# AN EXTENSION THEOREM CONCERNING FRECHET MEASURES 

RON C. BLEI


#### Abstract

An F-measure on a Cartesian product of algebras of sets is a scalarvalued function which is a scalar measure independently in each coordinate. It is demonstrated that an $F$-measure on a product of algebras determines an $F$-measure on the product of the corresponding $\sigma$-algebras if and only if its Fréchet variation is finite. An analogous statement is obtained in a framework of fractional Cartesian products of algebras, and a measurement of $p$-variation of $F$-measures, based on Littlewood-type inequalities, is discussed.


0. Introduction. A scalar measure on an algebra of sets is extendible to a scalar measure on the corresponding $\sigma$-algebra if and only if its total variation is finite. In one direction, this cornerstone of classical measure theory is the assertion that a scalar measure on a $\sigma$-algebra is necessarily bounded (e.g., [7, Corollary III.4.6]), and in the other, it is the Carathéodory-Hahn-Jordan theorem (e.g., [7, Theorem III.5.8, Corollary III.5.9]). In this note, we establish the multidimensional version of this basic result.

By an F-measure we shall mean a scalar-valued function on a Cartesian product of algebras of sets that is a scalar measure independently in each coordinate. In Section 1, we prove that an $F$-measure on a Cartesian product of algebras is extendible to an $F$-measure on the Cartesian product of the corresponding $\sigma$-algebras if and only if its Fréchet variation is finite. The only if direction, based on the Nikodym boundedness principle ([7, Theorem IV.9.8] or [5, Theorem I.3.1]), has in effect already been noted (e.g., [12, Theorem 4.4], [1, Theorem 4.3]), but the other direction has hitherto gone unnoticed (cf. [5, Theorem I.5.2], [6]).

In Section 2, we use the extension theorem established in Section 1 to obtain the corresponding result for $F$-measures on fractional Cartesian products of algebras. We then comment on the intervention of Littlewood-type inequalities and resulting measurements of $p$-variations of $F$-measures. These measurements, noted previously in more restrictive settings [1], have been recently shown to play key roles in non-adaptive stochastic integration [11].

## 1. $F$-measures.

Definition 1.1. Let $X_{1}, \ldots, X_{n}$ be sets, and let $C_{1}, \ldots, C_{n}$ be algebras of subsets of $X_{1}, \ldots, X_{n}$, respectively. A scalar-valued function $\mu$ on the $n$-fold Cartesian product

[^0]$C_{1} \times \cdots \times C_{n}$ is an $F_{n}$-measure if $\mu$ is a scalar measure separately in each coordinate. Such $\mu$ will be generically called Fréchet measures or $F$-measures.

The space of $F_{n}$-measures on $C_{1} \times \cdots \times C_{n}$ is denoted by $F_{n}\left(C_{1} \times \cdots \times C_{n}\right)$. If $C_{1}, \ldots, C_{n}$ are arbitrary or understood from the context, then $F_{n}\left(C_{1} \times \cdots \times C_{n}\right)$ is denoted by $F_{n} . \mu \in F_{n}$ is said to be bounded if

$$
\begin{equation*}
\sup \left\{\left|\mu\left(E_{1} \times \cdots \times E_{n}\right)\right|: E_{1} \times \cdots \times E_{n} \in C_{1} \times \cdots \times C_{n}\right\}<\infty . \tag{1.1}
\end{equation*}
$$

The objects which I call $F_{2}$-measures arose first in Fréchet's work [8] as bounded bilinear functions on $C([0,1])$. In later studies, in a framework of two-fold topological products, these bilinear functionals were dubbed bimeasures (e.g., [10]). In general multi-dimensional settings, references have occasionally been made to multimeasures or polymeasures (e.g., [6]). I prefer the term $F_{n}$-measure in a multilinear measure-theoretic context (e.g., [1]) primarily because it registers dimensions of underlying Cartesian products, which could be fractional (see next section). $F$ of course is for Fréchet.

If $C$ is an algebra of subsets of $X$, then a $C$-partition of $X$ will mean a collection of mutually disjoint elements of $C$ whose union is $X$. If $C_{1}, \ldots, C_{n}$ are algebras of subsets of $X_{1}, \ldots, X_{n}$, respectively, then $C_{1} \times \cdots \times C_{n}$-grid of $X_{1} \times \cdots \times X_{n}$ will mean $n$-fold Cartesian product of finite $C_{1}, \ldots, C_{n}$-partitions of $X_{1}, \ldots, X_{n}$, respectively. When $\left(X_{1}, C_{1}\right), \ldots,\left(X_{n}, C_{n}\right)$ are arbitrary or understood from the context, we refer simply to partitions and grids.

