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THE ASSOCIATIVE PART OF A CONVERGENCE 
DOMAIN IS INVARIANT 

BY 

JOHN J. SEMBER 

Of special interest in summability theory are those conservative matrices pos
sessing the "mean-value property". If cA={x: Axec} denotes the convergence 
domain of a conservative matrix A, then A has the mean-value property in case, for 
each x in cA, there exists M=M(A, x)>0 such that 

(i) Zi ankxk 
k = l 

< M, Vn,r = 1,2,.., 

This property has been considered by many writers and has been shown, among 
other things, to be equivalent to the requirement that the matrix be associative, 
i.e., for each x in cA, 

(2) (tA)x 
0 0 / 0 0 \ 

fc = l \n = l / 

converges for each sequence {tn} in ^ . The two properties were generalized by 
Wilansky in [1], where he considers the subspaces B and L of cA having the corres
ponding properties. Thus 

B = {xecA: Z , ankxk\ < M(A,x) Vw,r = 1,2,...}; 

(3) 
L = {xecA: (tA)x exists W e ^ } . 

It is shown in [1] that B=L and the question is raised (question III, p. 348) as to 
whether or not L is invariant, i.e., if D is a matrix for which cA=cD, is LA=LD1 
Several conditions (pp. 338-339) are given for which this is so, i.e., for which L can 
be expressed in a form depending only on the FK space cA and not the matrix A. 

The purpose of this note is to point out that L is always invariant and, conse
quently, to answer question III of [1] affirmatively. 

LEMMA. For any matrix A, 

(4) B — \x s cA: \ 2 xkB
k V is a bounded set in cA >-

Proof. The seminomas p generating the FK topology of cA are of three types: 

(i) Pn(x) = \xn\; «=1 ,2 , . . . 

(ii) An(x) = sup 2 ank*k 
r I fc = l 

(iii) q(x) = sup \(Ax)n\ 

;« = 1,2,... 
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If x is in B and we let x{m)=2k=i xkS
k
9 then we need only show that {p(xim))}%=l 

is a bounded set for each of the generating seminorms. If, for example, p—hn for 
some «, then 

sup 

) = sup 
r k 

r 

i Z, ankxk 
\ k = l 

r 

2, ank xk 
= 1 

< sup 
r 

r 

fc = l 
<M, Vm = l ,2, . . 

Similarly ̂ (x(m)) < M if p is of type (i) or (iii). 
Conversely, if {xim)}%=1 is bounded, then q(x(m))<M, m =1 ,2 , . . . for some 

Af>0. However, 

q(xim)) = sup 

sup 
n 

Thus, for each m, n= 1, 2 , . . . , we have 

£ ankxk 

2 ank*km) 

Z, ankxk 
fc = l 

< M, 

and x is in B. 
It follows that L is invariant, since a convergence domain has precisely one FK 

topology. 
Added in Proof. The above problem has been solved independently by Grahame 

Bennett, Distinguished subsets and summability invariants, (to appear). 
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