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1. Introduction. In 1908, Lindelôf showed that if w = f(z) is a bounded 
holomorphic function in a sector S: |arg z\ < 0i, and if f(z) has an asymptotic 
value Wo as z tends to oo along a half-ray in S; then f{z) tends uniformly to 
Wo as z tends to oo within any sector |arg z\ g 0, 0 ^ 0 < 0X. Montel (8) later 
replaced the condition that f(z) be bounded by the condition that f(z) be 
meromorphic and omitted three values. The following is an immediate conse
quence of the Lindelôf-Montel theorem. 

THEOREM 1. Let w — f(z) be a function meromorphic in the sector | arg z\ < 0i, 
and letj{z) tend to a value Wo as z —» °o along the positive real axis. Then there is 
a number 0O (0 S 0o ^ 0i) such that: 

(1) If 0 ^ 6 < 0o, then f{z) —» w0 uniformly in the sector |arg z\ ^ 0; and 
(2) / / 0o < 0i, then for each 0 ŝ c& £to 0O < 0 < 0i,/(z) assumes every value 

of the Riemann sphere, with at most two exceptions, infinitely often in the sector 
|arg z\ S 0. 

This generalizes a theorem of Seidel (11, Corollary 5). An alternative 
formulation of the Lindelôf-Montel theorem which deals with strips rather 
than sectors obviously yields the following analogue to Theorem 1. 

THEOREM 2. Let w = f{z) be a function meromorphic in the strip \lmz\ < Ri, 
and letfiz) tend to a value w0 as z —> °° along the positive real axis. Then there is 
a number R0 (0 ^ Ro ^ Ri) such that: 

(1) If 0 ^ R < Ro, thenf{z) —» w0 uniformly in the strip |Im z\ ^ R; and 
(2) If Ro < Ri, then f(z) assumes every value of the Riemann sphere, with 

at most two exceptions, infinitely often in each strip \\mz\ ^ R, with R0 < R < R±. 

These two theorems are our main results, and the remainder of this paper 
will be devoted to generalizing these theorems in various directions. In order 
to sharpen part (2) in these theorems, we shall find it convenient to introduce 
(in § 2) some notions adapted from Milloux's theory of cercles de remplissage. 

2. Cercles de remplissage. Let {S, s) be a metric space, where S is a 
Riemann surface and s is a metric for S. For a subset ACS and a non-
negative number r, we write 

As(A,r) = UeS:s(A,i) ^r). 
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If the set A is a singleton A = {g0}, we write A5(g0, r) instead of As({g0}, r) 
and refer to As(g0, r) as an s-disc. When no confusion is likely as to which 
metric is being employed, we write A(A,r) for AS(A, r), and we shall also use 
the notation {An} to signify a sequence of discs. 

Definition. Let w = f(z) be a meromorphic function on the Riemann surface 
(S, s). A sequence of points {gw}, j B G 5, is called a sequence of ^-points for the 
function/(g) if there are sequences {Ln} and {rn}, satisfying 

(A) Lx > L2 > . . . > Ln > . . . , Ln -> 0, for n -» oo, 
(B) ri > r2 > . . . > rn > . . . , rn -» 0, for n —> «>, and 
(C) in each disc An = As(gw, r„), n = 1, 2, . . . , 

the function /(g) assumes all values of the Riemann sphere with the possible 
exception of two sets of values E(n) and G(n) whose spherical diameters do 
not exceed Ln. 

The sequence {An} of discs is called a sequence of s-cercles de remplissage 
for / (J) . 

COROLLARY 1. Le/ w = /(g) 6e a meromorphic function on (S, 5). Le/ {gn} &e 
a sequence of s-points for /(g), awd te/ {&/}> &/ £ S, be a sequence of points for 
which s (in, in) —> 0, a5 w —> 00. 77^72 {g/} w ateo a sequence of s-points. 

If a family F of functions meromorphic on the Riemann surface (5, 5) is not 
normal on 5, then there is some point go G S at which the family is not normal. 
I t follows (9, pp. 219, 220) that there is a sequence of functions {/»},/» 6 F, no 
subsequence of which converges in any neighbourhood of g0. Such a sequence 
is said to be an exceptional sequence of meromorphic functions at the point g0. 

The following theorem, originally stated for families of functions mero
morphic on a subset of the Riemann sphere, also holds, by an obvious modifica
tion of the original proof, for a family of functions meromorphic on a Riemann 
surface S. 

