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Abstract

In this paper we show that a group A is embedded in any finite group G as a subnormal
subgroup with low degree of complication, provided that the automorphism group of A satisfies
a condition depending on some Fitting class (which coincides with completeness for the Fitting
class of all groups). A criterion is given for these groups as to whether they can be embedded
subnormally in the commutator subgroup of some finite group or not.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 35, 20 D 45,
20 D 10.

Introduction

A group is called complete, if its centre is trivial and all automorphisms are inner.
It has been shown earlier [3], that the way these groups are embedded in a group
as subnormal subgroup is rather restricted: if A is directly indecomposable,
complete and subnormal in G, if F is the Fitting subgroup of the normal closure
AG of A, then AG/F is the direct product of all conjugates of AF/F in G/F,
provided A is not isomorphic to the holomorph of some cyclic 3-group (see [3,
Theorem C]).

When considering subnormal embedding, we find that the most common op-
erations are forming normal products and reducing to normal subgroups; the

The second author acknowledges gratefully the hospitality at the Mathematical Institute of
the University of Wiirzburg.
© 1988 Australian Mathematical Society 0263-6115/88 SA2.00 -I- 0.00

389

https://doi.org/10.1017/S1446788700031104 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031104


390 Hermann Heineken and Panagiotis Soules [2]

Fitting classes are by definition the classes of groups which are closed with re-
spect to just these operations. In this note we want to generalize the statement
mentioned before for Fitting classes. We call a group G complete with respect
to a Fitting class # if Z{G) = 1 and certain extensions do not belong to £ (see
below for the exact definition). Then for Fitting classes which are closed with
respect to epimorphic images (called briefly Q-closed) we are able to establish

THEOREM. If A is a directly indecomposable subnormal subgroup of a finite
group G such that

(i) A is complete with respect to a Q-closed Fitting class $,
(ii) A is not isomorphic to the {2,p}-Hall subgroup of the holomorph of some

cyclic p-group, where p = 3 mod 4, a prime,
then

(a) the nilpotent residual A* of A is normal in AG and (A* )G is the direct
product of all conjugates of A* in G,

(b) ifF = F(AG), AF is normal in AG and AG/F is the direct product of all
conjugates of AF/F in G/F.

Closure with respect to epimorphic images is needed here, as a counterexample
will show.

NOTATION. The nilpotent residual G* of a group G is the intersection of all
normal subgroups K of G with nilpotent quotient group G/K. If 5 is a Fitting
class, the ^-radical of G is the product of all normal subgroups of G belonging
to 5. A normal subgroup B of a group G is called big, if every nontrivial normal
subgroup of G intersects B nontrivially.

DEFINITION. The group A is complete with respect to a Fitting class 5, if
the following two conditions are satisfied:

(1) Z(A) = 1;
(2) for every group U with Inn(.A) C [ / C Aut(A), the subgroup Inn(A) is

the ^-radical of U.

All notation yet unexplained should be standard (compare with Huppert [4]
for instance).

All groups considered in this note are finite.
Four lemmas have been crucial for the proof of [3, Theorem C]. We will first

state and prove modifications of these lemmas, which in part are also more
general when applied to the case of the class of all finite groups. The remainder
(Lemmas 5 and 6) is needed to replace Gagen's Theorem [2].
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[3] Subnormal embedding of relatively complete groups 391

LEMMA 1. Suppose that G — AN, where N is a nilpotent normal subgroup
of G and A is a subnormal subgroup of G which is complete with respect to
some given Fitting class # . Then G = AK where K is the hypercentre of G and
AnK = l.

PROOF. If L is a normal subgroup of G which is contained in the hypercentre
of G, then clearly An L is contained in the hypercentre of A which is trivial. It
suffices therefore to show that G is generated by A and the hypercentre of G.