A Rademacher system indexed by a set $\tau$ is the collection of functions $\left\{r_{\alpha}\right\}_{\alpha \in \tau}$ defined on $\{-1,+1\}^{\tau}$, such that $r_{\alpha}(\omega)=\omega(\alpha)$ for $\alpha \in \tau$ and $\omega \in\{-1,+1\}$. If $\tau_{1}, \ldots, \tau_{n}$ are indexing sets, then $r_{\alpha_{1}} \otimes \cdots \otimes r_{\alpha_{n}}$ denotes the function on $\{-1,+1\}^{\tau_{1}} \times \cdots \times\{-1,+1\}^{\tau_{n}}$ whose value at $\left(\omega_{1}, \ldots, \omega_{n}\right)$ equals $r_{\alpha_{1}}\left(\omega_{1}\right) \cdots r_{\alpha_{n}}\left(\omega_{n}\right)$.

If $\mu \in F_{n}\left(C_{1} \times \cdots \times C_{n}\right)$, then the $F_{n}$-norm (Fréchet variation) of $\mu$ is defined by

$$
\begin{equation*}
\|\mu\|_{F_{n}}=\sup \left\{\| \|_{E_{1} \times \cdots \times E_{n} \in \gamma} \mu\left(E_{1} \times \cdots \times E_{n}\right) r_{E_{1}} \otimes \cdots \otimes r_{E_{n}} \|_{\infty}: \gamma \text { a grid }\right\} \tag{1.2}
\end{equation*}
$$

(cf. $[1,(4.3)] ; r_{E_{1}}, \ldots, r_{E_{n}}$ are elements of $n$ Rademacher systems indexed respectively by the $n$ partitions whose Cartesian product is $\gamma$ ).

Theorem 1.2. Let $C_{1}, \ldots, C_{n}$ be algebras of sets in $X_{1}, \ldots, X_{n}$, respectively, and let $\mu \in F_{n}\left(C_{1} \times \cdots \times C_{n}\right)$. Then, $\mu$ is uniquely extendible to an $F_{n}$-measure on $\sigma\left(C_{1}\right) \times \cdots \times \sigma\left(C_{n}\right)$ if and only if $\|\mu\|_{F_{n}}<\infty(\sigma(C)=\sigma$-algebra generated by $C)$. Moreover,

$$
\begin{equation*}
\|\mu\|_{F_{n}\left(C_{1} \times \cdots \times C_{n}\right)}=\|\mu\|_{F_{n}\left(\sigma\left(C_{1}\right) \times \cdots \times \sigma\left(C_{n}\right)\right)} \tag{1.3}
\end{equation*}
$$

The proof of Theorem 1.2 requires two elementary lemmas. The first, Lemma 1.3 below, appeared in [1] (Lemma 4.4 on p. 41) where the proof was too long; I include here a simpler and shorter proof. The second, Lemma 1.4, can be verified quickly in a context of harmonic analysis by use of Riesz products; a longer but elementary proof can be found in [9, pp. 167-168].

LEMMA 1.3. Let $N$ be an arbitrary positive integer, and let $\left\{a_{i_{i} \cdots i_{n}}\right\}_{i_{1}, \ldots, i_{n}=1}^{N}$ be an array of scalars. Then, for each $j \in[n](:=\{1, \ldots, n\})$, there exist subsets $T_{j} \subset[N]$ such that

$$
\left|\sum_{\left(i_{1}, \ldots, i_{n}\right) \in T_{1} \times \cdots \times T_{n}} a_{i_{1} \cdots i_{n}}\right| \geq \frac{1}{4^{n}}\left\|\sum_{\left(i_{1}, \ldots, i_{n}\right) \in[N]^{n}} a_{i_{1} \cdots i_{n}} r_{i_{1}} \otimes \cdots \otimes r_{i_{n}}\right\|_{\infty} .
$$

Proof (by induction on $n$ ). The case $n=1$ is merely the statement that for every set of scalars $\left\{a_{j}: j \in[N]\right\}$ there exists $T \subset[N]$ such that

$$
\left|\sum_{j \in T} a_{j}\right| \geq \frac{1}{4} \sum_{j \in[N]}\left|a_{j}\right| .
$$

