A CHARACTERISTIC SUBGROUP OF π -STABLE GROUPS

ZVI ARAD

1. Introduction. All groups in this paper are assumed to be *finite*.

Let G be a group with $o_p(G) \neq 1$ which is p-constrained and p-stable, p odd. If P is an S_p -subgroup of G, then by Glauberman's Theorem, [3, 8.2.11],

$$G = O_{p'}(G)N_G(ZJ(P)).$$

In particular, if $O_{p'}(G) = 1$, then $ZJ(P) \triangleleft G$.

The object of this paper is to generalize the above result by replacing the prime p by a set of odd primes π .

We obtain the following result:

THEOREM A. Let G be a π -stable D_{π}^{N} group, where π is a set of primes. Assume that F(G) is Abelian or $2 \notin \pi$. Let K be an S_{π} -subgroup of G. If $C_{G}(O_{\pi}(G)) \subseteq O_{\pi}(G)$, then ZJ(K) char G.

Note. If |K| is odd, then $ZJ(K) \neq 1$ by [1, Theorem 1].

Some related results were obtained by Mann in [7].

COROLLARY. Let G be a π -solvable group, where 2, $3 \notin \pi$. Let K be an S_{π} -subgroup of G and assume that $O_{\pi'}(G) = 1$. Then ZJ(K) char G.

The same is true if we replace the assumption that $3 \notin \pi$ by the assumption that G has an Abelian S_2 -subgroup, by a result of Glauberman and the author [1, Theorem 2(c)].

Our notation is standard and is taken mainly from [3]. In particular, let G be a group, then F(G) denotes the *Fitting subgroup* of G and [A, B, C] denotes the *triple commutator* [[A, B], C] of three subgroups A, B, C of G. Moreover, d(G) is the maximum of the orders of the Abelian subgroups of G. Let A(G)be the set of all Abelian subgroups of order d(G) in G. Then, as in [3], J(G) is the subgroup of G generated by A(G), that is, the *Thompson subgroup* of G.

Following Wielandt we consider the following statements about a group G. E_{π} : G has an S_{π} -subgroup.

 C_{π} : G has an S_{π} -subgroup and any two such subgroups are conjugate.

 D_{π} : G satisfies C_{π} and every π -subgroup of G is contained in an S_{π} -subgroup. D_{π}^{N} : G and every normal subgroup of G satisfy D_{π} .

Received June 19, 1973 and in revised form, August 17, 1973. This paper constitutes part of the author's Ph.D. thesis written at Tel-Aviv University under the direction of Professor M. Herzog.

We say that G is a π -stable group if it satisfies the following condition:

Let K be an arbitrary π -subgroup of G. Let A be an arbitrary π -subgroup of $N_G(K)$. Then, if [K, A, A] = 1, we have

 $AC_{G}(K)/C_{G}(K) \subseteq O_{\pi}(N_{G}(K)/C_{G}(K)).$

The author wishes to express his gratitude to his dissertation advisor, Professor M. Herzog, for his devoted guidance and encouragement.

2. Some properties of A(G). The following two basic results were proved in [1]:

THEOREM 2.1 [1, Proposition 1]. Suppose G is a group, $A \in A(G)$, B is a nilpotent subgroup of G, and A normalizes B. Assume that B has an Abelian S_2 -subgroup. Assume also that either |A| is odd or B is Abelian. Then AB is nilpotent.

THEOREM 2.2 [1, Theorem 2]. Suppose π is a set of primes, G is a finite π -solvable group, and K is an S_{π} -subgroup of G. Assume that G has an Abelian S_2 -subgroup and that $O_{\pi'}(G) = 1$. Then:

(a) $O_2(G) = O_2(ZJ(G)) = O_2(ZJ(K)) = O_2(K);$

(b) if $2 \notin \pi$, then for every $p \in \pi - \{3\}$ and $A \in A(K)$, $O_p(A) \subseteq O_p(G)$; (c) if $2 \notin \pi$, then $ZJ(K) \triangleleft G$; and

(d) if $2 \notin \pi$, then the prime divisors of d(K), of |ZJ(K)|, and of |F(G)| coincide.