THEOREM 3 (Ostrowski (9, p. 234)). If {fn) is an exceptional sequence of 
meromorphic functions at the point g0 of the Riemann surface S on which each 
function fn is defined, and if e > 0 and U is an arbitrary open set on S about g0, 
then each of the functions fn for n > no(e, U) assumes every value of the Riemann 
sphere in U, with the possible exception of two sets of values E(e, U, n) and 
G(e, U, n) whose spherical diameters do not exceed e. 

COROLLARY 2. If [fn] is an exceptional sequence of meromorphic functions at 
the point g0 of a Riemann surface (S, s) on which each function fn is defined, then 
there are sequences {Ln} and {rn), where 

(A) Li > L2 > . . . > Ln > . . . , Ln -> 0, forn -> « , 
(B) r 1 > r2 > . . . > rn > . . . , rn —» 0, for n —» 00, and 
(C) in each disc As(g0, rn), n = 1, 2, . . . , the function /n(g) assumes every 

value of the Riemann sphere with the possible exception of two sets of values E(n) 
and G(n) whose spherical diameters do not exceed Ln. 
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3. Functions allowing a meromorphic continuation throughout 
the Euclidean plane punctured at the origin. For p = 1, 2 , . . . , let 
Sp be the covering surface associated with the function w = exp(l/p logs), 
and let Sœ be the covering surface associated with w = log z. For 
p = 1 , 2 , . . . , œ , we consider the origin to be deleted from Sp. In the following 
definitions, p may be finite or infinite. Denote by 2(g) the projection of a point 
g 6 Sp into the plane. To any point g £ Sp we can give coordinates g = (r, 0), 
where r = |s(g)|, and 0 is a suitably chosen value of args(g) for which 
-pw < 0 g +pir. Set arg^g = 0 and | j | = r. For gi, g2 6 S*, with gi = (n, 0i), 
g2 = (V2, ̂ 2), we define gig2 = (r, 0) by setting r = rir2 and 0 equal to that 
value in —pT<6^pir which is congruent to 0i + 02 modulo 2pir. We define 
li/te as gigs, where g3 = (l/r2f —02). For g 6 5„, set Zp(g) = log |g| + i argpg. 
Since r and |0| vary continuously with g = (r, 0), it can be verified that 

vpitute) = I^Wi2) | 

is a continuous metric for SP. For a subset A (Z Sp and a value w0 of the Riemann 
sphere, we say that a function/(g) defined on Sp tends to w0 in 4̂ if /(gw) —* w0 

for each sequence {in} An G -4, for which |gn| —•> oo. A boundary arc a is a 
continuous curve a(t), 0 ^ 2 < 1, on Sp for which |a(/)| —> » as £ —» 1. 

We remark that the above definitions have been made for the purpose of 
studying the behaviour of functions near the point at infinity on Sp. Actually, 
the origin plays a role symmetric to that of the point at infinity, and we could 
just as easily study the behaviour of functions near the origin. 

Suppose that w = f(z) can be continued meromorphically throughout the 
plane punctured at the origin, and let S be the covering surface for/(js), with 
the origin deleted from S. Then for some p = 1 , 2 , . . . , oo f we have 5 = Sp. 
Set a = dp. Then f(z) induces a single-valued function w = /(g) defined on 
the surface (S, a). 

THEOREM 4. Let w — f(z) allow a meromorphic continuation throughout the 
plane punctured at the origin, and let w = /(g) be the induced meromorphic 
function on the covering surface (S, a). Iff(l) tends to a value w0 along a boundary 
arc a, then there is a number 0O (0 ^ 0o ^ pir) such that: 

(1) If 0 S 0 < 0o, then fil) —•» w0 uniformly in the set Aa(a} 0); and 
(2) If 0o < pir, then there is a sequence of a-cercles de remplissage whose 

respective centres lie on the boundary of Aa(a, 0O). 

Proof.LetF= {/,(g): 0 ^ t< 1}, where/,(g) =/(£*(g)), with^(g) =«(*)». 
We denote by 1 the point g = (1, 0) in S. 

Suppose that for some 0 > 0, F is normal in A(l, 0). In this case let 

0o = lub {0: F is normal in A(l, 0)}. 