If $n>1$ and $\left\{a_{i_{1} \cdots i_{n}}\right\}_{i_{1}, \ldots, i_{n}=1}^{N}$ is an array of scalars, then let $\omega_{1} \in\{-1,1\}^{[N]}, \ldots, \omega_{n} \in$ $\{-1,1\}^{[N]}$ be such that

$$
\begin{equation*}
\left\|\sum_{\left(i_{1}, \ldots, i_{n}\right) \in[N]^{n}} a_{i_{1} \cdots i_{n}} r_{i_{1}} \otimes \cdots \otimes r_{i_{n}}\right\|_{\infty}=\left|\sum_{\left(i_{1}, \ldots, i_{n}\right) \in[N]^{n}} a_{i_{1} \cdots i_{n}} r_{i_{1}}\left(\omega_{1}\right) \cdots r_{i_{n}}\left(\omega_{n}\right)\right| . \tag{1.4}
\end{equation*}
$$

By the assertion for $n=1$, there exists $T_{1} \subset[N]$ so that

$$
\begin{equation*}
4\left|\sum_{i_{1} \in T_{1}}\left(\sum_{\left(i_{2}, \ldots, i_{n}\right) \in[N]^{n}} a_{i_{1} \cdots i_{n}} r_{i_{2}}\left(\omega_{2}\right) \cdots r_{i_{n}}\left(\omega_{n}\right)\right)\right| \tag{1.5}
\end{equation*}
$$

majorizes (1.4). Now reverse the two summations in (1.5) and apply the induction hypothesis to obtain $T_{2} \subset[N], \ldots, T_{n} \subset[N]$ so that (1.5) is majorized by

$$
\left.4^{n-1}\right|_{i_{2} \in T_{2}, \ldots, i_{n} \in T_{n}}\left(4 \sum_{i_{1} \in T_{1}} a_{i_{1} \ldots i_{n}}\right) \mid
$$

Lemma 1.4. Suppose $\left\{a_{i j}:(i, j) \in \mathbb{N}^{2}\right\}$ is an array of scalars such that $\sup \left\{\left\|\sum_{i \in S, j \in T} a_{i j} r_{i} \otimes r_{j}\right\|_{\infty}: S\right.$ and $T$ finite subsets of $\left.\mathbb{N}\right\}<\infty$. Then,

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i j} .
$$

Proof of Theorem 1.2. If $\mu \in F_{n}\left(C_{1} \times \cdots \times C_{n}\right)$ is a restriction of an $F_{n}$-measure on $\sigma\left(C_{1}\right) \times \cdots \times \sigma\left(C_{n}\right)$, then an inductive application of the Nikodym boundedness principle implies $\mu$ is bounded. Then, a standard argument based on Lemma 1.3 implies $\|\mu\|_{F_{n}}<\infty$.

Conversely, we show by induction on $n$ that if $\mu \in F_{n}\left(C_{1} \times \cdots \times C_{n}\right)$ and $\|\mu\|_{F_{n}}<\infty$, then there exists an extension of $\mu$ to an $F_{n}$-measure on $\mathfrak{\Im}_{1} \times \cdots \times \mathfrak{๒}_{n}$, where $\mathfrak{\Im}_{i}=\sigma\left(C_{i}\right)$ ( $i \in[n]$ ). It is evident that such an extension is necessarily unique.

The case $n=1$ is standard. Let $n>1$, and assume the assertion holds in the case $n-1$. Let $\mu$ be an $F_{n}$-measure on $C_{1} \times \cdots \times C_{n}$. Then, for each $A_{2} \times \cdots \times A_{n} \in C_{2} \times \cdots \times C_{n}$,
$\mu\left(\cdot \times A_{2} \times \cdots \times A_{n}\right)$ is extendible to a scalar measure on $\mathfrak{\Xi}_{1}$. Denote this extension also by $\mu$. Note
(1.6) $\sup \left\{\left|\mu\left(A_{1} \times A_{2} \times \cdots \times A_{n}\right)\right|: A_{1} \times A_{2} \times \cdots \times A_{n} \in \mathfrak{\Xi}_{1} \times C_{2} \times \cdots \times C_{n}\right\}<\infty$.

