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Energy transfer in turbulent fluids is non-Gaussian. We quantify non-Gaussian energy
transfer between the atmosphere and bodies of water using a turbulent diffusion operator
coupled with temporally self-affine velocity distributions and a recursive integration
method that produce multifractal measures. The measures serve as input to a system
of moment field equations (derived from Navier–Stokes) that generate and track
high-frequency gravity waves that propagate through the water surface (as a result of the
air–water interactions). The dimension of the support of the air–water turbulence produced
by our methods falls within the range of theory and observation, and correspondingly,
hindcast statistical measures of the water-wave surface such as significant water-wave
height and wave period are well correlated to observational buoy data. Further, our
recursive integration method can be used by spectral resolving phase-averaged models
to interpolate temporal wind data to smaller scales to capture the non-Gaussian behaviour
of the air–water interaction.

Key words: wind-wave interactions, fractals, wave-turbulence interactions

1. Introduction and motivation

The energy spectrum associated with water waves encompasses a vast range of
frequencies. On one end of the spectrum are low-frequency tidal waves generated by the
mutual attraction of the Sun, Moon and Earth while on the other end are high-frequency
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ripples, the periods of which are fractions of a second (see figure 1 in Conroy et al. (2018)).
A significant portion of energy contained within this spectrum resides in a high-frequency
band of water waves generated by air–water interactions known as the wind sea. When
a wind sea is created by a large storm – such as a hurricane – it can wreak havoc
among coastal communities. In total, 210 billion US dollars was spent on the recoveries of
Hurricane Katrina and Superstorm Sandy (e.g. Blake 2013; GSO 2015).

As time progresses into the twenty-first century, the probability of an increase
in the intensity of global tropical cyclones along with their destruction potential is
likely (probability >66 %) (GFDL 2020). A recent report by the World Meteorological
Organization task team (Knutson et al. 2020) also concludes that it is likely that
rainfall rates associated with these cyclones will increase and sea level rise caused by
anthropogenic warming should cause higher inundation levels when tropical cyclones
do occur, which can lead to an increase in coastal community damages (GFDL 2020).
In an effort to adapt to this situation and create coastal communities that are resilient
to hurricane storm surge, researchers and coastal managers are attempting to use
ensemble storm surge studies and real time forecast guidance to gauge how coastal
flood dynamics responds to variations in storm strength, track and duration. Both
approaches can employ hundreds to thousands of storm surge computer simulations
to quantify the risk of a particular storm event. The computer simulations rely on
two distinct mathematical models that share information in terms of stress to quantify
the total storm surge inundation. These models consist of a long wave model that
quantifies storm surge dynamics due to (i) the tides (waves with a period of 12 h
or 24 h) and (ii) waves created by the large pressure gradient at the sea surface associated
with the storm (waves with a period greater than 2.5 min). The long wave model is coupled
to a short wave model (high-frequency gravity water waves with a period between 1 and
30 s), which quantifies the wind sea that forms in conjunction with the long waves.
Advanced short wave models (see WAMDI 1988; Booij, Ris & Holthuijsen 1999;
Tolman 2009; Smit, Janssen & Herbers 2015) can capture a multitude of surface
water-wave phenomena on a wide variety of scales. This complexity, however, comes
at a steep computational cost. ‘Operational’ short wave ocean models typically increase
the computational load by a factor of three for coupled models using an unstructured
mesh (Dietrich et al. 2012), and can run up to 86 times as slow as a structured grid
long wave model (Mellor, Donelan & Oey 2008). Due to the expense of the short wave
component, ensemble storm surge studies routinely disregard (Liberto et al. 2011) or
relax the convergence criteria of the short wave numerical solution (Ning, Emanuel &
Vanmarcke 2014), which can have a negative impact in terms of the reliability of model
results. Beyond danger of inaccuracy during disaster scenarios, these ‘quick’ fixes can
ultimately perpetuate a public distrust in the validity of such computational tools.

The primary goal of this investigation is to leverage the 60-plus years of wind,
water-wave and turbulence research to develop a rigorous framework to quantify the wind
sea in a fashion that is computationally efficient and extendable (in terms of future work)
to incorporate swell and coastal effects. To achieve this goal we focus our efforts on two
main parts: (i) the development of a mathematical model to quantify the generation and
propagation of various conservative quantities (momentum, energy, etc.) of the wind sea
and (ii) the development of a statistical method to quantify the input in terms of the cause
and effect of air–water interactions that transfer energy and grow the wind sea.

The secondary goal is to introduce a recursive integration method that extracts a
measure of nonlinearity of the air–water interaction from observational wind speed data
measured at 10 m above the sea surface, denoted by U10, and uses this measure to
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interpolate U10 to shorter time scales. The measure is known as the Hurst exponent (Hurst
1951, 1955; Mandelbrot 1977) and it is an important measure in terms of quantifying
dependence driven variability of the wind data (see the details provided in § 3, as well
as our companion paper Conroy, Kubatko & Mandli (2021) and Mandelbrot (1977)).
When the Hurst exponent is set to H = 1/2, the water surface is composed of linear
waves. However, numerical findings indicate that for a wind sea created by air–water
interactions the Hurst exponent falls within the bounds 0.33 < H < 0.45 and varies at
a given spatial coordinate in time. The fact that H < 1/2 for the wind sea is significant
because it corresponds to anti-persistent behaviour. Physically, this can be attributed to
vortices that form in the turbulent air–water interaction which store information and give
the flow field a ‘memory’ of the generator of the turbulence. The cyclonic nature of the
vortices leads to the anti-correlated motion and vortex stretching leads to singular regions
of energy dissipation at small scales that have a multifractal (statistical) distribution
(Frisch 1996; Yakhot 2006). Balanced source terms for wave generation in spectral
resolving phase-averaged wave models are a function of U10. It is rare to have access
to observational data for U10 that are observed at the time scales necessary to integrate the
action balance equation in time. Therefore, U10 must be interpolated to smaller time scales.
This is predominantly accomplished via linear interpolation, which does not capture
non-Gaussian behaviour. The recursive integration methods presented in § 3 can be used in
spectral resolving phase-averaged models to capture the non-Gaussian behaviour of U10.
In fact, Cavaleri (2009) draws attention to the fact that phase-averaged water-wave models
typically under-predict peak wave heights and peak wave periods in strong storms unless
‘strong, but effective tuning’ is used. In our companion paper (Conroy et al. 2021) we show
that this effect can be alleviated with our recursive integration methods and we conjecture
that using our recursive integration methods to generate U10 coupled with a source term
such as, for example, the Zakharov–Resio–Pushkarev wind input source term (Zakharov,
Resio & Pushkarev 2017), will help remedy this effect in spectral resolving wave models.
Details for obtaining the numerical code for the recursive integration method can be found
in Appendix A.

1.1. Background
Before we delve into the specifics of the mathematical treatment of our investigation it
seems prudent that we provide the reader with some background information in regard to
how our investigation leverages water-wave research and fits in with existing water-wave
models and theories.

More specifically, our model fits into the phase-averaging classification of water-wave
models that seeks to quantify the bulk movement of the short waves of the sea surface.
Due to the large range of scales (both spatial and temporal) that span water-wave
dynamics (see Salmon 1998) it is impossible to resolve all of the individual wave
trains that comprise the water surface. Phase-averaging models circumvent this issue
by characterizing the water-wave environment in a statistical sense, and make use of a
probability density function to determine the water-wave dynamics that is most likely to
occur at a specific geographic coordinate of interest under a given physical condition.
Many short wave models quantify the water-wave heights and frequencies generated by
air–water interactions by solving an energy balance equation (or action balance equation
if the wind sea forms in the presence of currents). The energy balance equation involves
operators in both geographic space and spectral space, and results in a five-dimensional
equation whose solution is exacerbated by its spectral resolving source term, which is
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a function of atmospheric input, nonlinear wave–wave interactions and dissipation (see
Hasselmann et al. 1973; Janssen 2004).

Rather than solve the action balance equation, we solve a system of balance equations
derived from the Navier–Stokes equations (see Appendix B). These equations preserve
statistical moments of quantities of interest (e.g. momentum, energy, energy flux) of the
short water waves and can be described as moment field equations. The main advantage of
our approach is twofold: (i) the final form of the system of equations we solve to quantify
air–water turbulence consists of conservative hyperbolic partial differential equations
(PDEs) with source terms, which are amenable to advanced discretization methods and
are relatively easy to solve numerically, and (ii) the air–water energy transfer terms allow
for non-Gaussian energy transfer (non-Gaussian loosely means that events in the tails of
the distribution play an important role in the process). In other words, we do not assume
a priori that the stochastic random variables that quantify the turbulent energy of the
atmosphere are Gaussian. Indeed, there are some near-Gaussian features of turbulence but
energy transfer is not one of them. Further, it should be emphasized that near Gaussian
is not synonymous with Gaussian; if the turbulent velocity were truly Gaussian then the
energy flux through the wavenumber k would identically vanish (Frisch 1996).

Due to the fact that the moment field equations consist of moments of the Navier–Stokes
equation we have to deal with the issue of moment closure (each equation for the nth-order
moment involves terms of the (n + 1)th-order moment which means the equations
cannot be solved without some kind of closure scheme, see Friedrich & Peinke (2020),
for example). Previous water-wave investigations make use of the Reynolds-averaged
Navier–Stokes (RANS) equation to quantify air–water turbulence (Janssen 2004). Many of
these investigations used variations of an eddy viscosity mixing length approach to close
the RANS equation. However, these efforts were more focused on investigating critical
layer dynamics and largely did not attempt to track the water waves after they were created
(Janssen 2004).

