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1. Introduction

It is well known (see Latysev [1] for finite dimensional case) that the uni-
versal envelope of Lie Alaebra g over a commutative field i of characteristic
0 is a PJ-alaebra (i.e. possesses a nontrivial identity) if and only if this Lie al-
gebra is abelian. On the other hand the recent results due to Passman [2] describe
the conditions under which the group algebra of a group over an arbitrary com-
mutative field is a PJ-algebra. A. L. Smel'kin suggested that I should find necessary
and sufficient conditions for a Lie algebra g over a field of nonzero characteristic
under which its universal envelope [/g should be a PJ-algebra. These conditions
are given in the following theorem.

THEOREM 1.1. The universal envelope l/g of a Lie algebra g over afield
1 of characteristic p > 0 is a Pi-algebra if and only i /g possesses an abelian
ideal a of finite codimension, the adjoint representation of g being algebraic
of a bounded degree.

Since t/g is a semisimple algebra Theorem 1.1 implies the following immediate
consequence.

COROLLARY 1.2. The restrictions of the Theorem 1.1 describe the class of
those Lie algebras all of whose irreducible representations are of bounded
degree.

We recall now some basic definitions and results which will be necessary
in the proof of 1.1. Fix commutative field i (of characteristic p > 0).

We use [x, y~\ to denote the product of elements x, y of g. An associative
algebra U is called a universal envelope of the Lie algebra g if there is given
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[2] Universal envelopes of Lie algebras 11

a map e: g -» UQ which is fc-linear and satisfies the equation

- e(y)s(x)

for all x, y e g, and such that if a maps g into A where A is an arbitrary associative
algebra over f (a enjoys the same properties as e) then there exists the unique
homomorphism <f>: UQ -* A such that the diagram

g —-—> UQ

is commutative. If (Xj)i6/ is a certain linear basis of g, / being in some way linear
ordered, then according to Poincare-Birkhoff-Witt theorem (cf. [3], or [4], p.
159) one may take the following system of monomials for the linear basis of UQ:

(1) etXi.Mx.-a) •••£(*,-,), h ^ «2 •" ^ ^ « ^ 0.

It is not difficult to deduce from this theorem that the graduated algebra gr UQ
which is canonically associated with UQ (see [4], p. 163) is isomorphic to the
symmetrical algebra of the linear space g over f or simply to the polynomial
algebra I[g] = f[(x,) i e / ] .

It is well known that UQ has no zero divisors and that UQ can always be
embedded in a skew field (for these facts see [4] and [5]). In the proof of the key
Proposition 3.3 an important role plays the following assertion.

THEOREM 1.3. (Amitsur [6]). Let A be and arbitrary associative Pi-algebra
without zero divisors over a commutative field I. Then A possesses a (right)
quotient field D which is finite dimensional over its centre Z.

We remind the reader that a skew field D is called right quotient of A if
A £ D and each element from D equals to a fraction axa~2

x for some
au a2eA.

The proof of the Lemma 3.2 is based on an interesting result due to Neumann.

THEOREM 1.4. (Neumann [7]). Let g be a Lie algebra over a commutative
field I such that the codimension of the centralizer c9(x) of each element x e g
in Q is bounded by the fixed number b. Then

dimg2 ^ b2.

We remind the reader that g2 (the commutator subalgebra of g) is the
linear subspace of g spanned by the products [gr, hi], g, h e g, and

Cope) = {yeQ\[x,y]= 0}
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12 Yu. A. Bachturin [31

Since the above-mentioned map e is an injection we may assume from now on
that it is an identical map, that is, that g ^ l/g. Let the symbol adgx where
x e t/g denote the f-linear map of g into l/g given by

gadgx = [_g,x] = gx-xg, geq.

LEMMA 1.5. Let f be of characteristic p > 0. If x e g then

(i) (adgx)pk = adex
pk, k> 1;

(ii) if adgX is algebraic over I of degree at most n then x is algebraic over
the centre of l/g of degree at most p".

The proof of this Lemma can be found in Jacobson [8].
The following well known assertion will be used implicitly at several points

and its proof may be found for example in [2]:

LEMMA 1.6. If a ring R satisfies a non-zero polynomial identity of degree d
then R satisfies a non-zero homogeneous multilinear identity of degree d.