Clearly then 0O > 0. We now show that (1) is satisfied. Suppose that 0 < 0 < 0o 
and {gn} is any sequence of points in A (a, 0) such that |gn| —•» °° as n —* oo. 
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Since fa G A (a, 0), there is a point tn, 0 ^ tn < 1, such that gn 6 A (a (4), 0), 
n = 1, 2, Setfn=ft and gw = g* with 2 = 4, and let yn be a point of 
A(l, 0) for which gn{yn) = fa. Then/(jw) = /W(3V). Since F is a normal family 
in A(l, 0O), {fn\ has a subsequence {fn{k)} which converges spherically uniformly 
on A(l, 0) to a function g(i) which is meromorphic or identically infinite. We 
shall show that g (i) is identically equal to w0. Fix R,0^RSd, and for each k, 
let ak denote a point for which gn(k)(ak) is on a and <r(l, ak) = R. Let iR be a 
limit point of the sequence \ak). Since \fn(k)(h)} converges spherically uni
formly to g(%), and since g(%) is spherically continuous, fn(k)M -» 2 (is)-
Since fn^M = f(gn(k)(ak)) and g„(jfc)(a*)-* °° along a, it follows that 
g(ifl) = ^o since /( j) —> T̂O along a. Hence, for each R, 0 ^ R ^ 6, there is a 
point j B , with er(l, gB) = JR, such that g(jB) = w0, and therefore g(l) is 
identically equal to w0. I t follows that fn^k) (yn^k)) —> Wo, as £ —» oo . However, 
/n(*)(yn(*)) =/(in(*)), and {U was an arbitrary sequence of points in A (a, 0) 
for which fa —> °°. We have shown that any such sequence has a subsequence 
on which /($) tends to w0. I t follows t h a t / ( j ) —> w0 uniformly in A (a, 0). 
This verifies (1) in the case where F is normal in A(l, 0) for some 0 > 0. 

Suppose, on the other hand, that, for each 0 > 0, Fis not normal in A(l, 0). 
Then, if we set 0O = 0; (1) is vacuous, and therefore (1) holds in all cases. 

To prove (2), suppose that 0O < pir. Then there is a point 30 on the boundary 
of A(l, 0O) such that F is not normal at g0. Let {fn},fn £ F, be an exceptional 
sequence at the point £0 and let tn be such t h a t / n = ft, for t = tn. Set gn = gu 

for t = tn. Since the functions gn, n = 1, 2, . . . , are <7-isometries, it follows 
from Corollary 2 that {gn(fo)} is a sequence of (r-points for/(g) which lie in 
A (a, do). By part (1) of Theorem 4, for each 0 < 0 < 0O, {gn(h)\ is eventually 
outside of A (a, 0), and hence there is a sequence {fa} of points on the boundary 
of A (a, do) such that a (fa, gn(fo)) —> 0. From Corollary 1 it follows that {fa} is 
also a sequence of <r-points and the proof is complete. 

We remark that the above theorem can be generalized to functions which 
allow a meromorphic continuation throughout a punctured neighbourhood 
of some point. 

Let w = f(z) be a function meromorphic in the Euclidean plane, and let d 
denote the Euclidean metric. The function f(z) is said to have a sequence of 
cercles de remplissage in the sense of Milloux provided there is a sequence of 
d-discs {Aw} such that the angle subtended by An as seen from the origin 
shrinks to zero as n increases, and in each An the function f(z) assumes every 
value of the Riemann sphere with the possible exception of two sets of values 
E(n) and G(n) whose spherical diameters shrink to 0 as n increases. 

LEMMA 1. Let w = f(z) be a function meromorphic in the Euclidean plane. 
Thenf(z) has a sequence of a-cercles de remplissage if and only if it has a sequence 
of cercles de remplissage in the sense of Milloux. 

Proof. Suppose that {Aff(zn, <j>n)} is a sequence of a-cercles de remplissage for 
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f(z). Let \pn be such that sin \f/n = exp(</>n) — 1. For sufficiently large n} \f/n can 
be found and <t>n < fa- For 2 G A,(l, ^ , ) , 

\z - 1| g expfo) - 1. 
Hence, 

A,( l ,* , ) C A , ( U ) , 

where i?w = exp(<£w) — 1. Let An = s»Ad(l, i?J- Then {An} is a sequence of 
cercles de remplissage in the sense of Milloux. 

Conversely, let {An} be a sequence of cercles de remplissage in the sense of 
Milloux. Choose zn and Rn such that Aw = znAd(l, Rn). Let 

^„ = sup{cr(l, z): z g Ad(l, Rn)}. 

Then ^n —> 0 as « —» °° , and 

Ad(l,Rn) C A f f ( U J . 

Multiplying both sides by zn yields 

An C Aa(znj fa). 

Thus, {Aa(zni \[/n)} is a sequence of cr-cercles de remplissage. 