CLAIM. For each $A \in \mathbb{E}_{1}, \mu(A \times \cdot \times \cdots \times \cdot) \in F_{n-1}\left(C_{2} \times \cdots \times C_{n}\right)$.
Proof of Claim. Let

$$
\begin{equation*}
\Omega=\left\{A: A \in \mathfrak{V}_{1}, \mu(A \times \cdot \times \cdots \times \cdot) \in F_{n-1}\left(C_{2} \times \cdots \times C_{n}\right)\right\} . \tag{1.7}
\end{equation*}
$$

Clearly, $\Omega$ is an algebra containing $C_{1}$. We will show that $\Omega$ is a $\sigma$-algebra. Suppose $E_{i} \in \Omega(i \in \mathbb{N})$ and that the $E_{i}$ 's are mutually disjoint. Let $E=\bigcup_{i} E_{i}$. To verify $E \in \Omega$, we need to establish that $\mu(E \times \times \cdots \times \cdot)$ is countably additive separately in each of the $n-1$ coordinates. Fix $B_{2} \in C_{2}, \ldots, B_{n-1} \in C_{n-1}$. Let $\left\{F_{j}\right\}_{j}$ be a sequence of mutually disjoint elements in $C_{n}$ such that $\bigcup_{j} F_{j} \in C_{n}$. We claim that

$$
\begin{equation*}
\mu\left(E \times B_{2} \times \cdots \times B_{n-1} \times \bigcup_{j} F_{j}\right)=\sum_{j=1}^{\infty} \mu\left(E \times B_{2} \times \cdots \times B_{n-1} \times F_{j}\right) . \tag{1.8}
\end{equation*}
$$

Since $\mu$ is a scalar measure in its first coordinate,

$$
\begin{equation*}
\mu\left(E \times B_{2} \times \cdots \times B_{n-1} \times \bigcup_{j} F_{j}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i} \times B_{2} \times \cdots \times B_{n-1} \times \bigcup_{j} F_{j}\right) \tag{1.9}
\end{equation*}
$$

Since $E_{i} \in \Omega$ for each $i \in \mathbb{N}$,
(1.10) $\sum_{i=1}^{\infty} \mu\left(E_{i} \times B_{2} \times \cdots \times B_{n-1} \times \bigcup_{j} F_{j}\right)=\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} \mu\left(E_{i} \times B_{2} \times \cdots \times B_{n-1} \times F_{j}\right)\right)$.

By (1.6) and Lemma 1.3,

$$
\sup \left\{\left\|_{E_{1} \times \cdots \times E_{n} \in \gamma} \mu\left(E_{1} \times \cdots \times E_{n}\right) r_{E_{1}} \otimes \cdots \otimes r_{E_{n}}\right\|_{\infty}: \gamma \text { is a } \mathbb{S}_{1} \times C_{2} \times \cdots \times C_{n} \text {-grid }\right\}
$$

is finite. Therefore, by Lemma 1.4, we can reverse the order of summation on the right hand side of (1.10). Therefore, since $\mu$ is a measure in the first coordinate, we obtain

$$
\begin{align*}
\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} \mu\left(E_{i} \times B_{2} \times \cdots \times B_{n-1} \times F_{j}\right)\right) & =\sum_{j=1}^{\infty}\left(\sum_{i=1}^{\infty} \mu\left(E_{1} \times B_{2} \times \cdots \times B_{n-1} \times F_{j}\right)\right)  \tag{1.11}\\
& \left.=\sum_{j=1}^{\infty} \mu\left(E \times B_{2} \times \cdots \times B_{n-1} \times F_{j}\right)\right),
\end{align*}
$$

thus establishing (1.8).
The induction hypothesis and the Claim imply that for each $A \in \mathfrak{\Im}_{1}, \mu(A \times \cdot \times \cdots \times \cdot)$ is extendible to an $F_{n-1}$-measure on $\mathfrak{๒}_{2} \times \cdots \times \mathfrak{๒}_{n}$. Denote this extension also by $\mu$.

To verify that for every $A_{2} \times \cdots \times A_{n} \in \mathfrak{V}_{2} \times \cdots \times \mathfrak{V}_{n}, \mu\left(\cdot \times A_{2} \times \cdots \times A_{n}\right)$ is a scalar measure on $\mathfrak{\Im}_{1}$, first fix $B_{2} \times \cdots \times B_{n-1} \in C_{2} \times \cdots \times C_{n-1}$, and let

$$
\begin{equation*}
\Omega_{n}=\left\{A: A \in \mathfrak{C}_{n}, \mu\left(\cdot \times B_{2} \times \cdots \times B_{n-1} \times A\right) \text { is a scalar measure on } \mathfrak{V}_{1}\right\} . \tag{1.12}
\end{equation*}
$$

The argument establishing that $\Omega_{n}$ is a $\sigma$-algebra is similar to the argument used in the proof of the Claim. We continue by recursion to treat remaining coordinates, obtaining that for all $A_{2} \times \cdots \times A_{n} \in \mathfrak{\Xi}_{2} \times \cdots \times \mathfrak{E}_{n}, \mu\left(\cdot \times A_{2} \times \cdots \times A_{n}\right)$ is a scalar measure on $\mathrm{E}_{1}$.