It is necessary to note here that the ideas of this work are often similar to
those of Passman's [2]. However, this is hardly true for the methods.

2. Sufficient conditions

THEOREM 2.1. Let g be a Lie algebra over afield f of characteristic p > 0.
Suppose that for any XEQ adsx is algebraic of degree at most iV1; and g con-
tains an abelian subalgebra h of codimension N2. Then l/g is Pi-algebra
of the degree not exceeding 2pNlN2.

PROOF. Let g = f © h be the direct sum of its linear subspaces f and h,
and fltf2, ••>/v2> be a linear basis of f and (hx)xeM be linear basis of h with M
in some way linear ordered. Then the following system of elements may be re-
garded as a linear basis of the universal envelope l/g of g:

(2) hf.\ • li\- ti;j?lft •••//"; kh U 0 a n d a , < « 2 < - < a in Af,

By the above-mentioned theorem due to Cohn l/g can be embedded in a skew
field D. Let S be subring of l/g generated by the universal envelope IT) of fj
and the centre 3(l/g) of l/g and let K be the commutative subfield of D generated
by S. Consider D as a left vector space over K. Let V be the X-subspace spanned
by l/g. We prove that V has finite dimension over K and that this dimension
does not exceed pN'N2. This is true since the linear map adaf{ for each
i = 1,2, •••, N2 is algebraic of degree at most Nt and therefore using Lemma
1.5 one easily observes that l/g is spanned as a left S-module by a finite system
of monomials ; „

' J l J H i •> K i = P > ' — i i z > > ' V 2 -
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[4] Universal envelopes of Lie algebras 13

Thus we certainly have dimK V £pN'N2.

Now let B = EndK V be the ring of all linear endomorphisms of V over K .
B is a matrix ring of degree not more that pNlN2. It is well known that B is a
PT-algebra of degree 2pNlN2. But the fact that the left multiplications in D
commu e with the right ones and the absence of zero divisors show that C/g is
a subring of B and that is why it inherits the standard identity S2p

N>N2 = 0
whose coefficients lie in the prime subfield of K. This proves 2.1.

NOTE. It is easily seen from the proof of 2.1 that the boundedness of the
degree of ad9Q is not essential.

3. Necessary conditions

PROPOSITION 3.1. Let the commutator subalgebra g2 of Lie algebra g be
finite-dimensional. If l/g is a Pi-algebra then g possesses an abelian ideal of
finite codimension.

PROOF. We denote by the symbol | b : a | the codimension of a linear subspace
a in a linear space b . Let x e g 2 and dimg2 < oo. Then | g: cg(x) | < oo. For,
since subspace [ x , g ] c g 2 it is finite dimensional. If gi,g2,---,gn are such that
[•x»flri].[x.02]»'">[x>9rn] is a linear basis of [jc,g] then for each geg one can
find a1>x2,---,oinel such that g + a ^ H + <xngnscQ(x), i.e. | g : c 9 ( x ) | g n.
Now suppose that eue2, •••,ek form a linear basis of g2 and put

(3) c = D ca(e,).
i = l

Then c is a class two nilpotent algebra and an ideal of finite codimension in g.

For at first for any heg2, [h,c] = 0 . Further if heg2, geg, cec then

[foe],*] = Hg,K],c] + [[>,c],<7] = 0

since \h,g] e g 2 . Finally if cuc2,c3.ec, then [cuc2~\ eg 2 and so [[c1,c2],c3] = 0 .
The finiteness of | g: c | is evident from (3).

We consider now this algebra c. Since c is a subalgebra of g it follows that
C/c is a subalgebra of L/g and so a P/-algebra. We are going to show that this
implies 3(c) (the centre of c) be of finite codimension in c. Then 3(c) is an abelian
ideal in g of finite codimension.

Since dime2 < oo and c2 £ 3(c) one easily verifies that c is isomorphic to
a subdirect product of a finite number of its homomorphic images with one-
dimensional commutator subalgebra. So it is enough to prove that in an algebra
b with dimb2 = 1, b2 £ 3(b) and Ub a P/-algebra the number |b:3(b)| is finite.
Let on the contrary | b: 3(b) | = oo. Choose in b a set of elements

xk,yk, z, k = 1,2,3, •••
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14 Yu A. Bachturin [5]

with the following properties

(4) [x*,x,] = [yk,y,] = [xk,z] = [yhz] = 0, [x^y,] = 5klz,k, I = 0 , 1 , - .

