eight points coalesce, in pairs, at the points

(0 ,1 ,1 ,0) , ( 0 , - 1 , 1 , 0 ) , (1 ,0 ,0 ,1 ) , ( 1 , 0 , 0 , - 1 ) ;

also, for these four points, <t>1 = <1>2 = $5 = $6 a Qd ^3 = $4- The
corresponding point of F is thus common to three of the nodal lines,

1 loc. cit., 208-211.
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and is what Richmond calls a cross-point. Thus it is seen that the
Kummer set which corresponds to a cross-point on F consists of the
vertices of a fundamental tetrahedron, taken four times; the 15 cross-
points give one each of the 15 fundamental tetrahedra.

Maschke's Invariant.

6. The lowest degree for which an invariant of the group of 26.6!
linear substitutions exists is eight; there is one invariant of this
degree, which Maschke (p. 505) gives as

/ = x6 + ya+ 28 + ta + 14 (y*z* + zW+xY+zV+yW+z't*) +168 x*y2zH2.

This, being an invariant of the whole group, is also an invariant for
that sub-group of 26.5! linear substitutions for which

- i <D5 = x* + y* + z* + t* + 12 xyzt

is invariant. Now this sub- group must also possess, among its
invariants, the Hessian of O5; this Hessian may be taken as

rj _ _

= 2 xyzt (x* + y* + z* + t* — xyzt) — y4z* — z V — x*y* — xH* — yH* - zH*.

The sub-group therefore has for invariants, all of degree eight, / , Of
and H;~ these, however, are linearly connected, since

— 12H.

xz

zt
yt
yz

zt
y*
M

ZX

yt
xt
z*
xy

yz
ZX

xy
t2

This identity shows that the quartic surface <J>5 = 0 is met by its
Hessian in the same curve in which it is met by the surface / = 0.
Since any one of the six Maschke surfaces can be transformed into
any other by operations of the whole group of collineations, and since
I is invariant for this group, the surface 1 = 0 must be related to each
of the Maschke surfaces in this way. Whence the following:—

The parabolic curves of the six Maschke surfaces inherent in a
Klein configuration all lie on the same surface of order eight; it is
this surface which furnishes the invariant of lowest degree for
the group of 28.6! linear substitutions.
It will be observed that the Hessian of a Maschke surface has

triple points at the vertices of all the tetrahedra of the total with which the
surface is associated. The polar quadric of any such vertex with
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respect to the surface is the opposite face, taken twice, of the
tetrahedron.

The quadric
$2 + $2 + $2 + «J>2 + $2 + <J>2 B 0

is invariantly related to the Segre configuration, for it meets each of
the 15 lines in the Hessian duad of the triad of cross-points on the
line. When the forms are substituted for the fy, the left-hand side
of the equation of the quadric becomes 12/, and so the surface
/ = 0 is the locus of those Kuminer sets which correspond to the
points of the surface of intersection of the quadric with P. Of these
Kummer sets 30, corresponding to the intersections of the quadric with
the nodal lines of F, are repeated octads; each such octad includes
four intersections of / = 0 with each of a pair of directrices, and the
30 octads together account for all the intersections of I — 0 with the
30 directrices.
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