Because we are concerned with generating and tracking the water waves, we close the
moment field equations with a novel approach that transforms the turbulent diffusion
operator to a wave propagation term. The wave propagation term quantifies energy transfer
between the wind and water in terms of a pulsation – a pulsation in the energy of the
atmosphere creates a corresponding pulsation of energy in the water surface – whether
or not the energy pulsation transferred from the wind to the water surface grows into a
longer wave depends on the strength of the pulsation and the speed of the water wave and
the duration (or fetch) of the wind. More specifically, because we model air and water as
inviscid fluids, if the physical conditions are such that an inflection point exists between
the speed of the wind and water wave then at least one instability exists and the water wave
will grow if the wind continues to blow at the same speed (see Moreland, Saffman & Yuen
1991). Rather than explicitly calculate these instabilities we quantify the probability of an
instability occurring via a parameter that we denote by q, and use this information in a
statistical operator that generates the expected energy pulse in the water surface.

We define the exact quantitative relation connecting the wind velocity to the
corresponding energy pulse (created in the water surface) via the original energy transfer
parameterization of Hasselmann et al. (1975), which takes into account atmospheric input,
nonlinear wave interactions and dissipation, and has been verified by the direct numerical
simulations of Tanaka (2001). It can be noted that Hasselmann’s original nonlinear energy
parameterization is only valid for growing wind seas and is not applicable to swell waves,
and therefore, we limit the current investigation to water waves with a non-dimensional
frequency ν = fmU10/g > 14, where fm is the peak frequency of the water waves, U10 is
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the wind speed measured at 10 m from the water surface and g is acceleration due to
gravity.

The resonance mechanism described above is originally due to Phillips (1957) and Miles
(1957), who both independently conjectured that resonance between the wind and the
water surface generates water waves. Phillips considers a resonance mechanism involving
turbulent pressure fluctuations while the Miles theory takes into account the resonance
between wave induced pressure fluctuations and the free surface of the water (Janssen
2004). The Phillips mechanism leads to a linear growth rate while the Miles mechanism
leads to an exponential growth rate caused by shear flow instability. Recent laboratory
experiments by Liberzon & Shemer (2011) show that wave growth is exponential, however,
these same experiments invalidate some of the consequences of Miles’ theory, although it
has received support from experiments examining longer waves (Janssen 2004).

In this investigation, we assume that the wave growth is exponential, however, we do
not explicitly resolve the shear flow instability mechanism posited by Miles. Instead, we
consider the probability of the likeliness of an instability occurring based on the current
physical state of the atmosphere and body of water and quantify the temporal distribution
of these instabilities. Because we neglect viscosity effects in our model, these instabilities
take the form of singularities.

As in the work of Phillips, we also develop the resonance mechanism in terms of a
reference frame that moves in tandem with the water surface and transfers energy via
pressure and shear stress. Rather than characterize the frame of reference of this energy
transfer (between air and water) with the speed of the stress distribution, however, we
characterize the frame of reference using a speed, ‖u0‖, linked to the flow of energy in
the wind-sea spectrum. Further, unlike Phillips, who assumes that the stress fluctuations
are random, we utilize a formulation such that the characteristic speed of each stress
pulsation depends on the previous stress pulsation, so that all of the turbulent pulsations
are connected to a generating event. In other words, the stress pulsations have a memory
of the event that generated the turbulence.

To illustrate this point, consider the simple example of a laminar fluid flowing past a
dense screen mesh. As the fluid flows past the screen mesh turbulence will be created
and energy dissipation will occur nearly everywhere within the fluid. The turbulence in
this case is nearly space filling (to the extent that the screen mesh is space filling) and the
energy transfer can be quantified (in terms of low-order moments) using the famous theory
of Kolmogorov (1941).

For wind flowing over a body of water the generating event of the turbulence, for
example, could be due to the wind initially flowing over rough topography before flowing
over a rough coastline and then over the body of water. The energy dissipation caused
by these generating events result in a distribution of eddies that is not space filling but
is fractal (Frisch 1996; Mandelbrot 1974); the dimension of the statistical signature of
energy transfer lies between a dimension of 2 and 3. In this case, the turbulence is said to
be intermittent, and Kolmogorov’s 1941 theory is no longer applicable (Yakhot 2006). In
fact, turbulence observed in nature is multifractal (Frisch 1996; Mandelbrot 1998), there
is a spectrum of fractal dimensions associated with a given flow field which it acquires
through interactions with its environment. In the example of the wind flowing over a body
of water, the spectrum of fractal dimensions (in terms of the eddy distribution) results from
the wind’s interaction with the topography, coastline and body of water where each event
injects a different statistical pattern into the flow field. The recursive integration method
we introduce in § 3 is general enough to extract the statistical distribution of energy transfer
from the flow field regardless of the generating event.
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More specifically, we generate multifractal measures of the eddy distribution in the wind
by decomposing observational wind data into a series of duration limited pulses where the
temporal distribution of the wind speed and direction are modelled using a power law.
The characteristic speed/direction of each pulse can change with each duration. The power
law exponent also changes with each pulsation, and measures the extent of the turbulence
associated with each pulse. In particular, a large absolute value of the exponent indicates
a greater probability that an instability will occur and is associated with either injection or
dissipation of energy/momentum at the air–water interface.

It can be noted that when we refer to air–water turbulence we refer to small scale,
high-frequency turbulence where the period of the turbulence is less than the period of the
water waves. In this case the small scale turbulence is so fast that it is always in equilibrium
with the shear flow which generates an instability and transfers energy between the air and
water (Janssen 2004). Large scale turbulence (classified as having a period greater than
the water waves) is excluded from the current investigation.

Due to the fact that wind data are typically presented in hourly averages, and because we
are concerned with small scale turbulence, we introduce a recursive integration procedure
that generates a refined distribution of the wind turbulence for shorter time scales. The
method leverages the fact that the Navier–Stokes equations are invariant under scaling
transformations in the form of self-affine power laws that hold for small viscosity values
(Frisch 1996). Typically, such scaling properties only hold over a range of scales delineated
by an inner cutoff and outer cutoff. The outer cutoff is usually specified in terms of the
integral length scale while the inner cutoff is typically associated with molecular diffusion.
Because of this fact, scaling laws can typically can only be employed over 3–5 decades of
refinement.

The recursive integration method we develop herein proceeds in a similar iterative
fashion as cascade models such as the p model (Meneveau & Sreenivasan 1987) and β

model (Frisch 1996), and was originally inspired by the curdling models of Mandelbrot
(1974), however, there are some important distinctions. In the p model, the probabilities of
a binomial distribution were chosen so as to reproduce the generalized dimensions of the
multifractal spectrum of the dissipation field of several fully developed turbulent flows.
The β model (which was introduced by Mandelbrot (1974) and popularized by Frisch
(1996)) also uses a pre-determined value for β that determines the fractal dimension of
the energy dissipation, and the weighted curdling model of Mandelbrot is typically used
by prescribing the distribution of the weights using a priori considerations.

In our approach, rather than use a priori considerations, we use a conditional probability
and determine the weights based on the current state and previous state of the dynamics of
the wind field. We achieve this by preserving the area and endpoint values of the data over
each time interval that the average wind data are reported, and calculate the characteristic
velocity, ‖u0‖, and power law exponent, q, that defines the velocity distribution. Each
successive iteration is initialized by integrating over a sub-region of the distribution to
determine a new set of averages that are used to determine the velocity distribution over
a shorter duration of time. An important component of our recursive integration concerns
the fact that we are able to cut out temporal regions during the integration process to
produce a fractal support of the measure which falls within the range of observations
with each recursion. This is markedly different than most cascade models that begin
from a uniform measure and require a number of recursions before the fractal measure
of the dissipation falls within the range of observations. In this respect, our recursive
integration procedure can generate what Mandelbrot (1974) refers to as conservative and
non-conservative cascades. The recursive integration method coupled with the source
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terms developed in § 2.1 are the key to capturing the non-Gaussian behaviour of the
energy transfer. Further, we would like to emphasize that the recursive integration method
presented herein is by no means meant to represent a physical mechanism of energy
transfer in a turbulent fluid; it is purely a mathematical construct to interpolate the data
in a non-Gaussian fashion.

The remainder of this paper is organized as follows; in § 2 we introduce the moment field
equations and derive source terms that quantify air–water energy transfer. We close these
source terms in § 3 and introduce our recursive integration method and the corresponding
energy measures. Finally, in § 4 we apply our methods to air–water turbulence over Lake
Erie and measure the fractal dimension of the turbulent energy as well as the generating
and propagating of short water waves over Lake Erie. We compare numerical results to
observations and close the paper with a discussion of conclusions and future work.