This may be done in the following way. Let z be a basis of b2 and xl7yt

be two elements of b = b0 such that [ x ^ ^ ] = z
If Xi,x2, —.x,,, yuy2 •••yn, b n + 1 are already chosen put

bn = <*„_, (xjnct,.^,)

and choose in bn (which is always nonabelian because of conditions on | b: 3(b) |
the elements xn+1,yn+1 such that [x n + 1 , ^ n T l ] = z. Easily verified that this
system satisfies the conditions (4). Now let h be the subalgebra of b with the
linear basis x1,x2,---,xd>y2,y3,---,yli+1,z. Since C/h c [/b the former algebra
satisfies the identities of the latter one. Namely there exists a non-commutative
polynomial of the degree d of the kind

(5) X1'X2"- Xd+ i a<rXff(1).Xa(2) •••Xtr(d->
l*aeSd

which is identically zero in Ui). (Here Sd is the symmetrical group of the degree
d on the symbols l,2,-~,d).

Map Xi -* x1y2, X2 -* x2y3, •••,Xd -> xdyd+l. Order the basis of h in
such a way that

(6) x t < x 2 < - < x ( ( < > ' 2 < y 3 < - <yd+1 <z.

According to (1) then the following system of monomials forms a linear basis
of UI)

(i) x1x2---xd y2 y3 yd+l z , KU iJy t ^ v.

Direct calculations show that the element

for each a e Sd can be represented as the following sum:

(8)

Here each member of the sum is completely determined by the upper triangular
matrix (ey) in each column of which all the elements but exactly one equal zero
and this nonzero element equals unity. In the sum (8) all nonzero members.equal
to certain basic elements of the kind (7). This follows from the multiplication
table (4). Easily seen that in (8) only one element may have degree d — 1 on z .
One obtains it by taking edd = ed_ld_i = ••• = e22 = 1. When a = I this ele-
ment equals xlyd+1z

d~1. Now if a # 1 the element equals
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[6] Universal envelopes of Lie algebras 15

= 0

for in this case one can find 1 ^ i' ^ d — 1 with a(i) + 1 # a(i + 1), and so one
of the factors

This shows that (5) is not an identity in C/g. Thus the assumption |b:e(b) | = oo
is not true, and consequently |c:3(c)| < oo. So 3(c) is an abelian ideal of finite
codimension in g. This proves proposition 3.1.

We consider now in Lie algebra g the following subset

It is clear that An is closed with respect to multiplication by the elements
of the basic field I, but in general it is not even a subspace. However we say that
the elements x1,x2, •••,xm are linear dependent mod AB if there exist not all zero
<x1,a2,---,amel such that

ajXj + a2x2 + ••• + a m x m eA n

LEMMA 3.2. Suppose that for Lie algebra Q there exist positive integers
m, n such that any m elements are linear dependent modulo An. Then g possesses
a subalgebra t of finite codimension with dimt2 < oo.

PROOF. Let m be the least number with the described property. Then there
are in g elements ex,e2, •••,em_l linear independent mod A,,. Let E be linear
subspace spanned by these elements, and t be subalgebra of g generated by An.
Put S = t n E. Then t = AB + S since for any t e t we have

t + cc^i +<x2e2 + ••• + a m _ 1 e m _ i e A n .

Now choose in S a linear basis fx,f2, •••,fq, q ^ m — 1 . Each of the elements
/i>/2> •>/« m a v be written as a linear combination of bounded length of some
products of bounded length of elements of An. Surely any element oft also enjoys
this property.

From the obtained fact one can easily derive that the centralizers of all
elements from t in g have codimensions in g bounded by certain number N.
Of course JV exceeeds the codimension of the centralizer of each element oft in t.
Now it rests to apply Neumann's theorem from the introduction to get
t2rgiV2. . •• ... • . i f

PROPOSIITON 3.3. Let g be Lie algebra over commutative field I, Ug its
universal envelope. If UQ is a Pi-algebra, then there exist positive integers
m,n such that any m elements of g are linear dependent modulo An.