We proceed by induction on the defect of A in G. For the initial step suppose
that A is normal in G. Denote by C the centralizer of A in G. Since A is a normal
subgroup of G, so is C, and A n C = Z{A) = 1. Now G/C = {AC/C)(NC/C),
AG/C = A, and NC/C = N/N D C is nilpotent, and we may assume without
loss of generality C = 1. Assume A ^ G. We choose an element x of N such
that xA is an element of Z(G/A), but x is not in A. This is possible since
G/A = AN IA = N/N n A is nilpotent. The smallest normal subgroup K of
G containing x is contained in N and therefore nilpotent. The intersection
K n A ^ 1 is a normal subgroup of A and belongs therefore to #. Now also
K and KA belong to #, and CKA{A) # 1 since otherwise KA is isomorphic
to a subgroup of Aut(.A) containing Inn(A). But then Co (A) ^ 1, the final
contradiction. So G = AxCG{A) and CG(A) = ACG{A)/A = AN/A = N/AdN
is nilpotent.

It is now clear that CG {A) is the hypercentre of G, and the initial step of the
induction is carried out.

Assume now that the statement is proved for all pairs A, L where A is of
defect n > 1 at most in L, and assume that A is of defect n + 1 in G = AN. To
derive a contradiction, assume further that the hypercentre of G is trivial and A
is different from G.

Let L — AG. By modular law, L = A(NDL), and we may apply the induction
hypothesis for the pair A, L. We obtain L = AT where T is the hypercentre of
A. If T ^ 1, also Z(L) ^ 1, and Z(L) is a normal subgroup of G.

We consider two different cases:
If Z{L) n N = 1, we have Z{L) C Z{LN) = Z(G),
if Z{L) n N ^ 1, we have 1 ^ Z(L) (1 Z{N) C Z(LN) = Z{G). Both cases

lead to a contradiction, so Z(L) = 1 and L = A, that is A is normal in G. This
case we have treated in the initial step, so Lemma 1 is shown.

LEMMA 2. Suppose that A is a subnormal subgroup of the group H such that
the intersection An of all conjugates of A in H is a big normal subgroup of A.
If A is complete with respect to some Fitting class 5, then AH — AK where K
is the hypercentre of AH. If furthermore H belongs to #, and 5 is also Q-closed,
then there is a normal subgroup N in H such that H = AN and A D N = 1.
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PROOF. We begin with the general case and proceed by induction on the

defect d of A in H. Nothing is to be shown if A is normal in G; we consider the

case tha t A is of defect 2 in H. As in the proof of Lemma 1 we may assume tha t

the hypercentre of AH is trivial. If AH is different from A, there is a conjugate

B of A which is different from A. So AB ^ A and AB belongs to the Fit t ing

class 5- By completeness of A with respect to £ we have CAB{A) ^ 1 and so

If D is a big normal subgroup of A, then x~1Dx is a big normal subgroup of

x~xAx. Applying this to D = An yields

for all x in H, and so R = Z(AH). So the hypercentre of AH is nontrivial
contrary to our assumption. This contradiction shows that AH = A if the
centralizer of AH is trivial, and so AH = AK where K is the hypercentre of
AK.

Assume now that the lemma is proved for all pairs A, L where A is of defect
n > 2 at most, and that A is of defect n + 1 in H. Then A is of defect n
in L = AH, and AL = AM, where M is the hypercentre of AL. Since M is
nilpotent and subnormal in H, MH is a nilpotent normal subgroup of H.

If AH D MH ^ 1, there is a collection of conjugates MXi and one conjugate
My such that AH n MyQ ^ 1 and AH n Q = 1, where Q = (..., AP«,...) and
there is, furthermore, an index s such that

AH D Za(A
yMy)Q = 1 while AH D ZS+1(A!'M!')Q ^ i.

But now

D Zs+1(A
yMy)Q] CAHn Zs{AyMy)Q = 1

and Z(Ay) ^ 1, a contradiction. So >!// n M H = 1, which yields A f~l MH = 1,
and application of Lemma 1 yields that MH is contained in the hypercentre
of AH. Now AMH/MH is of defect 2 in H/MH, and our initial step of the
induction shows that

A"/MH = {AMH/MH)H'MH = (AMH/MH)(T/MH)

where T/MH is the hypercentre of AH /MH.
Now AH = AT and T is the hypercentre of AH. If 5 is Q-closed and H

belongs to 5, denote by V a normal subgroup of H containing the hypercentre
T of AH such that A n V = 1 but ,4 D W ^ 1 for all normal subgroups of if
which have V as a proper subgroup. Since # is Q-closed, H/V belongs to $
and has the normal subgroup AV/V = A/(A n V) = A. By maximality of V,
CH/V(AV/V) = 1.
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Now H/V can be mapped faithfully into Aut(^4) such t h a t Inn(v4) is the image
of AV/V, and by relative completeness of A , we have

H/V = AV/V and AV = H.