To verify (1.3), approximate $\mu\left(A_{1} \times \cdots \times A_{n}\right)$, where $A_{1} \times \cdots \times A_{n} \in \mathfrak{V}_{1} \times \cdots \times \mathfrak{פ}_{n}$, by $\mu\left(E_{1} \times \cdots \times E_{n}\right)$, where $E_{1} \times \cdots \times E_{n} \in C_{1} \times \cdots \times C_{n}$.
2. $F$-measures in fractional dimensions. The question concerning the extension of $\mu \in F_{n}\left(C_{1} \times \cdots \times C_{n}\right)$ to an $F_{n}$-measure on $\sigma\left(C_{1}\right) \times \cdots \times \sigma\left(C_{n}\right)$, considered in Section 1 , is an instance of a general question in a framework of fractional Cartesian products of algebras.

If $Y$ is a set and $S \subset[n]$, then $Y^{S}$ denotes the Cartesian product of $Y$ whose coordinates are indexed by $S$; slightly abusing notation, we shall write $Y^{n}$ for $Y^{[n]}$. We denote by $\pi_{S}$ the canonical projection from $Y^{n}$ onto $Y^{S}$, i.e., $\pi_{S}\left(y_{1}, \ldots, y_{n}\right)=\left(y_{j}: j \in S\right)$. We shall sometimes use also the notation $\pi_{s}(y)=\left.y\right|_{s}$. To simplify notation, we shall consider Cartesian products of $(X, C)$, where $X$ is a set and $C$ is an algebra of subsets of $X$ (in place of $\left(X_{1}, C_{1}\right), \ldots,\left(X_{n}, C_{n}\right)$, considered in Section 1).

DEFinition 2.1. Let $V$ be a cover of [n], i.e., $S \subset[n]$ for $S \in V$ and $\bigcup\{S: S \in$ $V\}=[n]$. Let $X$ be a set and let $C$ be an algebra of subsets of $X$. Then, $\mu \in F_{n}\left(C^{n}\right)$ is an $F_{V}$-measure on $C^{n}$ if for every $S \in V$ and for all $\times\left\{A_{i}: i \in S^{c}\right\} \in C^{S^{c}}$,

$$
\begin{equation*}
\mu\left(A_{1} \times \cdots \times A_{n}\right), \quad \times\left\{A_{i}: i \in S\right\} \in C^{S} \tag{2.1}
\end{equation*}
$$

defines a scalar measure on $\alpha\left(C^{S}\right)(\alpha(\cdot)=$ algebra generated by $\cdot)$. The set of $F_{V}$-measures on $C^{n}$ is denoted by $F_{V}\left(C^{V}\right)$, or simply by $F_{V}$.

A basic problem is to identify the "largest" domain on which a finitely additive function on $C^{n}$ determines an $F$-measure. For example, if $\mu \in F_{1}\left(\alpha\left(C^{n}\right)\right)$ then $\mu$ determines an $F_{1}$-measure on $\sigma\left(C^{n}\right)$ if and only if its total variation

$$
\begin{equation*}
\sup \left\{\sum_{c \in \gamma}|\mu(c)|: C^{n}-\operatorname{grid} \gamma\right\} \quad\left(=\sup \left\{\left\|\sum_{c \in \gamma} \mu(c) r_{c}\right\|_{\infty}: C^{n}-\operatorname{grid} \gamma\right\}\right) \tag{2.2}
\end{equation*}
$$

is finite (this of course is classical). At the other end, if $\mu \in F_{n}\left(C^{n}\right)$ then $\mu$ determines an $F_{n}$-measure on $\sigma(C)^{n}$ if and only if $\|\mu\|_{F_{n}}$ is finite (Theorem 1.2). Definition 2.1 deals with the intermediate cases between these two extremes. To be precise, let $V=\left\{S_{j}\right\}_{j=1}^{m}$ be a cover of [ $n]$, and consider the collection of sets