PROOF. Since l/g has no zero divisors we may apply Amitsur's theorem
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16 Yu. A. Bachturin [7]

from the introduction of the article. Let the dimension of the quotient field D
of [7g over its centre Z equal m — 1. Then for any elements xu x2, •••,xm from g
there are elements AiB^x,A2B2l, •••,AmB~l from the centre Z, Ah Bt e UQ,
1 ^ i ^ m such that

(9) XiAiBi1 + x2A2B2
x + ••• + xmAmB~l = 0.

Not all AtBJl, i = 1, ••-, m in this relation equal 0. If x is an element of g, then
commuting (9) with x we get

(10) [ x t . x K B f 1 + [x2,x-]A2B2~
l + ••• + [ X . . X K B . - 1 = 0.

Further

AfBi BlB2-- Bm = BlB2-- Bt_lAiBi BiBi+x-Bm

= BtB2 •Bi_1AiBi+l-Bm, i = l , 2 , - , m .

Thus multiplying both parts of (10) by BlB2 ••• Bm from the right we obtain

(11) O i , * ] ^ + [x2 )x]C2 + ••• + [xra,x]Cm = 0

in which Cte UQ and not all Ch i = 1,2, •••,m equal zero. The nonzero homo-
geneous part of the highest degree of (11) gives us a nontrivial relation

(12). [*l,*]/l + |>2.*]/2 + - + [Xm,xVm = 0

in the associated graduated algebra which is, as it is mentioned above, the sym-
metrical algebra of g, or the polynomial ring I[g]. Thus in (12) all the elements

Let U = (£/,, U2, • ••, Un) — be a string of indeterminates, A be a matrix with
elements H

a, = [x,x(] i = 1,2, •••,w; x e g .

The system of equations over f [g]

UA = 0

has, as it is visible from (12), the nontrivial solution (fuf2, ••-,/„)• Thus all the
minors of matrix A of order > 1 must equal zero for some 1 5 m - l . Let Z
be the least number with this property. Then there exists a nontrivial minor

\P\ =

If x is any element of g then the following minor equals zero

https://doi.org/10.1017/S144678870001908X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001908X


[8] Universal envelopes of Lie algebras 17

I n th i s m i n o r il+1 is o n e of t h e n u m b e r s 1,2, •••,m b u t n o t i1,i2>"',h is t a k e n .
T h e d e c o m p o s i t i o n of th i s m i n o r by t h e las t c o l u m n gives s ince | P | ^ O a n o n -
t r iv ia l r e l a t i o n (here we r e m e m b e r w h a t is aix)

(13) [>i,x]0i + [x2,x~\g2 + — + [_xm,x]gm = 0.

In this relation gi,g2,---,gm
 a r e again elements from f[g] but now there

exists a subspace V^ g with dimFjS /(/ + 1) and such that gi,92^",9m^\y~\.
This subspace is spanned by the elements aiky. = [xifc,.y,] e g , 1 < fc ^ / + 1,
1 | j ^ ! . Without loss of generality we may assume that gmZ ^ 0.

So, let elements xlf x2,---,xm be linear independent modulo Ami. Then it
does not exist i, 1 ^ i ^ in, with [xhx]eV for all x e g , for then obviously
| g: cm(x;) | ^ m2, since dim V 5S m2 and hence xt e Am2. Thus we can find yQ e g
such that [xi ,y0] = e$ V. Choose in g a linear basis including a basis of V
and e and put [x^jo] = xte + ht, i = 2 , 3 , - , m ; ht written on the elements of
this basis do not contain e. Putting x = y0 in (13) we obtain

egt + <x2eg2 + ••• + <xmegm + h2g2 + ••• + hmgm = 0 .

Using standard linear basis of a polynomial ring we get

(14) 9i+oc2g2 + -+ocmgm = O.

Now (13) with the help of (14) may be transformed into

(15) [x2-<x2xuxg2 + [x3-a3xux]gi + ••• + {xm-amxux]gm = 0 .