LEMMA 3. Suppose that there are two normal subgroups K and L of a group
A which is complete with respect to a Fitting class # and K D L = 1. Then there
are two normal subgroups H and J of A such that H fl J = 1 and Zi (A/HJ) —
Z{A/HJ). If 5 is also Q-closed, H and J can be found with Z{A/HJ) = 1.

PROOF. Choose a normal subgroup H of A which is maximal with respect to
containing K and having trivial intersection with L. Once H is chosen, take a
normal subgroup J which is maximal with respect to containing L and having
trivial intersection with H. Assume now Z{A/J) = M/J ^ 1. Then

[A, HnM} = [A,H)n[A,M]CHDJ = 1

and HnM ^ 1 is contained in Z(A), a contradiction. So Z(A/J) = Z{A/H) = 1.
The subgroup {(aH,aJ)\a e A} = R of the direct product D = {A/H) x

{A/J) is known to be isomorphic to A. Let W/HJ = Z2 (A/HJ) and consider

S = {(xH, yJ)\xW = yW, x, y € A}.

If T = {(uff, vJ)\u, v e W) and U = {{rH, sJ)\r, s e HJ), then

S = RTDU and T/U = Z2{D/U).

We deduce that R is subnormal in S. If R is not normal in S, we have a
conjugate V of R in S such that V and R are normal subgroups of VR. Since
5 is a Fitting class, VR belongs to 3". Every conjugation by an element of VR
induces an automorphism of R, by this we define a homomorphism of VR into
Aut(i?) mapping R onto Inn(iZ). Since R is complete relative to #, CVR{R) T̂  1
and CD(R) # 1. If {bH, cJ) belongs to CD{R) we have

(ff, J) = [{bH, cJ), (off, aJ)} = ([6, a]H, [c, a)J) for all a in A

and bH € Z(A/H), cJ € Z(A/J) so (bH, cJ) = (H, J) and CD(R) = 1. This is
a contradiction showing that R is normal in S, and Z2(D/U) = Z(D/U) is now
deduced easily. If 5 is Q-closed, we proceed analogously to obtain that S and
R have to be identical and so Z(D/U) = 1. The corresponding statements for
A/HJ are now immediate.

COROLLARY. If A is complete with respect to a Q-closed Fitting class and di-
rectly irreducible, then A* is no (proper) direct product of A-invariant subgroups.

LEMMA 4. / / (i) A and B are two subnormal subgroups of a group G,

(ii) A* and B* are normal subgroups of G,
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(iii) A and B are directly indecomposable and complete with respect to a Q-
closed Fitting class 5,

then A* = B* or A* (1B* = 1 and A n B is contained in the Fitting subgroup
ofG.

The proof is exactly that of [3, Lemma 4] except that our Lemma 2 is sub-
stituted for [3, Lemma 2]. Remember that A* is a big normal subgroup of A if
Z(A) = 1.

LEMMA 5. If$ is a Q-closed Fitting class and the extension of a cyclic group

of order pn by a cyclic group of order r dividing p—1 that has trivial centre belongs

to $, then also the group T with the following properties belongs to $:

(i) T is the extension of p-group P by a cyclic group Y = (y) of order
dividing r.

(ii) P can be generated by a generating set {x\,..., Xfc} such that y is in the
normalizer of (xi) for all i and the orders of the elements x,- divide pn.

PROOF. We proceed by induction on the nilpotency class c of F . If c = 1
and p is abelian, without loss of generality we may choose Xi such that

P = ( x i ) x ( x 2 ) x ••• x { x k ) .

Then T is isomorphic to a normal subgroup of the direct product of the
quotient groups T/(xi,..., Xi_i, X j + 1 , . . . , xjt) all of which belong to 5- Assume
now that P is of class c = m + 1 and that the lemma is proved whenever P is of
smaller nilpotency class. Consider W = L/Km+2{L) where L is the free product
of k cyclic groups (a*) of order pn and Km+2{L) is the (m + 2)th term of its
lower central series; and denote o,iKm+2{L) by bi.