$$
\begin{equation*}
\left.\alpha(C)^{V}:=\left\{\pi_{S_{1}}^{-1}\left[c_{1}\right] \cap \cdots \cap \pi_{S_{m}}^{-1}\left[c_{m}\right]\right): c_{1} \in \alpha\left(C^{S_{1}}\right), \ldots, c_{m} \in \alpha\left(C^{S_{m}}\right)\right\} \tag{2.3}
\end{equation*}
$$

whose elements will be called $V$-cubes. (The simplest non-trivial case, $n=3$ and $V=$ $\{(1,2),(2,3),(1,3)\}$, is an effective illustration for the discussion that follows.) Observe that if $c_{1} \in \alpha\left(C^{S_{1}}\right), \ldots, c_{m} \in \alpha\left(C^{S_{m}}\right)$, then

$$
\begin{equation*}
\pi_{S_{1}}^{-1}\left[c_{1}\right] \cap \cdots \cap \pi_{S_{m}}^{-1}\left[c_{m}\right]=\bigcap\left\{\pi_{1}\left(c_{i}\right): 1 \in S_{i}\right\} \times \cdots \times \bigcap\left\{\pi_{n}\left(c_{i}\right): n \in S_{i}\right\} \tag{2.4}
\end{equation*}
$$

where $\pi_{1}, \ldots, \pi_{n}$ denote the canonical projections from $X^{n}$ onto $X$. Let $\mu \in F_{n}\left(C^{n}\right)$. By finite additivity, we extend the domain of $\mu$ to $\alpha(C)^{V}$, and then define

$$
\begin{gather*}
\tilde{\mu}\left(c_{1} \times \cdots \times c_{m}\right)=\mu\left(\pi_{S_{1}}^{-1}\left[c_{1}\right] \cap \cdots \cap \pi_{S_{m}}^{-1}\left[c_{m}\right]\right)  \tag{2.5}\\
\left(=\mu\left(\bigcap\left\{\pi_{1}\left(c_{i}\right): 1 \in S_{i}\right\} \times \cdots \times \bigcap\left\{\pi_{n}\left(c_{i}\right): n \in S_{i}\right\}\right)\right), \\
c_{1} \in \alpha\left(C^{S_{1}}\right), \ldots, c_{m} \in \alpha(C)^{S_{m}} .
\end{gather*}
$$

Then, $\tilde{\mu}$ is well defined and $\tilde{\mu} \in F_{m}\left(\alpha\left(C^{S_{1}}\right) \times \cdots \times \alpha\left(C^{S_{m}}\right)\right)$ if and only if $\mu \in F_{V}\left(C^{V}\right)$. Denote by $F_{V}\left(\sigma(C)^{V}\right)$ the class consisting of $\mu \in F_{V}\left(C^{V}\right)$ extendible to $\sigma(C)^{V}$ so that

$$
\begin{equation*}
\mu\left(\pi_{S_{1}}^{-1}\left[E_{1}\right] \cap \cdots \cap \pi_{S_{m}}^{-1}\left[E_{m}\right]\right), \quad E_{1} \in \sigma\left(C^{S_{1}}\right), \ldots, E_{m} \in \sigma\left(C^{S_{m}}\right) \tag{2.6}
\end{equation*}
$$ determines an $F_{m}$-measure on $\sigma\left(C^{S_{1}}\right) \times \cdots \times \sigma\left(C^{S_{m}}\right)$.

By Theorem 1.2, if $\tilde{\mu} \in F_{m}\left(\alpha\left(C^{S_{1}}\right) \times \cdots \times \alpha\left(C^{S_{m}}\right)\right)$, then $\tilde{\mu}$ determines an element in $F_{m}\left(\sigma\left(C^{S_{1}}\right) \times \cdots \times \sigma\left(C^{S_{m}}\right)\right)$ (denoted also by $\left.\tilde{\mu}\right)$ if and only if

$$
\begin{align*}
& \|\tilde{\mu}\|_{F_{m}}=\sup \left\{\|_{c_{1} \times \cdots \times c_{m} \in \gamma} \mu\left(\bigcap\left\{\pi_{1}\left(c_{i}\right): 1 \in S_{i}\right\} \times \cdots\right.\right. \\
& \left.\times \bigcap\left\{\pi_{n}\left(c_{i}\right): n \in S_{i}\right\}\right) r_{c_{1}} \otimes \cdots \otimes r_{c_{m}} \|_{\infty}:  \tag{2.7}\\
& \left.\gamma=\gamma_{1} \times \cdots \times \gamma_{m}, \text { where } \gamma_{j} \text { is a } \alpha\left(C^{S_{j}}\right) \text {-grid, } j \in[m]\right\}
\end{align*}
$$

