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ON THE DEGREE OF AN ANALYTIC MAP GERM 

ZBIGNIEW DUSZAK 

ABSTRACT. Let/ = (f\,... ,/„): (R ", 0) —• (R ", 0) be a real analytic mapping and 
0 is isolated i n / - 1 (0). The aim of this paper is to describe the degree deg0 / in terms 
of parametrizations of irreducible components of the real analytic curve given by the 
equations/i ( * ) = • • • = fn-\ (JC) = 0 near 0 G R n . 

1. Introduction. Iff = (/Ï,... ,/„): (R",0) —> (R",0) is a smooth mapping and 
0 is isolated in / - 1 (0) , then the degree off at 0 is defined as follows: choose a ball 
Br about O G R " with radius r > 0, so small that/_1(0) H Br = {0} and let 5r be 
its boundary (n — l)-dimensional sphere. Choose an orientation of each copy of Rn. 
The degree off at 0 is the degree of the mapping if / \\f\\ ): Sr—>S\, where the spheres 
are oriented as (n — l)-spheres in Rn (cf. [2],[8]). One can introduce the degree of the 
continuous mapping in this way (cf. [5]). In our paper we consider only analytic mapping, 
but every smooth mapping can be replaced by the analytic one with the same degree 
(cf. [4], Proposition 4.1). The advantage of our approach is, that we can make use of 
the structure of a real analytic curve. We need well-known results about decomposition 
of the analytic curve into irreducible components and their parametrizations around the 
point, which we present in the following proposition: 

PROPOSITION 1.1. Let A be a real analytic curve in the neighbourhood of 0 G Rn, 
0 G A. There exist an arbitrary, small enough neighbourhood Q. of 0 GR n and a positive 
integer k such that: 

(a) A D Q = Ai U • • • U A*, A/ is an analytic curve, irreducible in £1, A; n A7 = { 0} 
/ ^ M J , U € { 1 t}, 

(b) there exist a real number Ô > 0 and parametrizations, i.e. one-to-one, analytic 
homeomorphisms, pi'.l —• A„ p,-(0) = 0 , 7 = {t G R : \t\ < 5} , of every 
irreducible component Ai of A, i — 1 , . . . , k. 

The main result of this paper is the following theorem: 

THEOREM 1.2. Letf = (f\,... ,/„): (Rn, 0) —• (R ", 0) be an analytic mapping such 
that 0 is isolated inf~l(0). Let A = {JC G Q, : f\{x) — • • • = fn-\(x) = 0}, Q, is a 
neighbourhood of0 G R" and let us suppose the following conditions are fulfilled: 

(i) 0 is not isolated in A, 
(ii) for every x G A\ { 0} the differentials: df\(x),..., dfn-\(x) are linearly indepen

dent. 
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ON THE DEGREE OF AN ANALYTIC MAP GERM 271 

Let pf. I —> Ai be a parametrization of the irreducible component A, of the analytic 
curve At i — 1, . . . , k. Then the following formula holds: 

k 
d e £o/ = E deêo[(^ °Pi) àet(df{ oP i t . . . , <//„_, o # , / $ ] . 

We illustrate the above theorem by two simple examples. Let us notice that if 
/ : ( R , 0 ) —» (R,0) is an analytic function, 0 is isolated in/_ 1(0) , then deg0/ = 
(l/2)[sgn/(f+) — sgn/(f")], £~ < 0 < /+ are enough close to 0 ( sgna means the 
signum of a real number a ^ 0). 

EXAMPLE. Le t / = (/i,/>):R2 —• R 2 , / i = x] - x\,f2 = x\ +4. Then A = 
{x] - x\ = 0}, /?(0 = (f3, r2), J/2 = (3x?, 5x\) and by Theorem 1.2 we obtain 

deg0/ = degoif + /10) det j ^ 2 f = 1. 

EXAMPLE. Let/ = (/i , . . . , /„):(Rn ,0)-> (R n , 0 ) , / = j?n - * ? , / = l , . . . , n - 1, 
fn = je,... JC„. By easy calculation we obtain, that A is a collection of 2n~l lines, we find 
their parametrizations and finally, using Theorem 1.2 we have deg0/ = (— l)n~l2n~l. 

Proof of Theorem 1.2 is given in Section 2 of this paper. In Section 3 we consider 
the situation, where A is smooth at 0. In Section 4 we compare deg0/ with the Teissier's 
number 7o(/c) of the complexification/c of/, which is defined as follows: for every / in 
some Zariski open subset of P n~l(C ), 7o(/b ) means the multiplicity of the curve/jr^/C ) 
at 0 (cf. [13],[14],[15]). We prove the following theorem. 

THEOREM 1.3. Iff = (/i,... ,/„): (Rn,0) —• (Rn,0) is a real analytic mapping, and 
0 G Cn w isolated in (fc)~l(0), then | deg0/| < T0(fc). 