There is an automorphism of W fixing all of these b, except one, bj, say and
mapping this bj onto some power bj. We take such an automorphism of order
r for every j and call it o-j. We want to show that (dj, W\dj = l,d~1wdj "=
wa>) = Vj belongs to #: Vj is the normal product of W and Uj = (dj, h~1bjh\h €
(&i, . . . , bj-i, bj+i,..., 6fc)) and the normal closure of an element in a nilpotent
group is (abelian or) of lower nilpotency class than the original group. So we
may apply our induction hypothesis for Uj and with Uj also Vj belongs to 5-
The different automorphisms Oj commute with each other, so there is a normal
product of groups Vj, namely

(di,...,dj,...,dk,W\[di,dj] = 1,d~1wdj = w°> for all w € W and all i,j).

Assume now that j / - 1 x t j / = x"* where (uj)r = lmodp™.
There is an automorphism r of W such that b[ = ft"1', and a product g of the

elements di such that g~1hg = 6"\
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There is a normal subgroup R of W such t h a t W/R is isomorphic to P, such
tha t the elements bi are mapped onto the elements Xi. Since y induces in P by
conjugation the automorphism corresponding to tha t induced in W by g, this
isomorphism can be extended and R is invariant under conjugation by g. Now

(g,W)/R~(y,P)=T

and T belongs to #.

LEMMA 6. Suppose that A satisfies the following conditions

(i) A is a directly indecomposable group which is closed with respect to some
Q-closed Fitting class $,

(ii) A* is an abelian p group,
(iii) A/F(A) is abelian of exponent r dividing p — 1,

then A is isomorphic to a Hall subgroup of the holomorph of some cyclic p-group.

PROOF. We deduce from Lemma 3 that A* is not a (proper) direct product
of two .A-invariant subgroups since A is no (proper) direct product. So if a; is an
element of A which does not belong to F(A), conjugation by x induces in A* a
fixedpointfree automorphism.

We obtain

(1) Every p'-Hall subgroup of A is cyclic, its elements induce a power auto-
morphism in A* by conjugation.

Now we may derive from the relative completeness of A that

(2) A/A* is the direct product of a cyclic group (y, A)/A of order r and a
group P/A which is isomorphic to a p-Sylow subgroup of A.ut{A*).

Assume that A* is noncyclic. We may describe A* as a direct product of cyclic
groups ( / i ) , . . . , (/m) in such a way that there is an element in A which conju-
gates fi onto fifi+i- There is an automorphism of A* which is of order r and
which fixed all fi except one, / , say, which is mapped onto some power ff. This
automorphism can be extended to an automorphism of A, we call it a.

Now B = (z, P\z~1gz = g" for all g € P, zr = 1) belongs to the class # since
P is a nilpotent p-group generated by / i , . . . , fm and elements Uj such that

t'/futij = fu for u ^ i,

and a maps all of these elements onto powers of themselves, they are furthermore
of order dividing pn. So B belongs to £ by Lemma 5. Now also

AB = (z, A\yz = zy, gz = zg for g € P)
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is contained in 5 and has trivial centre. Now the completeness of A with respect
to the Fit t ing class 5 leads to a contradiction. We have found

(3) A* is cyclic.
Assume now tha t r and (p — l ) / r are not relatively prime, that is, there is a
prime power qm dividing r such tha t qm+1 divides p - 1 but not r. If X is an
extension of a cyclic group of order p " by a cyclic group of order qm such that
Z(X) — 1, and if S is a group of order q, we consider the wreath product X wr S.

This wreath product contains a subnormal subgroup isomorphic to X'v/rS
which is easily seen to be contained in £, also the base group Xs belongs to JJ.
Since both together generate the wreath product, it is also contained in #. But
there is also a subnormal subgroup Y of XwrS which contains Xs such that
Y/Xs is cyclic of order qm+1. Since qm+1 divides p — 1, the abelian normal
subgroup Xs of Y splits onto the direct product of some F-invariant cyclic
normal subgroups, and since JJ is Q-closed, there are extensions of cyclic groups
of order p " by cyclic groups of order qm which have trivial centre and belong to
5- It is now easy to form an extension of A which is still contained in £ such
that the centralizer of A is trivial, and to derive a contradiction in this case. So

(4) A is isomorphic to a Hall subgroup of Aut(.A*).
Now Lemma 6 is proved by (3) and (4).