2. Moment field equations

Let Ω be a bounded domain in R
3. We track energy associated with the short water waves

generated by air–water interactions within Ω by solving a set of moment field equations,

∂mn

∂t
+ ∇xy ·

(
mnc0 +

n∑
i=0

mn−ici+1

)
= μnΔxymn, n = 0, 1, . . . , N, (2.1)

where c0 is the group speed of the long wave that the short gravity waves are travelling
with, c1 is the speed associated with the short wave group, c2 is the acceleration of the
short wave group, etc., μ is a diffusion coefficient, ∇xy = ∂/∂xî + ∂/∂yĵ, Δxy = ∂2/∂x2 +
∂2/∂y2 and n corresponds to the order of the moment, mn, of the one-dimensional density
(F(x0, k, t)) of the short water waves at the geographic point x0,

mn =
∫ kf

ki

knF(x0, k, t) dk, n = 0, 1, . . . , N. (2.2)

Here, k = ‖k‖ is the magnitude of the water wavenumber vector with mean direction θ̄ and
ki and kf are the low and high wavenumber cutoffs of the wind sea. The mean direction
satisfies the differential equation,

∂θ̄

∂t
= f

(
∂θ̄

∂x
; D(x, t)

)
, (2.3)

where D(x, t) parameterizes the inhomogeneities of the medium of propagation, see
Salmon (1998), for example. It can be noted that D incorporates atmospheric input, fluid
depths, etc.; the ci are coefficients that represent the velocity, acceleration, etc. of the
water-wave group (see Appendix B), and are functions of a dispersion relation,

G(k̄n+1, ω̄n+1) = 0, (2.4)

which relates the angular frequencies (ω̄n+1 = 2πf̄n+1) to the characteristic wavenumbers,
k̄n+1, defined as

k̄n+1 =

∫
kn+1F(x0, k, t) dk∫
knF(x0, k, t) dk

= mn+1

mn
, (2.5)

where the bounds of integration in (2.5) are from ki to kf . The number of moments
preserved in (2.1) is a function of the water-wave dynamics under consideration. In this
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initial investigation, we set N = 1 and solve the system of equations,

∂m0

∂t
+ ∇xy · ((c0 + c1)m0) = μ̃0

∂

∂x

(
∂m0

∂x

)
, (2.6)

∂m1

∂t
+ ∇xy · ((c0 + c1)m1) = μ̃1

∂

∂x

(
∂m1

∂x

)
, (2.7)

∂θ̄

∂t
= D(θ̄, θ̄w, E), (2.8)

where E is energy supplied to the water waves from the atmosphere, θ̄w is the mean
direction of the atmospheric velocity in the boundary layer, m0 is a characteristic quantity
(momentum, energy or energy flux) of the short water-wave group, m1 is a measure of the
representative water wavenumber and μ̃0 and μ̃1 are diffusion coefficients to be defined in
the next subsection. It can be noted that in this work we neglect the high-order wave group
acceleration term (c2)m0 in (2.7) and assume that c0 = 0 (the air–water interactions create
a wind sea in the absence of any ambient current).

2.1. Air–water energy transfer
The physical model described by (2.1) can be enunciated in the following fashion; we
have a set of moment ‘masses’ that characterize the energy of a group of water waves
propagating through a medium at a velocity that depends on the specific properties of
the medium as well as the water-wave group itself. In the case of air–water turbulence,
pressure pulsations in the local atmosphere tend to transfer energy to the moment masses
causing them to deviate from their reference energy level – this is the energy transfer that
we wish to quantify – the scales of the problem, however, render the inner workings of this
process opaque, giving it the appearance of a random process. Classically, this process is
modelled with a diffusive operator that attempts to quantify the potential for a space–time
region to deviate from its current energy configuration due to subscale energy transfer. Let
us leverage this diffusive operator to derive an air–water energy transfer term.

Choosing a reference frame that moves with the velocity of the water-wave group, the
propensity for the moment field to fluctuate from its spectral configuration is

∂mn

∂t
= μ̄nΔxymn, n = 0, 1, (2.9)

where μ̄n is a function of the variance supplied by the atmospheric turbulence. Equation
(2.9) gives the probability that a certain measure of moment mass lies within the interval
[x0 − δx/2, x0 + δx/2] at a given instant in time t. However, we are interested in the
energy transfer along a path that is fixed in space and interval in time, so what we really
require is an expression that gives the probability that a certain measure of moment mass
lies in the interval [ti, tf ] (where tf − ti ≡ l ≡ Δt) at the spatial point x0. In other words,
we need an expression for diffusion in time. We can achieve this through the use of the
wave equation along with a relation due to Kolmogorov. In particular, the wave equation
is

∂2mn

∂t2
= ‖cgf ‖2Δxymn, (2.10)

where ‖cgf ‖ is the speed of a group of fluctuations in the moment field that results from
pressure pulsations in the atmosphere. It can be noted that in the previous equation and the

917 A39-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

24
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.242


Quantifying air–water turbulence with moment field equations

remainder of this subsection, n = 0, 1. We assume a relation exists between μ̄n and ‖cgf ‖2

so that we can make use of (2.9) and (2.10) to write,

∂mn

∂t
= μ̃nΔxyEn = A∂2En

∂t2
, (2.11)

where we have rewritten mn on the right-hand side of (2.9) and (2.10) as En to emphasize
that this corresponds to moments of the water-wave energy pulsation generated by
pulsations in the wind. We then utilize the idea of probability space–time paths from
No. 9 in Kolmogorov (1992) to rewrite this expression solely as a function of the separation
in time. Specifically, we have

∂mn

∂t
= μ̃nΔxyEn = A∂2En

∂t2
=
∑

i

Ain
dEn

dt
, (2.12)

where the last term follows from the general result presented in § 10 in No. 9 of
Kolmogorov (1992). It can be emphasized that dEn/dt is the change in the local energy
field due to changes in the atmospheric velocity in the boundary layer (or energy transfer)
over a duration limited interval Δt. In other words, dEn/dt represents the energy pulsation
generated in the water by a stress pulsation in the wind. What remains is to determine the
Ank that measure the probability for the water-wave field to pass from state 
j to state 
k
in the local (temporal) neighbourhood under consideration (Kolmogorov 1992). Assuming
that the energy transfer travels with the group velocity of the fluctuation in the moment
field, ‖cgf ‖, we can write

∂mn

∂t
= μ̃n

(
∂2En

∂x2 + ∂2En

∂y2

)
= μ̃n

(
d2En

(cgfx
dt)2 + d2En

(cgfy
dt)2

)
, (2.13)

∂mn

∂t
= μ̃n

‖cgf ‖2 cos2 θ

d2En

dt2
+ μ̃n

‖cgf ‖2 sin2 θ

d2En

dt2
. (2.14)

Substitution of the general relation (74) in No. 9 of Kolmogorov (1992) gives,

∂mn

∂t
= μ̃n

‖cgf ‖2 cos2 θ

(∑
Axn

dEn

dt

)
+ μ̃n

‖cgf ‖2 sin2 θ

(∑
Ayn

dEn

dt

)
. (2.15)

For expression (2.15) to hold true, we must set∑
Axn = Cn

2μ̃n
‖cgf ‖2 cos2 θ, (2.16)

∑
Ayn = Cn

2μ̃n
‖cgf ‖2 sin2 θ, (2.17)

where the Cn terms relate ∂mn/∂t to dE/dt. The final air–sea transfer source terms (Sn)
are,

Sn =
∑

Ain
dEn

dt
, (2.18)

Sn =
( Cn

2μ̃n
‖cgf ‖2 cos2 θ + Cn

2μ̃n
‖cgf ‖2 sin2 θ

)
dEn

dt
, (2.19)

Sn = Cn

2μ̃n
‖cgf ‖2 dEn

dt
. (2.20)
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The μ̃n term in (2.20) scales the spectral transfer of the local neighbourhood under
consideration and is simply equal to 1/2‖cgf ‖2. The exact value of C0 will depend on the
specific density function being conserved by the moment field equations. For instance, if
the density function quantifies momentum (P = E/cp where cp = ω/k is the phase speed
of the water waves), then, for n = 0, we have,

C0 = 1
‖cpf ‖

, (2.21)

where ‖cpf ‖ is the phase speed of the water-wave pulsation. If the density function
quantifies water-wave energy, then for n = 0, C0 is set to,

C0 = ‖cpf ‖
‖cpf ‖

= 1. (2.22)

Finally, in the case of energy flux we have,

C0 = ‖cpf ‖2

‖cpf ‖
= ‖cpf ‖. (2.23)

Regardless of the probability density quantified by the moment field equations, the C1 term
takes the form,

C1 = ‖cgf ‖
‖cp‖ , (2.24)

which qualitatively is similar to the inverse of the wave age χ10 = cp/U10. The key
difference between expression (2.24) and the inverse wave age involves the fact that
expression (2.24) is written in terms of the speed of the water-wave pulsation generated in
the water surface by the wind rather than being written in terms of the wind speed U10.
Substitution of (2.23) and (2.24) into (2.20), for example, yields the source terms for the
moment field equations that quantify the energy flux transferred from the wind to the water
waves,

S0 = ‖cpf ‖
dE0

dt
, (2.25)

and

S1 =
(‖cgf ‖

‖cp‖
)

dE1

dt
. (2.26)

Here, we emphasize the fact that the dEn/dt terms are explicit functions of the wind speed.
More specifically, the dEn/dt terms are duration limited pulsations in the local energy
field of the water-wave group that result from air–water interactions in the atmospheric
boundary layer and satisfy the energy balance equation of nonlinear energy transfer that
accounts for atmospheric input, nonlinear wave interactions and dissipation as quantified
by Hasselmann et al. (1975). We define these terms as well as the explicit form of the
duration limited wind velocity in the next section.
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Quantifying air–water turbulence with moment field equations

3. The wind-sea generator: air–water interactions

We define the atmospheric turbulence that generates the wind sea by considering the
incompressible Navier–Stokes equations,

∂u
∂t

+ (u · ∇)u = − 1
ρa

∇p + μΔu, (3.1)

where p is the pressure, ρa is the density of air and μ is the fluid viscosity. Rather
than attempt to explicitly solve these equations we leverage scaling properties of (3.1)
to measure the energy transfer associated with the air–sea turbulence. That is, in the limit
μ → 0 the Navier–Stokes equations are invariant under scaling transformations (Frisch
1996),

u → λhu, t → λ1−ht, r → λr, λ > 0. (3.2a–c)

The scaling also holds at small viscosity (see Frisch 1996) if,

μ = λh−1μ, (3.3)

which implies that the dissipation, defined as ε = μ〈(∇u)2〉 (〈·〉 denotes ensemble
averages), scales as,

ε → λ3h−1ε. (3.4)

From this, it follows that the absolute probability of encountering an active region of
turbulence is,

δu ∼
( r

L

)h
, (3.5)

for �η < r 	 L, where �η is a dissipation cutoff, L is the integral length scale and r is a
spatial distance, see Frisch (1996) for more details. It can be noted that scaling exponent
(h) of the Navier–Stokes equation is related to the Hurst exponent (H) via

H = 1
3h + 2

. (3.6)

In the case h ≥ 1/3 energy is conserved, however, if h < 1/3 then the scaling relations are
non-conservative and energy is lost to due to a loss of regularity (Frisch 1996).