As a consequence of the above theorem we obtain the Eisenbud-Levine-Teissier in
equalities (compare [4]). 

At the end of this part we would like to mention two applications of Theorem 1.2. 
The proofs are simple consequence our main theorem and Proposition 2.3 of this paper. 
The first one concerns results obtained by Arnold and Khovansky (cf. [1],[7]). 

EXAMPLE. Let us assume, that the components of the mapping/ = (/!,...,/„): 
Kn —• Rn are homogeneous forms of the degrees m\,...,mn and/_ 1(0) = 0. If 
E?=i(m/ - 1) is odd, then deg0/ = 0. 

The second one concerns polynomial equations and can be obtained also by Bezout's 
theorem. For any polynomial F of n complex variables let F* be the sum of its monomials 
of the greatest degrees. 

EXAMPLE. Let F = (F\y... ,Fn): C
n —• Cn be a polynomial mapping with real 

coefficients and odd degrees and let us put F f — (F[ , . . . , F£). If (F*)"_1 (0) ~ 0, then 
there exists a real solution of the system of equations F\(z) = • • • = Fn(z) — 0. 
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The problem of calculating the degree by reduction to n — 1 dimensional case was 
investigated by Bliznyakov (cf. [3]). 

The author would like to thank Arkadiusz Ploski and Jacek Chadzyhski for many 
helpful hints. 

2. The main theorem. The proof of the main theorem we will precede by two aux
iliary lemmas. By Q, we mean some open, connected neighbourhood of the point 0 G R n. 
If/i,...,/„_i:£2—• R are analytic functions in £2,/i(0) = • • • =/ /I_1(0) = 0, then by A 
we always mean the set { x G Q : f\ (x) = • • • = fn~\(x) = 0} . If A is an analytic curve, 
then by A, / = 1, . . . , / : we mean its irreducible component and by pt : / —• A/ we mean 
a parametrization of A/. 

LEMMA 2.1. Let f \ , . . . ,fn-i '• Q —> R be analytic functions in Q, /i(0) = • • • = 
/n-i(0) — O.IfO is not an isolated point of A, and the differentials df\(x),... ,dfn-\(x) 
are linearly independent for x G A\ {0}, then there exists a real number eo > 0 such 
that for every positive real number e < eo and for every i, i = 1, . . . , k, the following 
conditions hold: 

(a) Aid Se = {ay, a*} = {pi(ty),pi(t*)} where ty < 0 < t+ and the intersection 
is transversal, 

(b) for every of set linearly independent vectors v i , . . . , vn_i of the tangent space 
Ta-Se (Ta+St resp.), such that det(/?((fp, v i , . . . , v„_i)> 0 /det(p|(ft), vi , . . . , 
v„_0 > 0 resp.] we have det(pi(fp,vi,... ,vn_i) < 0, /det(#(ft), V j , . . . , 
v„_i) > Oresp.]. 

PROOF. It is sufficient to prove the above lemma for any irreducible component Az
of the analytic curve A. Then A/D Se = {xe£l:x = pt(t), ||p/(0||2 = e2, t G (-6,8)}. 
Since pt is analytic, then we obtain 

(1) HA-WH2 = (PiitlpM) = aut
2k + •. • + au > 0, /,- G N 

and ||p,-(r)||2 = 0 iff t = 0. By the condition Û/. > 0 we have A, n Se = {/>,•(*/")» A'C*)} 
for f ~ < 0 < ft, enough close to 0, /?/0p ^ Piif\). After differentiating (1) we obtain 

(2) {p'i(t),Pi(t)) = / , V / r l + • • •+*/ ,> 0, /,- G N, 

which implies transversality of the intersection At Pi Se for every t ^ 0, f G (—£, 6 ). The 
condition (a) has been proved. 

One can check, that the equalities (pt(t), vt) = 0 , . . . , (pi(t), vn_i ) = 0, properties of 
Gram's determinant G and (2) imply 

sgndet(/?.(0,vi,...,v„_i) 

= sgn[det(p-(0,vi,...,vn_i) det(p/(0,vi,...,v„_i)] 

= sgn[G(vi,..., Vn-Oipiit^p'iit)) ] 

= sgn t9 t ^ 0. 

It ends the proof. 

Moreover, by equality (2), we have 
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LEMMA2.2. For every / £ { 1,...,&}, deg0(/?/,/?') = 1. 

We can pass now to the proof of our theorem. 

PROOF OF THEOREM 1.2. We proceed in two steps. In the first step we find some 
regular value of the mapping fe :Se —• S\ and in the second step we calculate the degree 
of the mapping/, (cf. [2],[8]). 