PROOF OF THE THEOREM. We will proceed by induction on the defect of
A in G. In the initial step of the induction A is normal in G and the theorem is
trivially true.

We assume now that the theorem has been proved for all pairs (A+,G+)
satisfying the hypothesis with A+ of smaller defect in G+ than that of A in G.
We apply the theorem to the pair (A, AG). Then A* is of defect 2 in AG. We
assume further the existence of a conjugate B = g~x Ag of A such that A* is not
normal in W = (A, B). We plan to show that A is one of the excluded groups
in this case.

We can now follow the proof of Theorem C in [3] in several steps, substituting
our Lemma 3 for [3, Lemma 3], and we obtain

(i) wr = (B*r,
(2) A* is abelian,
(3) {A*)w = (A*,t~lA*t) for some t in B,
(4) A/F{A) is abelian,

(see statements (7), (8), (9) and (10), pages 440-441 of [3]). We deduce from (2)
and our corollary to Lemma 3 that

(5) A* is a p-group for some prime p
and now Z(A) = 1 yields

(6) F(A) is a p-group.
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[9] Subnormal embedding of relatively complete groups 397

It follows that A/F(A) is an abelian group of order prime to p and A/A* —
Q/A* x F{A)/A*, where Q/A* is the p'-Hall subgroup of A/A*. Since A" does
not split into a direct product of yl-invariant subgroups and A/F(A) = Q/A* is
abelian, furthermore A* is selfcentralizing in Q, we have

(7) A/F(A) is cyclic.
By symmetry, B/F(B) is cyclic as well. By induction hypothesis, (A*)w =
(A*,t~1A*t) is the direct product of all iy-conjugate subgroups of A*, so, in
particular, if x is an element of B, x2 leaves invariant A* and t~1A*t. Again by
symmetry

(8) (B*)w = {B*,u~1B*u) for some u in A,
and x2 leaves invariant B* and u~1B*u. By the well known theorem of Wielandt
[5\, {A, B)* = A*B* and so

A*B* = {A*B*)W = {A*)W{B*)W = {A*)w = {B*)w.

Considering the order of A*B* = (A*,t~1A*t) = (B'^^B'u) we obtain
A*C\B* =A*nu~1B*u = l.

Assume now that x2 is not contained in F(B) and of order prime to p. Then
conjugation of B* by x2 is a fixedpointfree automorphism of B*. On the other
hand [[• • • [(B*,u~1B*u),x2] • • -],x2] is contained in B* for suitably high com-
mutators. Since x2 is of order prime to p and u~1B*u is a p-group, this means
that x2 centralizes u~1B*u.

Now x2 induces by conjugation the identity automorphism on A*u~1B*u/A*
and a fixedposintfree automorphism on A*B*/A*, a contradiction, since A*B* =
A*u~lB*u.

This contradiction shows that x2 is the identity element, therefore we have

Application of Lemma 6 shows that A is one of the excluded groups. So if A
does not belong to this class of groups the induction step is successful and A* is
normal in AG. Since no two different conjugates of A* are operator-isomorphic
in AG, the product {A*)G is the direct product of all conjugates of A*. The
uniqueness of this direct product in AG yields also that AG/F is the direct
product of all conjugates of AF/F in G/F, and this proves the theorem.

COUNTEREXAMPLE Let G be generated by a, b, c, d, e, f subject only to

a7 = b7 = c7 = d3 = e3 = f4 = 1,

[a, b] = [b,c] = [c,a] = [[d,e],e] = {[d,e],d] = 1,

d~1ad = a2,d~lbd = b4,[d,c] = 1,

e~1ae = b, e~1be = c, e~1ce = a,

f~laf = a2bc4, f~lbf = ab2c4, f~xcf = a4b4c4.
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This is an extension of an elementary abelian 7-group (a, b, c) of rank three by
the extension of a nonabelian group (d, e) of order 27 and exponent 3 by a cyclic
group (/) of order 4.

