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A CHARACTERISTIC SUBGROUP OF 
^-STABLE GROUPS 

ZVI ARAD 

1. I n t r o d u c t i o n . All groups in this paper are assumed to be finite. 

Let G be a group with op(G) 9e 1 which is p-constrained and p-stable, p odd. 
If P is an Sp-subgroup of G, then by Glaubermaris Theorem, [3, 8.2.11], 

G = Op,(G)NG(ZJ(P)). 

In particular, if Ov>(G) = 1, then ZJ{P) < G. 

The object of this paper is to generalize the above result by replacing the 
prime p by a set of odd primes IT. 

We obtain the following result: 

T H E O R E M A. Let G be a w-stable DT
N group, where ir is a set of primes. Assume 

that F(G) is Abelian or 2 Q IT. Let K be an S^-subgroup of G. If CG(0,c(G)) Ç 
Or(G), thenZJ(K) char G. 

Note. If \K\ is odd, then ZJ(K) ^ 1 by [1, Theorem 1]. 

Some related results were obtained by Mann in [7]. 

COROLLARY. Let G be a ir-solvable group, where 2, 3 $ T. Let K be an 5^-
subgroup of G and assume that 0T'(G) = 1. Then ZJ{K) char G. 

T h e same is t rue if we replace the assumption tha t 3 $ TV by the assumption 
t h a t G has an Abelian vSVsubgroup, by a result of Glauberman and the au thor 
[1, Theorem 2(c)] . 

Our notat ion is s tandard and is taken mainly from [3]. In particular, let G be 
a group, then F(G) denotes the Fitting subgroup of G and [A, B, C] denotes the 
triple commutator [[A, B], C] of three subgroups A, B, C of G. Moreover, 
d{G) is the maximum of the orders of the Abelian subgroups of G. Let A (G) 
be the set of all Abelian subgroups of order d(G) in G. Then, as in [3], J{G) is 
the subgroup of G generated by A(G), t ha t is, the Thompson subgroup of G. 

Following Wielandt we consider the following s ta tements about a group G. 
ET: G has an S^-subgroup. 
CT: G has an ST-subgroup and any two such subgroups are conjugate. 
Dv: G satisfies Cv and every -K-subgroup of G is contained in an S^-subgroup. 
DV

N: G and every normal subgroup of G satisfy Dx. 
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We say that G is a ir-stable group if it satisfies the following condition: 

Let K be an arbitrary TT-sub group of G. Let A be an arbitrary TT-sub group of 
NG(K). Then, if [K, A, A] = 1, we have 

ACG(K)/CG{K) C 0r(No(K)/Co(K)). 
The author wishes to express his gratitude to his dissertation advisor, 

Professor M. Herzog, for his devoted guidance and encouragement. 

2. Some propert ies of -4(G). The following two basic results were proved 
in [1]: 

THEOREM 2.1 [1, Proposition 1]. Suppose G is a group, A £ -4(G), B is a 
nilpotent subgroup of G, and A normalizes B. Assume that B has an Abelian 
Si-subgroup. Assume also that either \A\ is odd or B is Abelian. Then AB is 
nilpotent. 

THEOREM 2.2 [1, Theorem 2]. Suppose T is a set of primes, G is a finite 
w-solvable group, and K is an S^-subgroup of G. Assume that G has an Abelian 
Si-subgroup and that 0T>(G) = 1. Then: 

(a) 02(G) = 02(ZJ(G)) = 02(ZJ(K)) = 02(K); 
(b) if2(£w, then for every p Ç TT - {3} and A Ç A(K), Op(A) C Op(G); 
(c) if 2 £ TT, then ZJ(K) <] G; and 
(d) if 2 g 7T, then the prime divisors ofd(K),of \ZJ(K) |, and of \ F(G) \ coincide. 

Following the proof of [3, Lemma 8.2.2], we obtain: 

LEMMA 2.3. Let G be a DT-group and let K be an ST-subgroup of G. Then we 
have: 

(i) If R is a subgroup of K which contains an element of A(K), then A(R) Ç 
A(K) andJ(R) QJ(K). 

(ii) If Q is an Sv-subgroup of G containing J(K), then J(Q) = J(K). 
(iii) IfQ = Kx,xe G, then J(Q) = J(K)X. 
(iv) J(K) is characteristic in any ir-subgroup of G in which it lies. 

LEMMA 2.4. If A is an Abelian subgroup of G, and [x, A] is Abelian for x G G, 
then [x, a, b] = [x, b, a] for every a, b 6 A. 