The Hurst exponent is important in a statistical context because it measures the extent of
the memory of the process (Mandelbrot 1977). If a process is random and Gaussian then
the variance of the process is connected to the square root of the period and the process is
‘memoryless’; past events have no influence on future events and H = 1/2 (the variance
is tied to the square root operator). To illustrate this point further, imagine we are studying
the time series of a variable with temporal movements that are generated by a process that
is unknown to the observer. Let us denote these movements by BH(t). If the expectation of
the motion is zero for all time t, then the expected variance of the motion over a period T
can be expressed in terms of the Hurst exponent (Mandelbrot 1977),

V[BH(t + T) − BH(t)] = T2H, (3.7)

where V[·] is the expected variance and 0 < H < 1 (Mandelbrot 1977). When H < 1/2
the motion is antipersistent; it has a tendency to return to some past condition, whereas if
H > 1/2 the motion is persistent and a given condition tends to persist for long intervals
of time (Mandelbrot 1977). It can be noted that the graph dimension of the corresponding
time series is DG = 2 − H and is always greater than the topological dimension.
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There is a self-similar trail ((X(t), Y(t)) = f (BH(t))) connected to the graph dimension
that corresponds to the spatial path of the motion and the dimension of this trail is given
by DE = 1/H > DG, and corresponds to the dimension that the trail is embedded in. If the
trail occurs in Cartesian space and ‘fills’ all three dimensions, for instance, then the trail
is said to be space filling. However, DE does not have to be an integer. In the case it is a
non-integer, DE, is known as the fractal dimension. When a process is multifractal there
is a spectrum of fractal dimensions associated with the flow and DE > DG, however, the
relation DE = 1/H no longer holds, see Mandelbrot (1997, 1998) for more details. In this
case the dimension of the self-similar support of the multifractal measure is determined
via other considerations, see § 3.5.3.

It is interesting to note that Kolmogorov (1941) assumes energy interactions are local in
wavenumber space; energy transfer concentrates on a singular set of points with H = 1/3.
Clearly, the motion has a memory of the generating event because H < 1/2 and the set
is also space filling because we have DE = 1/(1/3) = 3. Experiments and observations,
however, tend to point to the fact that energy transfer in a turbulent fluid is not space filling
but is intermittent at small scales (Frisch 1996).

3.1. Distribution of the wind velocity
Rather than utilize the absolute probability given by (3.5) (which is highly dependent on L)
we utilize a conditional probability to generate measures of the velocity and energy transfer
connected to air–water interactions. That is, given the condition that an active region of
turbulence occurs within the period ldη 	 ldε < tl < l0 	 LT (ldη is the molecule length
scale, ldε ≈ 1 × 10−6 and LT is the temporal integral length scale), then we assume that
the local distribution of the atmospheric velocity at the spatial point x0 is temporally
hyperbolic, with magnitude,

‖u‖ = ‖u0‖
[

g
‖u0‖(tl)

]q

, (3.8)

and direction,

θw = θ0

[
ωθ

θ0
(tl)
]Υ

, (3.9)

where tl is the local time, g is acceleration due to gravity, (‖u0‖, θ0) are local constants
and ωθ is the minimum turning frequency of the characteristic reference velocity (u0),

u0 = ‖u0‖eiθ0, (3.10)

i.e. the representative velocity of the large scale flow field of the space–time region under
consideration. It can be noted that the exponents (q, Υ ) quantify the amount of change
(from the reference velocity field u0) that u undergoes over the time interval l0 − ldε

(if q = 0 and Υ = 0 then u = u0). For a given time series the global distribution of the
atmospheric turbulent velocity consists of the union of all the local regions used to pave
the temporal velocity curve, i.e.

ul =
N⋃

j=1

u( j) =
N⋃

j=1

{‖u( j)‖ eiθ( j)
w }, (3.11)

where the magnitude ‖u( j)‖ and direction θ
( j)
w are functions of the spatial coordinate x0

and global time t, and N is the total number of local regions used to pave the temporal
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Quantifying air–water turbulence with moment field equations

velocity curve. It can be noted that the l attached to ul indicates that the temporal continuity
of the representation of the distribution of the atmospheric velocity depends on the inner
cutoff of the kernel. More specifically, we define a temporal region R( j) located at the
geographical coordinate x0 of height,

uε(x0, l0) = sup
l∈Lε(l)

‖u( j)‖ − inf
l∈Lε(l)

‖u( j)‖, (3.12)

and length,

Lε = [ldε , l0]. (3.13)

Each R( j) is a local reference frame that wholly contains the dynamic perturbations of the
flow field in the time interval l0 (at the point x0). Embedded within each R( j) is a cut out
region ]ldε , ld[ where functions (3.8) and (3.9) are no longer valid. This region corresponds
to a measure of uncertainty in terms of the measure of the turbulent velocity on the length
scale, l0, and therefore, we would like to make ld as small as possible. We address this
issue in § 3.5.

3.1.1. Determination of characteristic pressure
To complete the description of the atmospheric flow field we need to determine the
pressure field associated with the velocity distribution given by (3.11). In the limit μ → 0
local accelerations along a space–time path in the atmosphere are solely due to pressure
gradients,

Du
Dt

= − 1
ρa

∇p, (3.14)

where D·/(Dt) is the total derivative. In general, the total pressure will vary in both the x
and y directions of the domain,

dp = ∂p
∂x

dx + ∂p
∂y

dy. (3.15)

Substituting (3.14) into (3.15) and rearranging gives

dp = −ρa

(
dx
dt

du + dy
dt

dv

)
. (3.16)

Integrating yields the total pressure,

pT = p0 − ρa

2
(u2 + v2), (3.17)

where p0 is the characteristic reference pressure associated with the large scale flow field.
In general, p0 is a function of the large scale thermodynamic properties of the atmosphere
as well as the topography and boundary of the domain. If we make use of the fact that
u = ‖u( j)‖ cos(θ) and v = ‖u( j)‖ sin(θ) over a given R( j), then (3.17) simplifies to,

p( j)
T = p( j)

0 − ρa

2
‖u( j)‖2, (3.18)

and it becomes apparent that the pressure fluctuations in the local atmosphere with respect
to p0 are equivalent to the kinetic energy of the atmosphere.
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We close the description of the turbulent flow field by relating p( j)
0 to the average

pressure (or expected pressure) p̄( j) over a given R( j). In particular, the average pressure
(p̄( j)) can be expressed in terms of the total pressure (p( j)

T ) as,

p̄( j) = 1
(l0 − ldε )

∫ l0

ldε

p( j)
T dtl = 1

(l0 − ldε )

∫ l0

ldε

⎛
⎜⎜⎜⎝ p( j)

0 − ρa

2
‖u( j)‖2︸ ︷︷ ︸
≡p′( j)

⎞
⎟⎟⎟⎠ dtl. (3.19)

Inserting (3.8) into (3.19) while evaluating the integral yields,

p̄( j) = p( j)
0 − 1

(l0 − ldε )

∫ l0

ldε

ρa

2
‖u( j)‖2 dtl

= p( j)
0 −

⎛
⎝ ρa‖u( j)

0 ‖2

2(2q( j) + 1)

(
g(l0)

‖u( j)
0 ‖

)2q( j)+1

− ρa‖u( j)
0 ‖2

2(2q( j) + 1)

(
g(ldε )

‖u( j)
0 ‖

)2q( j)+1
⎞
⎠ .

(3.20)

Re-arranging the latter expression gives the relation for p( j)
0 in terms of p̄( j),

p( j)
0 = p̄( j) +

⎛
⎝ ρa‖u( j)

0 ‖2

2(2q( j) + 1)

(
g(l0)

‖u( j)
0 ‖

)2q( j)+1

− ρa‖u( j)
0 ‖2

2(2q( j) + 1)

(
g(ldε )

‖u( j)
0 ‖

)2q( j)+1
⎞
⎠ .

(3.21)
The local distribution of the total pressure, p( j)

T = p( j)
0 − p

′( j), over a given R( j) is then

p( j)
T = p̄( j) + ρa

2

⎡
⎣ ‖u( j)

0 ‖2

(2q( j) + 1)

(
g(l0)

‖u( j)
0 ‖

)2q( j)+1

− ρa‖u( j)
0 ‖2

2(2q( j) + 1)

(
g(ldε )

‖u( j)
0 ‖

)2q( j)+1

−‖u( j)
0 ‖2

(
g(tl)

‖u( j)
0 ‖

)2q( j)⎤⎦ , (3.22)

and the global distribution of the total pressure is the union of the pressure kernels
associated with each R( j),

pl =
N⋃

j=1

p( j)
T . (3.23)

3.2. Group velocity of water-wave pulsations
To close the energy transfer source terms, we assume that the water-wave pulsations
generated by the turbulent pressure pulsations of the wind are small amplitude waves.
This allows us to use linear wave theory (see figure 1) to define the group velocity
of the water-wave pulsations created by the wind. We acknowledge that the process
through which momentum and energy is fluxed into the water column is significantly
more complicated than the linear model depicted in figure 1, see Fedorov & Melville
(1998) for a more rigorous theoretical description. However, the goal of this section is
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z = 0

Wind

Mass conservation Momentum balance

z = η 

Kinematic Dynamic

         ∂φ            ∂φ             ∂φ   

u = –– , v = –– , w = ––
     ∂x       ∂y              ∂z

                        ∂φ       

Kinematic: –– = 0
             ∂z     

∂φ       p 

–– + –– + gz = 0
∂t     ρ 

∇2φ = 0

∂φ     ∂η 
–– = –– 
∂z     ∂t   

∂φ                 T                     p 
–– + gη – –– ηxx = ––––
∂t           ρw                