Following the proof of [3, Lemma 8.2.2], we obtain:

LEMMA 2.3. Let G be a D_{π} -group and let K be an S_{π} -subgroup of G. Then we have:

(i) If R is a subgroup of K which contains an element of A(K), then $A(R) \subseteq A(K)$ and $J(R) \subseteq J(K)$.

(ii) If Q is an S_{π} -subgroup of G containing J(K), then J(Q) = J(K).

(iii) If $Q = K^x$, $x \in G$, then $J(Q) = J(K)^x$.

(iv) J(K) is characteristic in any π -subgroup of G in which it lies.

LEMMA 2.4. If A is an Abelian subgroup of G, and [x, A] is Abelian for $x \in G$, then [x, a, b] = [x, b, a] for every $a, b \in A$.

Proof. In general [xy, z] = [x, z][x, z, y][y, z]. Since A is Abelian [xb, a] = [x, a][x, a, b] and [xa, b] = [x, b][x, b, a]. Thus,

 $[x, b, a]^{-1}[x, a, b] = [xa, b]^{-1}[x, b][x, a]^{-1}[xb, a] = [b, xa][a, x][x, b][xb, a]$

as [x, A] is Abelian. Therefore,

 $[x, b, a]^{-1}[x, a, b] = b^{-1}a^{-1}x^{-1}bxaa^{-1}x^{-1}axx^{-1}b^{-1}a^{-1}xba = 1,$

as A is Abelian.

Remark. Following the proofs of [3, Lemma 8.2.3 and Theorem 8.2.4] and

using Lemma 2.4 instead of [3, Lemma 2.2.5(i)] in the proof of [3, Theorem 8.2.4], we generalize these results by replacing the *p*-group P by an arbitrary group G.

Now, using Theorem 2.1 we can generalize the Thompson Replacement [3, Theorem 8.2.5]:

THEOREM 2.5. Let $A \in A(G)$ and let B be an Abelian subgroup of G. Assume A normalizes B, but B does not normalize A. Then there exists an element A^* in A(G) with the following properties:

(i) $A \cap B \subset A^* \cap B$;

(ii) A* normalizes A.

Proof. Set $N = N_B(A)$; then $B \triangleleft AB, N \triangleleft B$ and $N \subseteq B$ by our hypothesis. Since by Theorem 2.1 $B/N \cap Z(AB/N) \neq 1$, we can choose $x \in B - N$ so that its image lies in Z(AB/N). Then $[x, A] \subseteq N$. Setting M = [x, A], we have that M is Abelian as $N \subseteq B$. Therefore $A^* = MC_A(M) \in A(G)$, by the generalized Theorem 8.2.4 of [3] (see our remark). Now $M \subseteq N \subseteq N_G(A)$ and $C_A(M) \subseteq$ $N_G(A)$, hence $A^* \subseteq N_G(A)$. Furthermore, $A \cap B \subseteq C_G(x) \cap C_G(A)$, so $A \cap B \subseteq A^*$. On the other hand, $M = [x, A] \nsubseteq A$ as $x \notin N$, so $A \cap B \subseteq$ $M(A \cap B) \subseteq A^* \cap B$ as $M \subseteq A^* \cap B$, completing the proof.

As a corollary, we have

LEMMA 2.6. Let B be an Abelian normal subgroup of G. Then there exists an element $A \in A(G)$ such that $B \subseteq N_G(A)$.

Let G be a group and let A and B be subgroups of G. We define inductively:

[B, A, 0] = B and [B, A, i] = [[B, A, i - 1], A]

for i > 0.

Following the proof of [3, Theorem 8.2.7], with small changes, and using all the above results we obtain:

THEOREM 2.7. Let G be a group with $B \triangleleft G$, [B, B, B] = 1 and $B' \subseteq ZJ(G)$; assume also that there exists an integer n and $A \in A(G)$ such that [B, A, n] is Abelian, and [A, B]' is of odd order. Suppose that $B \not\subseteq N_G(A)$. Then there exists an element $A^* \in A(G)$ with the following properties:

(i) $A \cap B \subset A^* \cap B$;

(ii) $[A^*, B]'$ has odd order;

(iii)
$$A^* \subseteq N_G(A);$$

(iv) $[B, A^*, n]$ is Abelian.