Proof. In general [xy, z] = [x, z][x, z, y][y, z]. Since A is Abelian [xb, a] = 
[x, a][x, a, b] and [xa, b] = [x, b][x, b, a]. Thus, 

[x, b, a]-1[x, a, b] = [xa, b]~x[x, b][x, a~\~l[xb, a] = [b, xa][a, x][x, b][xb, a] 

as [x, A] is Abelian. Therefore, 

[x, b, a]-1[x, a, b] = b~la~lx~lbxaa~lx~laxx~lb~la~lxba — 1, 

as A is Abelian. 

Remark. Following the proofs of [3, Lemma 8.2.3 and Theorem 8.2.4] and 
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using Lemma 2.4 instead of [3, Lemma 2.2.5(i)] in the proof of [3, Theorem 
8.2.4], we generalize these results by replacing the ^-group P by an arbitrary 
group G. 

Now, using Theorem 2.1 we can generalize the Thompson Replacement 
[3, Theorem 8.2.5]: 

THEOREM 2.5. Let A £ A (G) and let B be an Abelian subgroup of G. Assume 
A normalizes B, but B does not normalize A. Then there exists an element A* in 
A(G) with the following properties: 

(i) A r\B CA* H B; 
(ii) A* normalizes A. 

Proof. Set N = NB (A ) ; then B < AB, N <\ B and N C B by our hypothesis. 
Since by Theorem 2.1 B/N H Z(AB/N) ^ 1, we can choose x £ B - N so that 
its image lies in Z{AB/N). Then [x,A] C N. Setting M = [x, A], we have that 
M is Abelian as N C B. Therefore A* = MCA(M) £A(G), by the generalized 
Theorem 8.2.4 of [3] (see our remark). Now M C N C NG(A) and CA(M) Ç 
NG(A), hence A* Q NG(A). Furthermore, A C\ B ^ CG{x) C\ CG{A), so 
A C\ B Ç A*. On the other hand, M = [x, A] £ A as x £ N, so A H B C 
Af (̂ 4 n ^ ) Ç i * n 5 a s ¥ Ç i * n ^ completing the proof. 

As a corollary, we have 

LEMMA 2.6. Let B be an Abelian normal subgroup of G. Then there exists an 
element i G i ( G ) such that B Ç NG(A). 

Let G be a group and let A and B be subgroups of G. We define inductively: 

[B, A, 0] = B and [B, A, i] = [[B, A, i - 1], A] 

for i > 0. 
Following the proof of [3, Theorem 8.2.7], with small changes, and using all 

the above results we obtain: 

THEOREM 2.7. Let G be a group with B < G, [B, B, B] = 1 and B' Q ZJ{G) ; 
assume also that there exists an integer n and A G A (G) such that [B, A, n] is 
Abelian, and [A, B]' is of odd order. Suppose that B ÇË NG(A). Then there exists 
an element A* Ç A (G) with the following properties: 

(i) A H B C A* H B; 
(ii) [̂ 4*, BY has odd order; 
(iii) A* ^NG(A); 
(iv) [B, A*y n] is Abelian. 

As a corollary we have: 

COROLLARY 2.8. Let G be a group with B < G, [B, B, B] = 1 and W Q ZJ(G) ; 
and assume that there exists an integer n and A Ç A (G) such that [B> A, n] is 
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Abelian and [A, E]' is of odd order. Assume also that B (£ NG(A). Then there 
exists an element A* £ A (G) so that B C NG(A*). 

3. The main results. It is well-known that if G is a DV
N group with H a 

normal subgroup of G and K an ST-subgroup of G, then 
(i) H is a D* group with H C\ K an S*-sub group of H. [6, 7.2 Hilfssatz, 

p. 444] 
(ii) G /His a Dv group ivith KH/H an Sw-subgroup of G/H. [6, 7.2 Hilfssatz, 

p. 444] 
(iii) If R is an Sr-subgroup of H, then G = NG(R)H. (Similar to the proof of 

[3, Theorem 1.3.7].) 

By using all the results of Chapter 2, the above result, and following the 
proof of [3, Theorem 8.2.9], we obtain: 

THEOREM 3.1. Let G be a ir-stable DT
N group. Let K be an S^-sub group of G,B a 

nilpotent normal TT-sub group of G, and assume that there exists an integer n such 
that [By A, n] is Abelian for all A Ç A (K), and that [A, B]' is of odd order, for 
all A 6 A (K). Then B C\ ZJ(K) is a normal subgroup of G. 