ρw

d

Figure 1. Model problem of linear wave theory.

not to accurately quantify the complicated momentum and energy flux between the air
and water surface, but rather, to show in simple terms how the singularity (or instability)
that is associated with energy transfer arises within our statistical formulation. More
specifically, the mathematical model described in figure 1 can be solved over the local
duration, tl ∈ (ldε , l0), using a velocity potential of the form,

φ = φ̂ cos(ωtl − kx), (3.24)

with amplitude,

φ̂ = ωa
k

tanh−1(kd), (3.25)

and surface elevation,
η = a sin(ωtl − kx), (3.26)

where ρw is the density of water, k = ‖k‖ is the magnitude of the wavenumber, and a =
f (z, t) is a coefficient that ensures the solution, φ(x, z, t), satisfies the top and bottom
boundary conditions. The dispersion relation for the advection of the energy pulsation
created in the water waves by the turbulent pressure of the wind over the duration, tl ∈
(ldε , l0), is determined using the dynamic boundary condition. At time t = 0, before the
fluctuation in the atmospheric pressure begins, the pressure of the water and atmosphere at
the free surface is in balance and is equal to p0. When t > 0, the pressure fluctuation in the
atmosphere begins to transfer energy to the water waves and the pressure at the free surface
dynamically adjusts. Therefore, at z = η the dynamic boundary condition becomes,

∂φ

∂t
+ gη + p

ρw
− T

ρw
ηxx = 0, (3.27)

where T ηxx is the net normal force per unit area that represents the surface tension of
the water. Substitution of φ along with the dynamic pressure (3.18) into (3.27) while
rearranging and simplifying gives the dispersion relation,

ω2 = gk tanh(kd)

(
1 − ρa/2‖u‖2

ρwgη
− T

gρw
k2
)

. (3.28)

Equation (3.28) is singular when η = 0. The singularity arises in our mathematical
formulation from the pressure pulsation in the wind due to its kinetic energy and
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corresponds to a potential instability in the water surface; it is a relic of our simple
mathematical approach. It can be noted that the pressure adjustment at the free surface
is of the order 10−3 and is only relevant when the surface elevation of the water is a
relatively ‘small’ value but larger than an inner cutoff (say, 10−6). Making use of (3.28)
the phase speed of the water wave pulsation is,

‖cpf ‖ = cpf = ω

k
=
√

g
k

tanh(kd)

(
1 − ρa/2‖u‖2

ρwgη
− T

ρw
k2
)

, (3.29)

while an expression for the group velocity can be derived via,

‖cgf ‖ = cgf = ∂ω

∂k
, (3.30)

which ends up being a function of ∂η/∂k. Clearly, the phase speed of the water-wave
pulsation as defined by (3.29) depends on the ratio of kinetic energy of the wind to the
potential energy of the sea surface. Another important consequence that immediately can
be seen is that at the moment tl > 0, just as the energy transfer begins and before an
appreciable change in the velocity of the water pulsation forms (where the singularity
exists in our representation of the wind velocity), the surface elevation of the water waves
is the solution to a partial differential equation involving the pressure and the surface
tension of the free surface,

η − T
gρw

ηxx = −ρa/2‖u‖2

gρw
, (3.31)

which demonstrates the role that the pressure pulsation plays in the initial generation of
the water waves. For instance, substitution of the expression η into the PDE above would
give the dependence of the amplitude of η on the pressure pulsation, which is a function
of time. The initial excitation of the surface elevation will be controlled by the absolute
value of the exponent q in expression (3.8). The larger the absolute value of the exponent,
the larger the jump that will occur in the surface elevation at time tl > 0, see figure 3 in
our companion paper (Conroy et al. 2021) for an illustration of the jumps in ‖u‖. Because
we are not explicitly concerned with resolving the initial water waves of the air–water
transfer (and because the local pressure term is ≈10−3), we ignore the pressure term and
the surface tension term in the calculations of cpf and cgf in our numerical simulations. It
can be noted that the above analysis does not examine the effect of the water surface on the
atmosphere, however, in this investigation we only make use of observational wind data
which already have this effect built in. Finally, there is ample evidence that the water-wave
generation mechanism should make use of the friction wind speed u∗ as opposed to the
wind speed U10 (see Janssen (2004), for example). We utilize U10 in this work simply
because the closure scheme developed by Hasselmann et al. (1975) uses U10.

3.3. Duration limited solutions to the energy balance equation
When the speed of the wind can be represented locally by the power law given by (3.8) then
closed form solutions exist to a parameterized form of the energy balance equation. More
specifically, Hasselmann et al. (1975) derived a rigorous parameterization of the spectral
energy balance that takes into account nonlinear wave–wave interactions, dissipation and
atmospheric input, and has been verified by the direct numerical simulations of Tanaka
(2001). For duration limited wind waves, the non-dimensional representative frequency
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and energy of the corresponding water-wave pulsations can be expressed solely in terms
of the characteristic constants (see Hasselmann et al. (1975) for details),

ν( j) = a( j)

[
g

‖u( j)
0 ‖

(tl)

]ϕ( j)

, ϕ( j) = 3/7(q( j) − 1),

ε( j) = d( j)(ν( j))−10/3,

⎫⎪⎪⎬
⎪⎪⎭ (3.32)

where

a( j) = 16.8(1 + 1.51q( j))3/7,

b( j) = 0.031

(
1 + 1.33q( j)

1 + 1.51q( j)

)1/2

,

⎫⎪⎬
⎪⎭ (3.33)

and

d( j) = b( j)Λ. (3.34)

The shape parameter, Λ, relates the representative frequency, energy and dissipation
parameter, α( j), via

Λ = ε( j)(ν( j))4

α( j) = constant, (3.35)

where Λ = 1.60(±0.02)(10−4) arises from wind-wave observations (Hasselmann et al.
1973) and is directly proportional to the graph dimension of the atmospheric turbulent
velocity in the air–sea boundary layer. The measure of the high-frequency spectral cutoff,
α( j), which parameterizes dissipation, is proportional to the fourth-order moment but can
be expressed in terms of ‖u( j)

0 ‖ and q( j) as,

α( j) = b( j)(ν( j))2/3, (3.36)

where b( j) is given by (3.33), and ν( j) by (3.32). The global distributions of the
representative non-dimensional frequency and energy of the wind sea are,

νl =
N⋃

j=1

ν( j), (3.37)

and

εl =
N⋃

j=1

ε( j), (3.38)

where ν = fmU10/g and ε = Eg2/U4
10. It can be noted that other closure schemes besides

Hasselmann et al. (1975) can be used to define the duration limited pulsations in the water
surface. For instance, the Zakharov–Resio–Pushkarev wind input source term (Zakharov
et al. 2017) can be used as well. When the short water waves are not duration limited
then we can use (3.32) to determine the dE0/dt and dE1/dt terms needed for the air–water
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energy transfer source terms (2.25) and (2.26). Making use of (3.32) and differentiating
with respect to time yields,

dE ( j)
0

dt
=

C0Λ‖u( j)
0 ‖4Q( j)(9q( j) + 5)(151q( j) + 100)3/7

(
g

‖u( j)
0 ‖

(tl)

)(31/7)q( j)−3/7

g2(tl)

⎡
⎣(151q( j) + 100)3/7

(
g

‖u( j)
0 ‖

(tl)

)(3/7)q( j)−3/7
⎤
⎦13/3 ,

(3.39)
and

dE ( j)
1

dt
=

C1Λ‖u( j)
0 ‖3Q( j)(2q( j) + 1)(151q( j) + 100)6/7

(
g

‖u( j)
0 ‖

(tl)

)(27/7)q( j)−6/7

g(tl)

⎡
⎣(151q( j) + 100)3/7

(
g

‖u( j)
0 ‖

(tl)

)(3/7)q( j)−3/7
⎤
⎦13/3 ,

(3.40)
where

Q( j) =
(

133q( j) + 100
151q( j) + 100

)1/2

, (3.41)

and C0 = 5.25(10−4) and C1 = 4.20(10−3). Due to the fact that the pulsations dE0/dt
and dE1/dt correspond to high frequency pulsations that are typically of a much shorter
wavelength than the water depth, the fluctuations travel with a deep water-wave phase
speed,

‖cpf ‖l =
N⋃

j=1

g

2πf ( j)
m

, (3.42)

and group speed,

‖cgf ‖l =
N⋃

j=1

g

4πf ( j)
m

, (3.43)

where we have neglected the high-order term of (3.29). Substitution of (3.40) and (3.43)
into (2.20) reduces the closure of the moment field equations to the calculation of the
characteristic constants that define the distribution of the wind velocity.