As a corollary we have:

COROLLARY 2.8. Let G be a group with $B \triangleleft G$, [B, B, B] = 1 and $B' \subseteq ZJ(G)$; and assume that there exists an integer n and $A \in A(G)$ such that [B, A, n] is

ZVI ARAD

Abelian and [A, B]' is of odd order. Assume also that $B \not\subseteq N_G(A)$. Then there exists an element $A^* \in A(G)$ so that $B \subseteq N_G(A^*)$.

3. The main results. It is well-known that if G is a D_{π}^{N} group with H a normal subgroup of G and K an S_{π} -subgroup of G, then

- (i) H is a D_{π} group with $H \cap K$ an S_{π} -subgroup of H. [6, 7.2 Hilfssatz, p. 444]
- (ii) G/H is a D_{π} group with KH/H an S_{π} -subgroup of G/H. [6, 7.2 Hilfssatz, p. 444]

(iii) If R is an S_{π} -subgroup of H, then $G = N_G(R)H$. (Similar to the proof of [3, Theorem 1.3.7].)

By using all the results of Chapter 2, the above result, and following the proof of [3, Theorem 8.2.9], we obtain:

THEOREM 3.1. Let G be a π -stable D_{π}^{N} group. Let K be an S_{π} -subgroup of G, B a nilpotent normal π -subgroup of G, and assume that there exists an integer n such that [B, A, n] is Abelian for all $A \in A(K)$, and that [A, B]' is of odd order, for all $A \in A(K)$. Then $B \cap ZJ(K)$ is a normal subgroup of G.

The next simple Lemma yields Theorem A:

LEMMA 3.2. Let G be a π -stable D_{π} group. Let K be an S_{π} -subgroup of G and A a normal Abelian subgroup of K. If $C_{G}(O_{\pi}(G)) \subseteq O_{\pi}(G)$, then $A \subseteq F(G)$.

Proof. Since G is a D_{π} group, $Q = K \cap O_{\pi}(G) = O_{\pi}(G)$. By assumption [Q, A, A] = 1 and $AC_{G}(Q)/C_{G}(Q) \subseteq O_{\pi}(G/C_{G}(Q))$. Therefore

 $AZ(O_{\pi}(G))/Z(O_{\pi}(G)) \subseteq O_{\pi}(G/Z(O_{\pi}(G))) = O_{\pi}(G)/Z(O_{\pi}(G)).$

Thus $A \subseteq O_{\pi}(G)$. Since G is a D_{π} group and A is a normal abelian subgroup of K, we have $A \subseteq F(O_{\pi}(G)) \subseteq F(G)$.

We now obtain at once.

THEOREM 3.3. Let G be a π -stable D_{π}^N group. Let K be an S_{π} -subgroup of G. Assume that there exists an integer n such that [F(G), A, N] is Abelian for all $A \in A(K)$ and that [A, F(G)]' is of odd order for all $A \in A(K)$. If $C_G(O_{\pi}(G)) \subseteq O_{\pi}(G)$, then $ZJ(K) \triangleleft G$.

Proof. Lemma 3.2 implies that $ZJ(K) \subseteq F(G)$. Taking F(G) as B in Theorem 3.1, it follows that $ZJ(K) = ZJ(K) \cap F(G)$ is a normal subgroup of G, as required.

We now obtain the

Proof of Theorem A. If F(G) is Abelian or $2 \notin \pi$ then Theorem 2.1 implies that there exists an integer n such that [F(G), A, n] is Abelian for every $A \in A(K)$. Clearly [A, F(G)]' is of odd order, for all $A \in A(K)$. Therefore Theorem 3.3 implies that $ZJ(K) \triangleleft G$. Let α be an automorphism of G, and

take $g \in G$ such that $K^{\alpha} = K^{g}$. Then $(ZJ(K))^{\alpha} = ZJ(K^{\alpha}) = ZJ(K^{g}) = (ZJ(K))^{g} = ZJ(K)$. Therefore ZJ(K) char G.