The next simple Lemma yields Theorem A: 

LEMMA 3.2. Let G be a ir-stable Dx group. Let K be an S^-subgroup of G and A a 
normal Abelian subgroup of K. If CG(Oir(G)) Ç 01C(G)1 then A C F(G). 

Proof. Since G is a DT group, Q = K C\ Ov(G) = Ox(G). By assumption 
[Q,A,A] = 1 and ACG(Q)/CG(Q) ç Ov(G/CG(Q)). Therefore 

AZ(Or(G))/Z(Or(G)) C Or(G/Z(Or(G))) = 0T(G)/Z(Or(G)). 

Thus A Ç OTT(G). Since G is a Dv group and A is a normal abelian subgroup of 
K, we have A C F(Or(G)) ç F (G). 

We now obtain at once. 

THEOREM 3.3. Let G be a ir-stable DV
N group. Let K be an ST-subgroup of G. 

Assume that there exists an integer n such that [F(G)f A, N] is Abelian for all 
A 6 A (K) and that [A, F (G)Y is of odd order for all A G A (K). IfCo(0T (G)) Ç 
0T(G), thenZJ(K) < G. 

Proof. Lemma 3.2 implies that ZJ(K) ç F (G). Taking F (G) as B in 
Theorem 3.1, it follows that ZJ(K) = ZJiK) C\ F(G) is a normal subgroup 
of G, as required. 

We now obtain the 

Proof of Theorem A. If F(G) is Abelian or 2 ? TT then Theorem 2.1 implies 
that there exists an integer n such that [F(G), A, n] is Abelian for every 
A G A(K). Clearly [A, F(G)]' is of odd order, for all A G A(K). Therefore 
Theorem 3.3 implies that ZJ(K) < G. Let a be an automorphism of G, and 
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take g £ G such that Ka = K9. Then (ZJ(K))<* = ZJ(Ka) = ZJ(K°) = 
(ZJ(K)y = ZJ(K). Therefore ZJ(K) char G. 

LEMMA 3.4. Let w be a set of odd primes. Let G be a strongly p-solvable group for 
every p £ IT. Then G is T-Stable. 

Proof. Let K be an arbitrary 7r-subgroup of G, and let A be a 7r-subgroup of 
NG(K) with the property [JC, A, A] = 1. Clearly G is a x-solvable group. 
Hence K is a 7r-solvable subgroup of G. Therefore K is solvable. Let K — 
Z O • • O Kn+i = 1 be an NG(K)-invariant normal series of K such that 
each Kt = Ki/Ki+i, 1 ^ i ^ n, is ^-elementary Abelian for pt £ w, and 
such that NG(K) acts irreducibly on X^. Let Ht be the kernel of the represen­
tation of NG(K) on Kf. Since iV* = NG{K)/Ht acts faithfully and irreducibly 
on Kf as a vector space over Zpi, we have 0vi{Nt) = T, by [3, Theorem 3.1.3]. 
On the other hand, as [K, A, A] = 1, certainly [Kif Âu Ât] = Ï, where Ât 

denotes the image of A in Nt. 
But now if x £ Â i is £ /-element then [3, Theorem 5.3.6], implies that 

x = Ï. If x G Ai is£ relement it follows from [3, Theorem 2.6.6], asOw(iVz) = 
Ï, that x = I, whence 

AQHHtQ NG{Kt) and [2^, (\ Ht] ç i ^ + i 
2 = 1 i = l 

for alH, 1 ^ i S n. [3, Corollary 5.3.3], now yields that 

nHt/CG(K)<\ NG(K)/CG(K) 

is a 7r-group, so ACG(K)/CG(K)) C 0r(NG(K)/Co(K)) and G is x-stable. 

As an immediate corollary we obtain: 

COROLLARY. Let T be a set of odd primes and let G be a ir-solvable group. Assume 
that G has an Abelian S<i-subgroup or 3 (t ir. Assume also that 0X'{G) = 1. Then 
1 C ZJ(K) char G. 

Proof. It is well-known that G is a strongly ^-solvable group for every p £ TT. 
Hence G is 7r-stable by Lemma 3.4. Lemma 1.2.3 of Hall-Higman implies that 
CG(07r(G)) Ç 0v(G). It is well-known that G is a Dv

N group. Therefore Theorem 
A implies that ZJ(K) char G. [1, Theorem 1] implies that ZJ(K) ^ 1. 

Note. As mentioned in the introduction, the first part of the Corollary is 
known from [1, Theorem 2(c)]. 
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