In the relation (15) none of the elements xt — a.oci, i = 2,3, ••-,m satisfies
[x; — a;*!, x] e Ffor all x e g for otherwise xt and xt are linear dependent modulo
Am2. Hence with (15) we may operate just like with (13). This chain may be
prolonged only till obtaining the equality

(16) |>m + ym- ixm- i + "• + 7ixux]gm = 0

for all x e g . Since in (16) gm # 0 we have

] = 0 for all x e g .

But in this case the elements x1>x2, ••-,xm are linear dependent modulo the
centre of algebra g which is of course contained in Am2. This gives the desired
contradiction.

Thus any m elements are linear dependent mod Am2 and we may put n = m2

in the conclusion of 3.3.

COROLLARY 3.4. Let Q be a Lie algebra over a commutative field i such
that its universal envelope is a Pi-algebra. Then Q possesses an abelian sub-
algebra of finite codimension.
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18 Yu. A. Bachturin [9]

This follows from 3.3 3.2 and 3.1.
Now we prove

LEMMA 3.5. Let g be Lie algebra over a commutative field f which has
an abelian subalgebra a of finite codimension. Then g possesses an abelian
ideal f) with | g : h | < oo.

PROOF. We define subspaces bk, k = 0 ,1 ,2 ••• in g in such a way: b 0 = a,

and if [_a,Qk~\ is the subspace of g spanned by the elements \a,gug2, •••,#*], a e a ,

i = 1,2, ••-,& then

We haveb0 £ b t £ b2 £ ••• £ b* £ bfc+1 £ •••
Since b0 = a, |g : a | < oo one can find S ^ 0 with bs = b s + 1 . We assert

that bs is an ideal in g. For

P>,,9] = [6.-1,9] + [o,91 + 1] £f) s + [a,g5 + 1] s b s + 1 = b , .

Evidently 0<Ls<Lm, where m = jg:a| .
Define further the chain of abelian subalgebras at, 1 = 0,1,2, •••. Put

a0 = a. Let ^ l 5 g2,-", Qm be elements of g linear independent modulo a (remember
that m = | g : a | ) . If aua2,•••,a.t-i

 a r e already defined, put
m

drfey) = { x e a , _ 1 | [ x , f f - ] 6 a , _ 1 } , j = l , 2 , - - - ,m; a, = D a,(gj).
i=i

It is clear that
[a(,g] ^ a , _ , .

Show that
(a) | g : a , |<oo , t = 0 ,1 ,2 , - ,
(b) [a,,br] = 0, t = 0 , 1 , 2 , - .

Both assertions are proved using induction by f. The base of the induction t = 0
is obvious.

Let |g: a,_! | = n, and let j be one of 1,2, --.m.
If elements xi,x2,---,xn+l eat_t then there exist not all zero ctua2, •••,an+1ef

such that oLiix^gj] + <x2[x2,gj] + ••• + ccn+1[xn+ugJ]eat-l, or [ a ^ ! + <x2x2 +
••• +<xn+ixn+1,gJ]eat-1. Now it is clear that | a,_i: a,(fifj)| = " for ; = 1,2,—,
m, and hence ]a,_x: a, j ^ nw. In particular we get from here such bound:
|g:a, | ^ m'+1. So (a) is proved.

(b): Let already [ o ^ ^ b ^ J = 0. Then

[a,^,] = [Owb,-! + [a, a']] = [a(,b,_!] + [a.g'.a,] =

= [ar,b,_1] + [a,g'~1
)a(,g] + [[a,g'"1],[g>a,]] s

s [a ,-! ,^-!] + [b.-L^-Lg] + [bj-i.a,-!] = 0.
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[10] Universal envelopes of Lie algebras 19

Consider now the ideal bs of the algebra g and by h denote the centre of the
ideal bs. Since by (b) [as,bj = 0 we have h 2 as and since |g: o,| ^ ms+1 we
have |g:l)| ^ m s + 1 <oo .h further is an ideal in g since [g, h] eh for any g s g,
/i e h, for if fcebs, then [[>,/,],&] = [ |> ,H*] + I> . [M]] = 0, since [>,fc]eb,.
Hence h is an abelian ideal in g with dimg/h ^ mm+1. Lemma is proved.

To complete the proof of the main theorem it is enough to prove the follow-
ing proposition.