is finite. In (2.7), by passing to refinements of partitions, we can assume that the $\gamma_{j}$ 's are generated by the same $C$-partition of $X$, say $\tau$, i.e., $\gamma=\tau^{S_{1}} \times \cdots \times \tau^{S_{m}}$. In this case, if $c_{1} \times \cdots \times c_{m} \in \gamma$ then

$$
\bigcap\left\{\pi_{1}\left(c_{i}\right): 1 \in S_{1}\right\} \times \cdots \times \bigcap\left\{\pi_{n}\left(c_{i}\right): n \in S_{i}\right\}= \begin{cases}d & d \in \tau^{n}, c_{j}=\left.d\right|_{S_{j}}, j \in[m]  \tag{2.8}\\ \emptyset & \text { otherwise }\end{cases}
$$

(notation: for $d=d_{1} \times \cdots \times d_{n} \in \tau^{n},\left.d\right|_{S_{j}}=\times\left\{d_{i}: i \in S_{j}\right\}$ ). Define

$$
\begin{equation*}
\|\mu\|_{F_{V}}=\sup \left\{\left\|\sum_{d \in \gamma} \mu(d) r_{d \mid s_{1}} \otimes \cdots \otimes r_{d \mid s_{m}}\right\|_{\infty}: \gamma \text { a } C^{n}-\text { grid of } X^{n}\right\}, \tag{2.9}
\end{equation*}
$$

and deduce that $\|\mu\|_{F_{V}}=\|\tilde{\mu}\|_{F_{m}}\left(r_{d \mid s_{j}}\right.$ is an element of a Rademacher system indexed by $\tau^{S_{j}}, j \in[m]$. For example, if $n=3$ and $V=\{(1,2),(2,3),(1,3)\}$ then

$$
\begin{equation*}
\|\mu\|_{F_{V}}=\sup \left\{\left\|_{A \times B \times C \in \tau^{3}} \mu(A \times B \times C) r_{A \times B} \otimes r_{B \times C} \otimes r_{A \times C}\right\|_{\infty}: \tau \text { a } C \text {-partition of } X\right\}, \tag{2.10}
\end{equation*}
$$

where the sup-norm is evaluated on $\{-1,+1\}^{\tau^{2}} \times\{-1,+1\}^{\tau^{2}} \times\{-1,+1\}^{\tau^{2}}$.
It follows from (2.4) that if $\tilde{\mu}$ is extendible to an $F_{m}$-measure on $\sigma\left(C^{S_{1}}\right) \times \cdots \times \sigma\left(C^{S_{m}}\right)$ then it is determined by its values on $V$-cubes, i.e., if

$$
\pi_{S_{1}}^{-1}\left[E_{1}\right] \cap \cdots \cap \pi_{S_{m}}^{-1}\left[E_{m}\right]=\pi_{S_{1}}^{-1}\left[F_{1}\right] \cap \cdots \cap \pi_{S_{m}}^{-1}\left[F_{m}\right]
$$

then $\tilde{\mu}\left(E_{1} \times \cdots \times E_{m}\right)=\tilde{\mu}\left(F_{1} \times \cdots \times F_{m}\right)$. Therefore, if $\tilde{\mu} \in F_{m}\left(\sigma\left(C^{S_{1}}\right) \times \cdots \times \sigma\left(C^{S_{m}}\right)\right)$ then we can unambiguously write

$$
\begin{equation*}
\mu\left(\pi_{S_{1}}^{-1}\left[E_{1}\right] \cap \cdots \cap \pi_{S_{m}}^{-1}\left[E_{m}\right]\right)=\tilde{\mu}\left(E_{1} \times \cdots \times E_{m}\right) \tag{2.11}
\end{equation*}
$$

We summarize:
Theorem 2.2. If $\mu \in F_{V}\left(C^{V}\right)$, then $\mu \in F_{V}\left(\sigma(C)^{V}\right)$ if and only if $\|\mu\|_{F_{V}}<\infty$.
Remark. Suppose $C$ is infinite. The fundamental observation, that the inclusion $F_{1}\left(\sigma\left(C^{2}\right)\right) \subset F_{2}\left(\sigma(C)^{2}\right)$ is proper, was noted independently in various contexts during the 1930's (e.g. [4], [9]). A key to this observation was that if $\mu \in F_{2}\left(\sigma(C)^{2}\right)$ were extendible to an element in $F_{1}\left(\sigma\left(C^{2}\right)\right)$ then its total variation, defined in (2.2), would be finite. Indeed, after noting that there exists $\mu$ with finite $F_{2}$-variation and infinite total variation, Littlewood [9] proceeded to derive his 4/3-inequality(ies), conveying that the $p$-variation of every $\mu \in F_{2}\left(\sigma(C)^{2}\right)$ is finite if and only if $p \geq 4 / 3$. In particular, let $\mu \in F_{n}\left(\sigma(C)^{n}\right)$, and define the $p$-variation of $\mu$ by