3.4. Calculation of characteristic constants

We calculate the set of characteristic constants {‖u( j)
0 ‖, θ( j)

0 , q( j), Υ ( j)}Nj=1 that define
the velocity kernels and the corresponding duration limited water-wave pulsations
through preservation of large scale averages of observational atmospheric velocity data
combined with some reconstruction of the endpoint values of each R( j). We denote these
reconstructed endpoint values as u( j)

i and u( j)
f . For a given R( j) located at x0 of length l0
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Quantifying air–water turbulence with moment field equations

the initial and final speed values are,

‖u( j)(tl = ldε )‖ = ‖u( j)
0 ‖

(
g(ldε )

‖u( j)
0 ‖

)q( j)

= u( j)
i ,

‖u( j)(tl = l0)‖ = ‖u( j)
0 ‖

(
g(l0)

‖u( j)
0 ‖

)q( j)

= u( j)
f .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.44)

Solving for q( j) we have,

q( j) = log

(
u( j)

i

‖u( j)
0 ‖

)/
log

(
g(ldε )

‖u( j)
0 ‖

)
, (3.45)

q( j) = log

⎛
⎝ u( j)

f

‖u( j)
0 ‖

⎞
⎠/ log

(
g(l0)

‖u( j)
0 ‖

)
. (3.46)

Setting these equations equal to one another and simplifying leads to an expression that
can be solved for ‖u( j)

0 ‖,

log

(
u( j)

i

‖u( j)
0 ‖

)
log

(
g(l0)

‖u( j)
0 ‖

)
− log

⎛
⎝ u( j)

f

‖u( j)
0 ‖

⎞
⎠ log

(
g(ldε )

‖u( j)
0 ‖

)
= 0. (3.47)

The exponent q( j) can be determined by preserving large scale averages of observational
wind data, i.e. the area. In particular, the integral of (3.8) is

∫ l0

ldε

‖u( j)
0 ‖

(
g(tl)

‖u( j)
0 ‖

)q( j)

dtl︸ ︷︷ ︸
= (‖u( j)

0 ‖)2

g(q( j) + 1)

(
g(t�)

‖u( j)
0 ‖

)q( j)+1
∣∣∣∣∣∣
l0

ldε

,

ū( j)(l0 − ldε ) =
⎡
⎣ (‖u( j)

0 ‖)2

g(q( j) + 1)

(
g(l0)

‖u( j)
0 ‖

)q( j)+1

− (‖u( j)
0 ‖)2

g(q( j) + 1)

(
g(ldε )

‖u( j)
0 ‖

)q( j)+1
⎤
⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.48)

where tl is the local time, ū( j) is the average wind speed over the region R( j). We solve
(3.47) and (3.48) simultaneously with the help of a Newton solver, see our companion
paper (Conroy et al. 2021) for details.

Here, we emphasize that our solution method for the characteristic constants introduces
a dependency between distributions, where the explicit dependence is a function of the
chosen reconstruction scheme. For instance, if an upwind reconstruction scheme is used
then the distribution u( j) over a given R( j) will be conditioned by past expectations
(ū(j−1)), however, if any other reconstruction scheme is utilized then the distribution will
depend on past and future expectations (ū(j+1)) in a ratio defined by the reconstruction.

Because we are concerned with small scale turbulence a major question concerns the
optimal length of the local R( j) over which the velocity kernels are well defined in terms
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of transferring momentum to the water and in terms of numerical consistency. That is, the
calculation of the characteristic constants depends on time averaged values of velocity and
pressure which in some instances could be defined on a scale whose region of uncertainty,
]ldε , ld[, is too large to correspond to small scale turbulence and too large to consistently
integrate the moment field equations (this corresponds to the case where the numerical
time step necessary to integrate (2.1) is less than the length of the region of uncertainty, see
Conroy et al. (2021) for details). We address this issue and shrink the region of uncertainty
through a recursive integration process to construct a refined distribution of the velocity
of the turbulent medium so that ]ldε , ld[< dt where dt is the time step of the numerical
integrator of (2.1).

3.5. Recursive integration and energy measures
The goal of the recursive integration process is to shrink the region of uncertainty
associated with each velocity distribution u( j) in a manner such that ]ldε , ld[< dt. We
proceed by first subdividing each R( j) into two subregions R( j)

1 and R( j)
2 ; we then

calculate the expected velocity of each subregion and pair these values with the nonlinear
solution method described in Conroy et al. (2021) to create a new set of velocity kernels.
This new set is composed of twice as many R( j) as the original set and adds cut outs
along the space–time path while shrinking the region of uncertainty ]ldε , ldi[ associated
with these cut outs toward zero, see Conroy et al. (2021) for the full algorithm.

3.5.1. Velocity measure
Consider the discrete sequence of lengths associated with a given R( j),

li = l02−i, i = 0, 1, 2, . . . M. (3.49)

The average, or expected speed of each subregion of level i + 1 is connected to the
expectation of level i via

ū( j)
i = 1

Ci+1

Ci+1∑
s=1

w( j)
s ū( j)

s , (3.50)

where Ci+1 is the number of sub-regions of level i + 1 and the w( j)
s correspond to the

measure (or weights) of each subregion s, which are defined as,

w( j)
s = ū( j)

i

ū( j)
s

. (3.51)

The expectation of the parent kernel ū( j)
i is

ū( j)
i = 1

(li − ldε )

∫ li

ldε

‖u( j)
0 ‖

(
g

‖u( j)
0 ‖

tl

)q( j)

dtl, (3.52)

917 A39-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

24
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.242


Quantifying air–water turbulence with moment field equations

and the offspring, ū( j)
s , corresponds to the expected speed of the turbulent velocity over an

interior time interval, ldε < (ls+1 − ls) < li,

ū( j)
s = 1

(ls+1 − ls)

∫ ls+1

ls
‖u( j)

0 ‖
(

g

‖u( j)
0 ‖

tl

)q( j)

dtl,

=
⎡
⎣ ‖u( j)

0 ‖2

g(ls+1 − ls)(q( j) + 1)

(
g

‖u( j)
0 ‖

ls+1

)q( j)+1

− ‖u0‖2

g(ls+1 − ls)(q( j) + 1)

(
g

‖u( j)
0 ‖

ls

)q( j)+1
⎤
⎦ . (3.53)

When dyadic intervals serve as the refinement mechanism, the averages used to initiate the
next level of integration are,

ū( j)
1 = 1

(li/2 − ldi)

∫ li/2

ldi

‖u( j)
0 ‖

(
g

‖u( j)
0 ‖

tl

)q( j)

dtl, (3.54)

and

ū( j)
2 = 1

(li − li/2)

∫ li

li/2
‖u( j)

0 ‖
(

g

‖u( j)
0 ‖

tl

)q( j)

dtl. (3.55)

It can be noted that the interval ]ldε , ldi[ is cut out of the integration. The manner in which
this interval is handled during the recursion process leads to markedly different measures
and dimensions of the support. More specifically, when the length of the cut out is set to a
relatively small number, such as 1 × 10−7 and kept constant with each level of integration,
the sum of the weights equals Ci+1 and the refinement cascade is said to be conservative, or
microcanonical (Mandelbrot 1974). In this case ]ldε , ldi[ is always less than dt, however, the
graph dimension of the resulting velocity distribution will not be in a range that matches
theory and observation until after five levels of recursive integration. The dimension of the
support in this case is approximately equal to the embedding dimension E (the resulting
measure of the turbulence is E-filling). Conversely, if we allow the cut out ]ldε , ldi[ to
vary in length (more specifically to shrink or become thinner) with each integration, then
the sum of the weights only equals Ci+1 on average, local conservation is not maintained
and the recursion is said to be canonical (Mandelbrot 1974). In this scenario, the graph
dimension of the velocity distribution is in the range of observations and theory with each
recursion and we can re-write (3.50) as

ū( j)
i = 1

Ci+1

Ci+1∑
s=1

ū( j)
s + ū( j)

ε̄ , (3.56)

where ū( j)
ε̄ is the value of velocity cut out from the refinement of level i. This cut out

represents a loss of regularity in the velocity field in the spirit of Onsager (1949).
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3.5.2. Energy measures
We measure the distribution of turbulent energy in the wind by defining the following
measure (or weight),

w( j)
Es = (ū( j)

i )2

(ū( j)
s )2

, (3.57)

where ū( j)
i and ū( j)

s correspond to the measures of the parent and offspring kernels
presented in the previous subsection. The weights, wEs, measure the redistribution of
energy across temporal scales,

〈E〉( j)
i = 1

Ci+1

Ci+1∑
s=1

w( j)
Es E ( j)

s , (3.58)

and the total ensemble averages of the energy measure are,

〈E〉l = 1
N

N∑
j=1

〈E〉( j)
M . (3.59)

It can be noted that when definitions (3.52) and (3.53) are substituted into (3.57),
then (3.57) is qualitatively similar to the expressions used in She & Leveque (1994) to
measure the hierarchy of dissipation structures within a turbulent fluid. The energy transfer
moments take the form,

〈En〉l = (l)τ(n)+1, (3.60)

where the exponent function of the moments, τ(n), are defined as in Mandelbrot (1998),

τ(n) = 3
E

Ψ (n) − (n − 1). (3.61)

Here, E is the dimension of the embedding space and the determining function is,

Ψ (n) = logCi+1
〈(w( j)

Es )n〉, (3.62)

where the ensemble average is over the indices s and j (see Mandelbrot (1998) for more
details). It can be noted that the τ -functions (and therefore the moments) remain bounded
below some critical value ncrit. For values greater than ncrit, however, values for the
τ -functions become large and tend toward infinity as n → ∞. This critical n-value serves
as a scale factor for the velocity structure functions (Mandelbrot 1974, 1997),

〈(δu)n〉1/n = lζ(n), where ζ(n) = 1 + τ(n)

ncrit
, (3.63)

and determines the length of the virtual cut out of the velocity in the canonical case at
each scale length li. That is, the slope of the graph of log (ldi) vs log (li) has a slope equal
to ncrit, and we have,

ldi ∝ (li)−ncrit . (3.64)

This relationship was revealed in our numerical studies of the recursive integration, where
we find that ncrit ≈ 5. This is significant because ncrit corresponds to the asymptotically
scaling tail of the distribution of the energy weights of our multifractal measures, the value
of which (ncrit ≈ 5) happens to be equal to the high-frequency tail representing dissipation

917 A39-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

24
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.242


Quantifying air–water turbulence with moment field equations

2 4 6 8

n

ζn

10

Average structure function exponents 2011

12 14 16 180

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 2. Velocity structure function exponents at Lake Erie Buoy 45005 vs experimental data of Anselmet
et al. (1984) and Benzi et al. (1993) and theoretical relation of She & Leveque (1994) (black dashed line).
Diamonds correspond to average structure functions (May–October) of the recursive integration methods, black
crosses (+) correspond to the data of Benzi et al. (1993) and all other markers correspond to data of Anselmet
et al. (1984).

of the water-wave spectrum; see Zakharov et al. (2017), for instance. It can be noted that
we choose the initial inner cutoff, ld0 , of the recursive integration process in a manner
such that the structure function of the velocity distribution lies in the range of theory and
observation, see figures 2 and 3 and our companion paper (Conroy et al. 2021) for details.