We are now in a position to prove the following generalization of Julia's 
theorem. 

MILLOUX'S THEOREM (7). Let w = f(z) be a function meromorphic in the 
Euclidean plane with an essential singularity at oo, and let f(z) have an asymp
totic value at oo. Thenf(z) has a sequence of cercles de remplissage in the sense of 
Milloux. 

Proof. By Lemma 1 it is enough to show that / (s) has a sequence of cr-cercles 
de remplissage. Let a be the asymptotic path and w0 the asymptotic value for 
f(z) at oo . Denote by 0O = 0(a) the critical number whose existence is asserted 
in Theorem 4. Then 0 ^ 0(a) rg ir. 

Case 1. 0(a) < w. Then by Theorem 4 there is a sequence of a-cercles de 
remplissage for f{z). 

Case2.0(a) = Tr.Seta' = {z = (r, 0 + |TT): (r, 0) € a}. Then a! C A, (a, £*•), 
and therefore by Theorem 4, /(s) —» w0 on a!. Applying Theorem 4 to a' we 
obtain a critical number 0(af). If 0(a') = T, then since 0(a) = ir, it follows 
from (1) of Theorem 4 that f(z) —> w0 uniformly as z —» oo. This contradicts 
the fact that oo is an essential singularity. Hence, 6(a!) < 7r, and we are back 
to Case 1. This concludes the proof. 

The above is a weak form of Milloux's theorem. The complete theorem 
actually gives an estimate on the various diameters. Further contributions in 
this direction were made by Valiron (14). 
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Let w = f(z) be a function meromorphic in the Euclidean plane. We shall 
say that / is a Milloux exceptional function if / has no sequence of cercles de 
remplissage in the sense of Milloux. The function/ is said to be a Julia excep
tional function if the family {/,: 0 < \t\ < 00} i s normal in 0 < |z| < ™, 
where ft(z) = f(tz). Both Marty (6) and Ostrowski (9) have characterized 
the Julia exceptional functions. In fact, Ostrowski gave a representation 
theorem for such functions (9, Theorem 5). From Corollary 2 and Lemma 1, 
it follows that the Julia exceptional functions are precisely the Milloux 
exceptional functions. Both the characterizations of Marty and Ostrowski 
then apply to the Milloux exceptional functions. 

4. Functions meromorphic in the neighbourhood of an essential 
singularity. Let w = f(z) be a function meromorphic in a neighbourhood 
So of an essential singularity Zo. Let h{z) denote the rotation of the Riemann 
sphere which carries the point z0 to the point at infinity. For any two points 
z\, z2 G So, we write 

d(zh z2) = \h(zi) — h(z2)\. 

Then (So, d) is a metric space. For a subset A d So and a value Wo of the 
Riemann sphere, we say that the function f(z) tends to Wo in A if f(zn) —» w0 

for each sequence {sn}, zn £ A, for which zn —> z0. A boundary arc a is a con
tinuous curve a(t), 0 ^ t < 1, on So for which a(t) —» z0 as t —» 1. 

THEOREM 5. Let w = f(z) be a function meromorphic in a (deleted) neighbour
hood So of an essential singularity z0, and let f(z) have an asymptotic value w0 

along a boundary arc a. Then there is a number R(a) (0 ^ R(a) ^ + °° ) such 
that 

(1) If 0 ^ R < R(a), then f(z) —> Wo uniformly in the set Ad(a, R); and 
(2) If R(a) < + 00, then there is a sequence of d-cercles de remplissage whose 

centres lie on the boundary of Ad(a, R(a)). 

Proof. The proof is analogous to the proof of Theorem 4. One redefines 
gt(z) as 

gt(z) =h~i(h(a(t)) +z). 

Then one considers the behaviour of the family F in neighbourhoods 
{z: \z\ ^ R} of the origin. The details are omitted. 

Consider the special case that z0 is the point at infinity and f(z) is mero
morphic in the Euclidean plane. Then S0 = (|z| < °° ) and the metric d is 
just the Euclidean metric. From this it is seen that a sequence of d-cercles de 
remplissage is a fortiori a sequence of cercles de remplissage in the sense of 
Milloux. I t is further seen that a function f(z) meromorphic in the Euclidean 
plane has a sequence of d-cercles de remplissage if and only if the family 
{ft(z)> \t\ < °°}, ft(z) = f(z + t), is not normal in \z\ < » . Functions f(z) 
for which the family {ft(z): \t\ < 00} is not normal have been studied by 
Yosida (15). 
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5. Examples. Let w = f(z) be a function meromorphic in the Euclidean 
plane which has an asymptotic value along an arc a, and let 0(a), R(a) be the 
numbers whose existences are asserted by Theorems 4 and 5, respectively. 
We remark that if 6(a) > 0, then R(a) = + oo. 