$$
\begin{equation*}
\|\mu\|_{(p)}=\sup \left\{\sum_{c \in \gamma}|\mu(\mathbf{c})|^{p}: \gamma C^{n} \text {-grid of } X^{n}\right\} \tag{2.12}
\end{equation*}
$$

Define the Littlewood exponent of $\mu$ (e.g., [2]) by

$$
\begin{equation*}
\ell_{\mu}=\inf \left\{p:\|\mu\|_{(p)}<\infty\right\} \tag{2.13}
\end{equation*}
$$

Then, Littlewood's inequalities are equivalent to the statement

$$
\begin{equation*}
\sup \left\{\ell_{\mu}: \mu \in F_{2}\left(\sigma(C)^{2}\right)\right\}=4 / 3 \tag{2.14}
\end{equation*}
$$

In the general case, let $V=\left\{S_{j}\right\}_{j=1}^{m}$ be a cover of [ $n$ ], and consider the linear programming problem.

Maximize $x_{1}+\cdots+x_{n}=e$ subject to the constraints that each $x_{i} \geq 0$ and $\sum_{i \in S_{j}} x_{i} \leq 1$ for each $j \in[m]$.

Let the optimal value solving this problem be $e=e(V)$. Combining the "fractional" version of Littlewood's inequalities (e.g., [1]) with the result in [3], asserting that $e(V)$ is the combinatorial dimension of $C^{V}=\left\{\left(\pi_{S_{1}}(\mathbf{c}), \ldots, \pi_{S_{m}}(\mathbf{c})\right): \mathbf{c} \in C^{m}\right\}$, we deduce

Theorem 2.3. $\sup \left\{\ell_{\mu}: \mu \in F_{V}\left(\sigma(C)^{V}\right)\right\}=\frac{2 e(V)}{e(V)+1}$.
If $U$ and $V$ are two covers of [ $n$ ], then $U<V$ means that for every $T \in U$ there exists $S \in V$ such that $T \subset S$. It is easy to see that if $U<V$, then $e(U) \geq e(V)$ and $F_{U}\left(\sigma(C)^{U}\right) \supset F_{V}\left(\sigma(C)^{V}\right)$. Theorem 2.3 implies that if $e(U)>e(V)$ then the preceding inclusion is proper.

## REFERENCES

1. R. Blei, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc. 57(1985), 331.
2. R. Blei and J.-P. Kahane, A computation of the Littlewood exponent of stochastic processes, Math. Proc. Cambridge Philos. Soc. 103(1988), 367-370.
3. R. Blei and J. Schmerl, Combinatorial dimension of fractional Cartesian products, Proc. Amer. Math. Soc. 120(1994), 73-77.
4. J. A. Clarkson and C. R. Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35(1933), 824-854.
5. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys Monographs 15, Amer. Math. Soc., Providence, Rhode Island, 1977.
6. I. Dobrakov, On extension of Vector Polymeasures, Czechoslovak Math. J. 38(1988), 88-94.
7. N. Dunford and J. T. Schwartz, Linear Operators, I, Interscience Publishers, Inc., New York, 1964.
8. M. Fréchet, Sur les fonctionnelles bilinéaires, Trans. Amer. Math. Soc. 16(1915), 215-234.
9. J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. Oxford 1(1930), 164-174.
10. M. Morse and W. Transue, C-Bimeasures and their integral extensions, Ann. of Math. 64(1956), 480-504.
11. N. Towghi, Stochastic integration of processes with finite generalized variations, Ann. Probab., to appear.
12. K. Ylinen, On vector bimeasures, Ann. Mat. Pura Appl. 117(1978), 115-138.

## Department of Mathematics <br> University of Connecticut <br> Storrs, Connecticut 06269 <br> U.S.A.


[^0]:    Received by the editors January 14, 1994; revised December 15, 1994.
    AMS subject classification: Primary: 28A35, 46E27; secondary: 26D15.
    (c) Canadian Mathematical Society 1995.