3.5.3. Dimension of the support of the measure
The slopes of the τ -functions for n = 1 are (Mandelbrot 1974),

DE = −Eτ ′(1) = −3〈ws logC ws〉 + E. (3.65)

When DE > 0, DE is the intrinsic dimension of the support of the measure ws in
the E−dimension embedding space. In the case E = 3, DE corresponds to the fractal
dimension of the spatial trail of the self-affine measure of the turbulent energy transfer
(Mandelbrot 1974). It is a measure of how the local variation of a function grows as the
characteristic length scale over which the function is defined shrinks towards a relative
zero (inner cutoff) (Mandelbrot 1977, 1985; Dubuc et al. 1989). It can be noted that, in the
turbulence literature, DE typically lies in the range 2.95 ≥ DE ≥ 2.27 (Mandelbrot 1974;
Schertzer & Lovejoy 1985; Frisch 1996).

4. Quantifying air–water turbulence over Lake Erie

We apply our quantitative methods to air–water turbulence over Lake Erie, the tenth largest
lake in the world and the fourth largest lake (by surface area) of the Great Lakes. Lake
Erie commerce generates approximately 10.7 billion US dollars in annual revenue (OEC
2015), and due to its orientation, large surface area and (relatively) shallow water depth, is
extremely susceptible to wind water-wave generation, with seiches known to form on the
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Figure 3. Velocity structure function exponents at Lake Erie Buoy 45005 vs experimental data of Anselmet
et al. (1984) and Benzi et al. (1993) and theoretical relation of She & Leveque (1994) (black dashed line).
Diamonds correspond to average structure functions (May–October) of the recursive integration methods, black
crosses (+) correspond to the data of Benzi et al. (1993) and all other markers correspond to data of Anselmet
et al. (1984).

lake of up to 5 m (NOAA 2016). Tidal ranges on the lake are less than 5 cm, and thus,
the main driver of the circulation of the system is due to gravity water waves generated by
air–water interactions.

4.1. Air–water interactions
To quantify air–water interactions over Lake Erie and generate input data for the moment
field equations, we apply the nonlinear solution method outlined in § 3.4 to observational
atmospheric data obtained from 27 meteorological stations owned and operated by the
National Oceanic and Atmospheric Association (NOAA); the positions of the 27 stations
are illustrated in figure 7 in Conroy et al. (2018). The exponents of the structure functions
of the velocity measure (3.51) are shown in figures 2 and 3 while the dimension of the
support of the energy measures are shown in table 1. In general, our methods produce
structure functions and a fractal embedding dimension, DE, that match theory and analysis
of experimental data. The value of DE lies in the range 2.82 ≥ DE ≥ 2.27 with an average
value DE = 2.58. Analysis of atmospheric boundary layer data puts a lower bound on
the graph dimension of the velocity of DG = 1.56 (Syu & Kirchoff 1993), which in the
uniscaling case gives an embedding dimension DE = 2.27. This is a reflection of the
fact that atmospheric turbulence can be very intermittent. It can be noted that, after four
recursive integrations, the length of each R( j) is Δtl = l3 = 3.75 min, and the average
exponent in the velocity distribution (3.8) is q̄ ≈ 5.0 × 10−4. In other words, on average,
at relatively small scales the energy transfer as measured by q( j) is rather negligible and the
bulk of the energy transfer (at these scales) is due to a few ‘rare’ events (typical minimum
and maximum values of q( j) are ≈ ±0.03 which is ≈ 13 times the standard deviation).
This highlights the intermittency of the turbulence at relatively small scales which is a
phenomenon that is well documented in the literature (Frisch 1996; Hentschel & Procaccia
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Month 2015 DE 2013 DE 2011 DE 2010 DE 2004 DE

May 2.39 2.82 2.64 2.56 2.82
June 2.76 2.80 2.27 2.73 2.80
July 2.75 2.70 2.69 2.67 2.70
August 2.32 2.27 2.28 2.60 2.27
September 2.74 2.30 2.65 2.69 2.33
October 2.76 2.32 2.62 2.77 2.33

Table 1. Fractal dimension (DE) of measure (3.57) using data from NDBC Buoy 45005 (NDBC 2016) on
Lake Erie.

1982, 1983; Schertzer & Lovejoy 1985). See Conroy et al. (2021) for a complete numerical
investigation of the recursive integration process.

4.2. Short water waves on Lake Erie
We perform hindcast simulations of the short water-wave energy over Lake Erie for the
month of August 2011 using the input data detailed in the previous subsection. We begin
by simply using the duration limited relation given by (3.33) coupled with our recursive
integration method and calculate significant wave height over the lake associated with the
velocity distributions (3.8). It can be noted that significant wave height is the average wave
height of the third highest waves of the wind sea, which we define as,

Hs ≈ 4(El)
H, (4.1)

where H = 0.43 is the Hurst exponent calculated via the methods presented in our
companion paper (Conroy et al. 2021) and El is given by (3.32). Results are shown in
figures 4 and 5, where numerical results match the observational significant water-wave
height quantitatively well. In fact, the root-mean-square (r.m.s.) error in this case is 0.132
m and the correlation coefficient is R = 0.91. The agreement between observed and
calculated significant water-wave height using the duration limited kernel (3.32) coupled
with the recursive integration method of § 3.5 is satisfactory, however, it can be noted that
there are certain events in figure 4 that indicate the wave field cannot be fully approximated
by a duration limited kernel. In other words, there is some advection effect that needs to
be included in the model, for instance, see the events from 4 August to 7 August and the
event just before 15 August.

To account for advection of water-wave energy through Lake Erie we solve the moment
field equations and perform hindcast simulations for the months of August 2011 and July
2011. We use a deep water-wave dispersion relation for (2.4),

ω̄2
1 = gk̄1, (4.2)

and set the moment field to quantify the energy flux so that the variance of the sea surface
is calculated via,

σ 2 =
(

m0

‖c1‖
)

, (4.3)

where ‖c1‖ corresponds to the peak phase speed of the water waves and calculate
significant wave height via the approximation Hs ≈ 4

√
σ 2 (Holthuijsen 2007). The

moment field equations are discretized with an unstructured discontinuous Galerkin (DG)
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Figure 4. Significant wave height over Lake Erie at Buoy 45005 (NDBC 2016) during the month of August
2011. Significant wave height in this case was modelled using only the duration limited kernel (3.32) coupled
with our recursive integration methods.
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Figure 5. August 2011 linear regression at Lake Erie Buoy 45005 (NDBC 2016) for modelled results using
the duration limited kernel (3.32) coupled with our recursive integration methods.

finite element method (see Conroy et al. (2021) for details). Model simulations were
performed with P

0 polynomials using a time step dt = 2 min, which on average took
5 min (of CPU time) to execute on an Apple laptop. With dt = 2 min the numerical
results generated by the model are ‘noisy’, just as any physical wave record observed at
such a frequency would be. Therefore, to compare model output to buoy observations we
correspondingly average the model output over hourly time windows. Results are shown
in figures 6–9 and tables 2 and 3.

In general, model output is well correlated to the buoy observations and to the
water wave model known as Simulating WAves Nearshore (SWAN) (SWAN 2015).
SWAN solves the action balance equation and on average took 3 h to execute a monthly
simulation. In fact, the moment field model executes almost 40 times as fast as SWAN
while producing similar error measures in terms of significant wave height – the r.m.s.
error for the moment field model was 0.100 m in August 2011 and 0.095 m for July 2011,
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Figure 6. Hourly averaged significant water-wave height (a) and average water-wave period (b) at NDBC
Buoy 45005 (NDBC 2016) in Lake Erie for August 2011. Note how, qualitatively, both SWAN (blue line) and
the moment field model (red line) are well correlated to the buoy data (black line) in panel (a).
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Figure 7. August 2011 linear regression of the moment field model results at Buoy 45005 (NDBC 2016) in
Lake Erie. Panel (a) shows the regression for significant water-wave height while (b) is average water-wave
period, (Tavg = 1/f̄0) of the moment field model.

while SWAN produced r.m.s. errors of 0.097 and 0.092 m, respectively. It can be noted
that the moment field equations produce lower error measures in terms of matching the
mean and standard deviation of the buoy data as compared to SWAN. However, there are
durations in the water-wave record where both SWAN and the moment field equations
over or under-predict buoy observations (there does not seem to be any discernible bias
in either case). One observation to make note of is the fact that the moment field model
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Figure 9. July 2011 linear regression of the moment field model results at Buoy 45005 (NDBC 2016) in Lake
Erie. Panel (a) shows the regression for significant water-wave height while (b) is average water-wave period,
(Tavg = 1/f̄0) of the moment field model.

slightly misses the timing in the local minimum that occurs in significant wave height on
17 August 2011 and 30 August 2011, an issue that we will explore in future work.