The subgroups (a, b, d) and (a2bc4,ab2c4,e) are conjugate subnormal sub-
groups of G. We describe a Fitting class # with respect to which they are
complete. Every element of a solvable group induces by conjugation a linear
mapping in every chief factor; its determinant is an element of the correspond-
ing prime field. The class of all extensions of 7-groups by 3-groups in which for
every element of the group, the product of all these determinants on 7-chief fac-
tors is 1, is a (normal) Fitting class (see Blessenohl and Gaschutz [1, Satz 3.3]).
Now (a, b, d) is complete with respect to this Fitting class. The normal closure
of (a, b, d) in G is (a, b, c, d, e), and statements (a) and (b) of the theorem are not
true. So we see that the Q-closedness of 5 is indispensable in the theorem.

Considering the subnormal embedding in the commutator subgroup of a
group, we obtain the following consequence of our theorem:

CONCLUSION. // A is a directly indecomposable subnormal subgroup of a
finite group G such that

(i) A is complete with respect to a Q-closed Fitting class 5
(ii) lnn(A) is not contained in (Aut(A))' F(lrm(A)),
then A is not contained in G'.

PROOF. If A is isomorphic to the {2,p}-Hall subgroup of the holomorph of
some cyclic p-group, we use an argument by determinants analogous to that in
[3, p. 436] and show that A is not contained in G'. Assume now that A satisfies,
in addition, condition (ii) of the theorem. Then we may use the results of the
theorem: AG/F(AG) is the direct product of the conjugates of AF(AG)/F(AG)
in G/F{AG).

By Lemma 1 we have AF(AG) = AK and A D K — 1, where K is the
hypercentre of AF(AG). Choose a conjugate BL of AK such that BL ^ AK,
B is conjugate to A and L is the hypercentre of BL. Conjugation of BL by
elements of A induce in the quotient group BL/L = B automorphisms of B,
and there is consequently a mapping p of A into Aut(B) with kernel T. Since 5
is Q-closed, Ap = A/T belongs to #, and since A is subnormal in AG, Ap lnn(B)
belongs to $. Since B is complete with respect to 5, we have that Ap belongs to
Inn(B).

Choose any element y of A. Since AG/F(AG) is the direct product of
AF(AG)/F(AG) and its conjugates, conjugation by y will fix all cosets
BF(AG) in BF{AG) = B{F{B)L). We obtain

[BL,y]CF(B)L,
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and there is an integer k such tha t

[[BL, y] ,..., y] is contained in (B* l~l F(B))L.

k times

On the other hand, B* is a normal subgroup of AG and so A n B* is a normal
subgroup of A which is by Lemma 4 nilpotent and has trivial intersection with
A*. Since Z(A) = 1, we obtain that A f~l B* — 1, and there is an integer m such
that

We have found

[[B*,y] ,..., y}CAnB* = l.
m times

[ [ B L , y ] , . . . , y ] Q L
k+m times

and since p maps y onto some inner automorphism of B, this inner automorphism
is induced by some element of F{B). We conclude

A" C F(Inn(B)).

Let U\ = AK, U2, • • • be the set of all conjugates of AK, and denote the hy-
percentre of Ui by V,. Now all Ui/Vi are isomorphic, we fix isomorphisms from
A = U1/V1 to Ui/Vi and call them a{i) taking the identity for a{\). If g is any
element of G, denote by r(g) the mapping of Ui/Vi onto g~1Uig/g~1Vig by g
and TT(<7, ) the induced permutation of the indices of the Ui such that

9~1Uig = f/w(9,o

The product

fig) = 1-1

is an element of Aut(A), it is modulo (Aut(A))' independent of the order of
the factors in the product. So the mapping of g onto /(<7)(Aut(^4))'.F(Inn(.A))
is a homomorphism of G into Aut(A)/(Aut(A))'F(lrm(A)); its kernel contains
the commutator subgroup of G. Now consider an element y of A such that the
inner automorphism induced by y in A is not contained in Aut(A))'F(A)). By
hypothesis such an element y exists. Now r(y), restricted to U\/V\ = AK/K is
not contained in (Aut(A))'F(lnn(A)), while all other a(i)T(y)a(i)~1 belong to
F(lnn(A)) by the argument above. This shows that f(y)(Aut(A))'F(lnn(A)) ^
(Aut(A))'F(lrm(A)), y is not in the kernel of our homomorphism and accordingly
not contained in G'. So A is not contained in G', which was to be shown.
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