Example 1. f(z) entire transcendental; 6(a) = T. There exists an entire 
transcendental function w = f(z) which tends to 0 uniformly as z —» <» in an 
angle inferior to 2T by as little as one pleases. This result is due to Mittag-
Leffler; see (5, p. 120). [I am grateful to W. Fuchs for this reference.] 

Example 2. 6(a) = 0, R(a) = + oo. Let/(js) = zez and let a be the positive 
imaginary axis. Then it is easily seen that 6(a) — 0, but R(a) = + oo. [I am 
indebted to K.-F. Tse for this example.] 

Example 3. 6(a) = 0, 0 < R(a) < + oo. Let f(z) = exp(ez), and let a be 
the positive real axis. Then one can verify that 6(a) = 0, and that R(a) — %w. 
The calculations are omitted. 

Example 4. 6(a) = 0, R(a) = 0. Let a be the positive real axis, and let 
a* (t) = 1/t, 1 ^ / < + oo. By a theorem of Bagemihl and Seidel 
(1, Theorem 5), there exists an entire function w = f(z) which tends to 0 and 
1 on a and a\ respectively. From the above construction, it follows that 
6(a) = 0 and R(a) = 0. 

In the next example, 6(a) = + oo. The function f(z) = logs has this 
property, but this is a trivial example since log z —» oo uniformly as z —» oo. 

Example 5. There exists a function f(z) having distinct asymptotic values on 
two asymptotic paths a and a for which 6(a) = + oo and 6(a') = + oo. 

Proof. Let f(z) = zi+1, and let a be the positive real axis. Suppose that 
z Ç Aa(a, 6) for some 6 < + oo. Then \f(z)\ = \z exp( — arg z + i log|s|)| = 
\z\ exp( — argz) ^ e~e. Thus, f(z) —* oo as z —> oo in A (a, 0), and the same 
argument works for any finite 0. Hence 0(a) = + oo. 

Let a'(t) = teu, 0 ^ / < + oo. Then 2 - > o o 0 n a, \f(teu)\ = ftr1. Hence, 
f(z) —» 0 on a'. Let 0 > 0, and suppose that z Ç A (a', 0). Then for \z\ = r, 

r - 6 ^ arg s ^ r + 0, 

and therefore 

Thus, / (s) -> 0 in A(ar, 0), and thus 6(a') = + oo. 

6. Functions meromorphic in the unit disc. In this section we 
consider the space (D, p), where D is the unit disc \z\ < 1 and p is the non-
Euclidean hyperbolic metric on D. The notion of a sequence of p-cercle^de 
remplissage was introduced by Lange (4). 
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For a subset A C.D and a value w0 of the Riemann sphere, we say that a 
function f(z) defined on D tends to w0 in A if f(zn) —> w0 for each sequence 
{zn}, zn £ A, for which \zn\ —> 1. A boundary arc a is a continuous curve 
a(*),0 ^ / < 1, on D for which |a(/)| -> 1 as / - > 1. 

THEOREM 6. Let w = f(z) be a function meromorphic in D which tends to 
a value Wo along a boundary arc a in D. Then there is a number r(a) 
(0 ^ r (a) g* + oo ) such that: 

(1) If 0 ^ r < r(a), then f(z) —» w0 uniformly in the set Ap(a, r); and 
(2) If r(a) < + oo, ^e?z /feer̂  i5 a sequence of p-cercles de remplissage whose 

respective centres lie on the boundary of Ap(a, r(a)). 

Proof. In the proof of Theorem 4 we replace gt(z) by 

gt(z) = [z + a(t)]/[l+^(t)zl 

and we consider the behaviour of the family F in neighbourhoods Ap(0, r) of 
the origin. Since the remainder of the proof is analogous, the details are 
omitted. 

The above theorem concerning functions meromorphic in a disc can be 
generalized to functions meromorphic in a region whose boundary contains 
an analytic arc. Theorem 6, which generalizes a result of Gavrilov 
(3, Theorem 4) and bears some resemblance to a result of Stebbins (12), 
formed part of my doctoral dissertation written under Professor W. Seidel. 
For applications of Theorem 6, see (10; 13; 2). 
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