LEMMA 3.4. Let π be a set of odd primes. Let G be a strongly p-solvable group for every $p \in \pi$. Then G is π -stable.

Proof. Let K be an arbitrary π -subgroup of G, and let A be a π -subgroup of $N_G(K)$ with the property [K, A, A] = 1. Clearly G is a π -solvable group. Hence K is a π -solvable subgroup of G. Therefore K is solvable. Let $K = K_1 \supset \ldots \supset K_{n+1} = 1$ be an $N_G(K)$ -invariant normal series of K such that each $\bar{K}_i = K_i/K_{i+1}$, $1 \leq i \leq n$, is p_i -elementary Abelian for $p_i \in \pi$, and such that $N_G(K)$ acts irreducibly on \bar{K}_i . Let H_i be the kernel of the representation of $N_G(K)$ on \bar{K}_i . Since $\bar{N}_i = N_G(K)/H_i$ acts faithfully and irreducibly on \bar{K}_i as a vector space over Z_{p_i} , we have $O_{p_i}(\bar{N}_i) = \bar{1}$, by [3, Theorem 3.1.3]. On the other hand, as [K, A, A] = 1, certainly $[\bar{K}_i, \bar{A}_i, \bar{A}_i] = \bar{1}$, where \bar{A}_i denotes the image of A in \bar{N}_i .

But now if $\bar{x} \in \bar{A}_i$ is p_i '-element then [3, Theorem 5.3.6], implies that $\bar{x} = \bar{1}$. If $\bar{x} \in \bar{A}_i$ is p_i -element it follows from [3, Theorem 2.6.6], as $O_{v_i}(\bar{N}_i) = \bar{1}$, that $\bar{x} = \bar{1}$, whence

$$A \subseteq \bigcap_{i=1}^{n} H_{i} \subseteq N_{G}(K_{i})$$
 and $[K_{i}, \bigcap_{i=1}^{n} H_{i}] \subseteq K_{i+1}$

for all $i, 1 \leq i \leq n$. [3, Corollary 5.3.3], now yields that

$$\bigcap_{i=1}^{\prime} H_i/C_G(K) \triangleleft N_G(K)/C_G(K)$$

is a π -group, so $AC_G(K)/C_G(K)) \subseteq O_{\pi}(N_G(K)/C_G(K))$ and G is π -stable.

As an immediate corollary we obtain:

COROLLARY. Let π be a set of odd primes and let G be a π -solvable group. Assume that G has an Abelian S₂-subgroup or $3 \notin \pi$. Assume also that $O_{\pi'}(G) = 1$. Then $1 \subset ZJ(K)$ char G.

Proof. It is well-known that G is a strongly p-solvable group for every $p \in \pi$. Hence G is π -stable by Lemma 3.4. Lemma 1.2.3 of Hall-Higman implies that $C_G(O_{\pi}(G)) \subseteq O_{\pi}(G)$. It is well-known that G is a D_{π}^N group. Therefore Theorem A implies that ZJ(K) char G. [1, Theorem 1] implies that $ZJ(K) \neq 1$.

Note. As mentioned in the introduction, the first part of the Corollary is known from [1, Theorem 2(c)].

References

- 1. Z. Arad and G. Glauberman, A characteristic subgroup of a group of odd order (to appear).
- 2. G. Glauberman, A characteristic subgroup of a p-stable group. Can. J. Math. 20 (1968), 1101-1135.

ZVI ARAD

- 3. D. Gorenstein, Finite groups (Harper and Row, New York, 1968).
- 4. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963) 775-1029.
- 5. P. Hall, Theorems like Sylow's, Proc. London Math. Soc. 6 (1956), 286-304.
- 6. B. Huppert, Endliche Gruppen, I (Springer-Verlag, New York, 1967).
- 7. A. Mann, Injectors of finite groups, Israel J. Math. 9 (1971), 554-558.

Tel Aviv University, Tel Aviv, Israel