PROPOSITION 3.6. Let g be Lie algebra over a commutative field I and UQ

be a Pi-algebra. Then the adjoint representation of g is algebraic of bounded
degree.

PROOF. Suppose that l/g is a P/-algebra of the degree d, in which the follow-
ing relation is identically true:

V1 ' / •rV-vl>A2> >•*<(/ — '-' uaAa( 1 )A<r(2) " ' Aff(i() — u >

where S^ is a symmetrical group of degree d on 1,2, •••,^, a,,e/c and at ^ 0.
We suppose further that there are the elements v and g in g such that the

elements v0 = v, vt = v(adg)l,---,vN+1 = i^adg)*"*"1 are linear independent
N = p2d + pd + pd~l + ••• + p2 + p + 1. Obviously it follows that {vt i=0,1 •••,
N\g} is also linear independent. We include then this system to the linear
basis of g (denote the complement by (ej)jeJ) and order the obtained basis in
such a way that g,v0>vt, •••,vN should form the initial segment.

The basis of C/g then is the system of monomials

(18) g"vnovni • • • vlFe\le2
z • • • e)'

where almost all n, n0, nlt---, nN, lu l2, •••, /„ ••• equal zero and the rest are positive

integers.

Show now that the element

is a nonzero element of UQ in contradiction with (17).

The element (19) is the sum of the monomials of the sort

(20) i>(a,a) = gr vpd*<,^g V
P^*"(2)'"9 opd+»(d)

Let us prove that the element (20) equals to the sum

(21) B(o,d) =

Here each element of the sum is determined by the upper triangular matrix (£jy)
such that in each column there is exactly one nonzero element, and it equals 1.
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20 Yu.A.Bachturin [11]

The formula (21) is proved by induction by d. The base is trivial. The general
case is dealt with by transforming of the initial segment of (20) without
gp°wvpd+vW with the help of (21) and then using formuli

[u,ap] = b(ada)p (Lemmma 1.5)

and s

This completes the proof of (21).
Now since g,vo,vlt -~,vN are linear independent in g the elements

(22) vp*+k+eip+S2P2+...+edP*, w h e r e 1 ^ fc ^ d , 8 , = 0 , 1 ,

are linear independent at different values of (k,ei,e2> •••,ed) and they are the part
of the fixed basis of Ug.

We denote by M the basic element of the highest degree in the expression
of the monomial M through the base (18). It is clear that if Tany member of the
sum then T differs from T only by the order of its factors of the sort (22). Easily
seen that in the basic expression of B(<r,d) as (21) through (18) we may separate
only one basic element which enjoys the following properties:

(i) its degree on the elements of the type (22) equals d;
(ii) among its factors of the type (22) there is only one element with

£ l = B2 = ••• = £d = 0 .

This elements equals

C(<7,d) = g ypd+<T(

So it rests to compare the elements C(<r, d) at different a e Sd. Let C(o, d) = C(l, d).
Then at first p°{1) = p, i.e. a(l) = 1. But then p'*9™ + p«2> = pd+l + /<2>
= pd+1 + p2 because of the mentioned above property of the elements (22)
i.e. CT(2) = 2. Now it is clear how to get a = 1, which means that in the basic
expression of the element (19) through (18) there is the basic element C(l, d)
with coefficient at # 0.

Thus we have proved that for any two elements v, g e g there exists such a
polynomial <t>v(t)el[_i] such that vcj>tt(adg) = 0 and deg<j)v(t) ̂  pN+l. Now
we decompose g as a periodic f[t] module (through v 0 t = vadg) in the direct
sum of f[f]-primary components.

(23) g = Z g,, (jx — any irreducible in ![(])

It is clear that at most N + 1 different primary components may be nonzero in
(23), for otherwise the element v = ux + v2 + ••• + vN+2, vt =£ 0, i — 1 2, •••,
N + 2 + 1 from different components cannot be annihiliated by any polynomial
of degree N + 1. Since every QUi, is annihilated by ^f+1 it becomes true that all
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of the g is annihilated by the polynomial \j/(t) whose degree does not exceed

(N + I)2 . Thus for the element g e Q its image adg in the adjoint representation

is algebraic of the degree at most (N + I)2 which proves the proposition and

the theorem 1.1.
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