To emphasize the fact that our model captures nonlinear energy transfer we calculate
the graph dimension DG of the pulsation group velocity of the water waves used in the
model source terms at NDBC Buoy 45005. We calculate DG using the method described
in our companion paper (Conroy et al. 2021) where the slope of the best fit line in figure 10
corresponds to the graph dimension of the pulsation velocity, which has a value of 1.57
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July 2011 August 2011

Observed:
Mean (m) 0.299 0.395
Standard deviation (m) 0.213 0.310

MFM SWAN MFM SWAN
Computed:

Mean (m) 0.295 0.349 0.406 0.450
Standard deviation (m) 0.198 0.192 0.299 0.319

Model goodness-of-fit:
Correlation coefficient R 0.850 0.932 0.940 0.968
The r.m.s. error (m) 0.095 0.092 0.100 0.097

Linear regression of computed
values on observed values:

Slope 0.800 0.843 0.870 0.995
Intercept (m) 0.062 0.097 0.066 0.057
Standard error (m) 0.007 0.005 0.006 0.006

Table 2. Statistical comparison of moment field model (MFM) and SWAN with Lake Erie Buoy 45005
(NDBC 2016) for significant water-wave height.

July 2011 August 2011

Observed:
Mean (m) 2.87 3.04
Standard deviation (m) 0.357 0.449

Computed:
Mean (m) 2.88 3.07
Standard deviation (m) 0.359 0.413

Model goodness-of-fit:
Correlation coefficient R 0.601 0.736
The r.m.s. error (m) 0.328 0.280

Linear regression of computed
values on observed values:

Slope 0.600 0.700
Intercept (m) 0.062 1.016
Standard error (m) 0.013 0.015

Table 3. Statistical comparison of moment field model with Lake Erie Buoy 45005 (NDBC 2016) for average
water-wave period.

(H = 0.43) and mirrors the graph dimension of the wind, see Conroy et al. (2021) for more
details.

The correlation between the model output of water-wave period and observed
water-wave period is not as high of a value as the correlation of significant wave height, and
the r.m.s. error is also a higher value for the water-wave period as compared to significant
wave height. This is a common theme among short wave models (Holthuijsen 2007), and
ultimately, high numerical resolution via p-refinement and h-refinement (or adaptation)
needs to be used in spatial areas where the peak frequency is rapidly changing to accurately
resolve the water-wave period (Conroy et al. 2021).
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Figure 10. Least squares approximation of the graph dimension, DG, of the pulsation group velocity of the
water waves, cgf , for August 2011.

5. Conclusions

Energy transfer in turbulent fluids is non-Gaussian. We quantify this non-Gaussian transfer
between wind and water using self-affine velocity distributions and a recursive integration
method that redistributes and concentrates this transfer in time. The resulting energy
measures are multifractal and the dimension of the support of the energy distribution
is consistent with theory and observation. The self-affine velocity distributions satisfy
a parametrized form of the energy balance equation for water waves as well as invariant
properties of the Navier–Stokes equation and are used to construct source terms for a
system of moment field equations that track and propagate the short water waves created
by air–water interactions.

Our methods are accurate and efficient; application to Lake Erie produces embedding
dimensions that lie in the range 2.82 ≥ DE ≥ 2.27, and correspondingly, water-wave
periods and significant water-wave heights are well correlated with observational buoy
data and the water-wave model known as SWAN. Further, our methods execute almost 40
times as quickly as SWAN.

The recursive integration method presented herein can be used by a full spectral model
to interpolate the wind data (U10) in a non-Gaussian fashion. Typical short water-wave
models interpolate the wind input to smaller time scales using linear interpolation, which
does not extend the variability dependence of the observational data to small scales (hourly
averaged data down to minutes or seconds), and can distort the timing of how energy
flows within the water-wave spectrum. In fact, this could be part of the reason why
phase-averaged water-wave models have had trouble capturing peak water-wave heights
and periods in strong storms, as described by Cavaleri (2009).

Future work could follow a number of different paths (for instance, in regards to the
recursive integration), but our ultimate goal is to utilize the model in ensemble storm
surge studies. To fully depict the short water-wave field in this case an additional swell
phase needs to be included in the moment field equations as well as the appropriate
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transfer and dissipation terms. One can argue that swell dissipation is the largest source of
error in phase-averaging water-wave models (Stopa et al. 2016) and we plan to collaborate
with scientists (see Zappa et al. (2008) for instance) to obtain more accurate estimates
of swell decay. In addition to modelling swell and its dissipation, we will need to develop
source terms that account for coastal effects as the short water waves propagate into coastal
regions, which we could base on the work of Holthuijsen, Booij & Herbers (1989). This
work is well under way and future investigations will examine how to consistently transfer
energy between the wind-sea and swell phases, as well as the longer circulation waves that
the short water waves form on.
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Appendix A. Recursive integration computer code

The recursive integration computer code can be obtained at https://doi.org/10.5281/
zenodo.4570654.

Appendix B. Derivation of energy based moment field equations

Consider a constant density flow field described by the Navier–Stokes equations (Salmon
1998),

∂vi

∂t
+ vj

∂vi

∂xj
= − ∂p

∂xi
+ μ̃

∂2vi

∂xj∂xj
, (B1)

∂vi

∂xi
= 0, (B2)

where repeated subscripts imply the summation convention. The moment field equations
can be derived in terms of the energy of the water waves by contracting the momentum
(B1) with vi, namely

∂

∂t

(
1
2
vivi

)
+ ∂

∂xj

(
1
2
vivivj

)
= − ∂

∂xi
(vip) − ν̃

∂

∂xj

(
vi

∂vi

∂xj

)

+ μ̃
∂

∂xj

(
∂

∂xj

(
1
2
vivi

))
, (B3)

which is the energy equation for a constant density fluid (Salmon 1998). Re-arranging the
above expression,

∂

∂t

(
1
2
vivi

)
+ ∂

∂xj

(
1
2
vivivj + ν̃vi

∂vi

∂xj
+ vipδij

)
= μ̃

∂

∂xj

(
∂

∂xj

(
1
2
vivi

))
, (B4)

∂

∂t

(
1
2
vivi

)
+ ∂

∂xj

(
1
2
vivi

(
vj + 2ν̃

vi

∂vi

∂xj
+ 2p

vi
δij

))
= μ̃

∂

∂xj

(
∂

∂xj

(
1
2
vivi

))
, (B5)

while defining,

Φ ≡ 1
2vivi, (B6)
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and setting,

Vj ≡ vj + 2μ̃

vi

∂vi

∂xj
+ 2p

vi
δij, (B7)

we arrive at a balance equation for Φ,

∂Φ

∂t
+ ∂

∂xj
(VjΦ) = μ̃

∂

∂xj

(
∂Φ

∂xj

)
. (B8)

It can be noted that Φ is the energy of the flow field over its entire range of scales (or
wavelengths), and can be represented by the characteristic function,

Φ(�) =
∫ ∞

−∞
F(k) exp(ik�) dk, (B9)

where � is length and k = ‖k‖ is the magnitude of the wave vector with mean direction θ̄

at the geographic point x0 and i = √−1. We quantify spectral fluctuations clustered about
a characteristic energy level, m0,

ΦN ∈ [m0 − δm, m0 + δm], (B10)

by expanding ΦN into a series of moments about the variance of the high-frequency gravity
water waves,

ΦN(�) =
∫ kf

ki

F(k) exp (ik�) dk ≈
N∑

n=0

(mn

n!

)
�n

≈ m0 + (m0k̄1)� + (m1k̄2)
�2

2!
+ · · · + (mN−1k̄N)

�N

N!
, (B11)

where N represents the spectral cutoff associated with the wind sea and k̄n+1 = mn+1/mn
is the representative wavenumber of level n + 1. The corresponding expansion of the
magnitude of the energy transport velocity VN is,

VN(�) = c0 +
N∑

n=1

(∫ kN

k0

kn−1G(k) dk
)

�(n−1)

(n − 1)!

= c0 + c1 + c2(�) + · · · + cN

(
�(N−1)

(N − 1)!

)
, (B12)

where G(k) is the probability density of V , c0 is the speed of the reference frame that the
high-frequency gravity water waves are travelling with (say, a baroclinic current), c1 is
the speed associated with the water-wave group, c2 is the acceleration of the water-wave
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group, etc. Substituting (B11) and (B12) into (B8), we have,

∂

∂t

( N∑
n=0

(mn

n!

)
�n

)
= μ̃

∂

∂xj

(
∂

∂xj

N∑
n=0

(mn

n!

)
�n

)

− ∂

∂xj

⎡
⎣( N∑

n=0

(mn

n!

)
�n

)(
c0 +

N∑
n=1

cn
�(n−1)

(n − 1)!

)
j

⎤
⎦ . (B13)

Evaluating (B13) at � = 0 gives,

∂m0

∂t
+ ∂

∂xj

(
m0

1∑
i=0

cji

)
= μ̃

∂

∂xj

(
∂m0

∂xj

)
. (B14)

Taking the derivative of (B13) with respect to � and setting � = 0 yields m1,

∂m1

∂t
+ ∂

∂xj

(
m1

1∑
i=0

cji + m0cj2

)
= μ̃

∂

∂xj

(
∂m1

∂xj

)
. (B15)

Repeating this process of taking the nth derivative of (B13) and setting � = 0 we arrive at
the moment field equations,

∂mn

∂t
+ ∂

∂xj

(
mncj,0 +

n∑
i=0

mn−icj,i+1

)
= μ̃

∂

∂xj

(
∂mn

∂xj

)
, n = 0, 1, . . . , N, (B16)

a system of N balance equations that are coupled together through the representative
wavenumbers k̄n+1 (the cji coefficients are functions of these wavenumbers), where
c1i = ci(k̄n+1) cos θ̄i and c2i = ci(k̄n+1) sin θ̄i and θ̄0 is the mean direction of the ambient
current and θ̄i (i > 0) is given by,

∂θ̄i

∂t
= f

(
∂θ̄i

∂x
; D(x, t)

)
, (B17)

where D(x, t) parameterizes the inhomogeneities of the medium of propagation, see
Salmon (1998) for example. It can be noted that a similar procedure can be performed to
derive a system of moment field equations for the momentum (in which case the moment
field would be similar to the RANS equation) and for the energy flux (in which case one
would just contract the energy equation with vi).
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