First step. We can choose eo > 0 such that, for every e > 0 with e < eo,/ -1(0) H 
#(0, e) = { 0} and Lemma 2.1 holds. So we have 

AHSe = \J{aT,at] 
i=\ 

If we denotes = (0,.. . ,0,1) e S\, s = ( 0 , . . . , 0 , - l ) £ Si, we check, that 
f~l(n) U f~l(s) = { a\, a\,..., a^, a\}. We shall show that aj, a[,..., a^,a\ are pair-
wise different regular points of/, which implies, that n,s £ S\ are regular values of 

U 
One sees easily, that for every a £ AP\ Se — { a\, a\,..., a^, a\} the following holds 

(1) difl 11/11 )(a) = (dfxia)/ \fn(a)\,...,d/n-i(*)/ \fn(a)\, O). 

The point a is a regular point of A, so (1) implies that the kernel ker d(f/ \\f\\ )(a) is 
equal to TaA. Since intersection Se D A is transversal at the point a, then TaSe D TaA = 
{0} and TaSe © TaA — Kn. One can show that d(f/ \\f\\)(a) is an isomorphism of 
Kn/ kerd(f/1|/||)(a) onto Tf(a)S\. Moreover TaSt is isomorphic to 
Rn/ ker d(f/ \\f\\)(a)9 then d(f / \\f\\){a)\TaSt is an isomorphism of TaSe onto TmS\. 
Then (1) implies, that dfe(a) is an isomorphism of TaSe onto Tf(a)S\, which means that a 
is a regular point of/. 

Second step. Assume, that the points n,s G S\ are regular values of/, then 

(2) 2deg0 / = J2(sgndft(ar) + sgn </ /«)) . 

Since vi , . . . ,vn_i G raS€, a = p/(0, * = l,...,fc, and det(/?;(/;), vi , . . . ,vn-i) > Othen 
formula(1) implies, for y £ { 1,. . . , « — 1}, 

(3) (^XaKv,-) = ( 1 / |/n(«)|)«4ri(«), v7-> <4Tn-i(a), v^.O). 

Since/ (a) = • • • =/n_!(a) = 0, we have 

(4) fe(a)= (0,...,0,fn(aj)/\f(a)\. 

Using (3), (4) and the equalities (dfi(a),pf
t(t)) = 0 , . . . , (4f«-i(«)»P/(0) = 0 we calcu

late 

lb{(0||Vn(*)r<tet^^ 
(5) r 

= /„(a) det(#i(a), . . . , J/„_i(a),pfaj) det(^(0, V!,..., v„_i). 
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By the definition of sgndfe(a) and (5) we obtain 

sgndf€(a) = sgndet(/*c(a),d/e(fl)(vi),...,rf/c(a)(vw-i)) 

(6) = sgn[fn(a)fet(fe(a),dft(a)(vx),.. .,df(a)(vn^)) 

x sgndet(^(0,vi, . . . ,vn_i)]. 

Then, Lemma 2.1 (b) and (6) give 

sgndfc(a+) = sgn[/Ufl t)det(d/ ,^ 

sgndMa'r) = - sgn\fn(ay)det(df{(ay\.. . ,d/n-i(*0»/>!-('r))] 

The last equalities and (2) end the proof of Theorem 1.2. 

PROPOSITION 2.3. Letf = (/!,... ,/„): (Rn,0) —• (R, 0) be an analytic mapping 
such that 0 is isolated inf~l(0). If the condition (i) of Theorem 1.2 is not fulfilled, then 
deg0/ = 0- If the condition (i) is fulfilled, then there exists a linear automorphism 
L:Kn —• Kn such that deg0(L of) = 0 or the mapping L of fulfills the assumptions 
of Theorem 1.2. 

PROOF. If the condition (i) of Theorem 1.2 is not fulfilled, then there exists eo > 0, 
such that for every e > 0, e < e0 the mapping/c is not surjective (f~l(0,..., 0,1) = 0). 
It means, that deg0/ = 0. 

If the condition (i) of Theorem 1.2 is fulfilled we can define the mapping 

Cl\f~\0)3x-+fx) = ((fi/fn)(x),...9(fn-i/fn)(xj) e R""1. 

Let, by Sard's theorem, y = ( j i , . . . ,yn-\) £ Rn _ 1 be any regular value of f. The 
analytic mapping Lof = (fx -y\fn,... ,/„-i -yn-\fn,fn)'- (^n , 0) —• (R n, 0) has isolated 
zero in/" 1 (0) and deg0(L of) = deg0/. 

Let Ay be the following, analytic subset of Q: 

Ay = {xeSl: (fi-y]fn)(x) = . . . = (/"„_! -yn-xfn)(x) = 0} . 

If (fl)(y) = 0, then deg0(L of) = 0. 
We may then assume that/" (y) ^ 0 in Q. One can check the following: x G f (y) 

iff x G Ay\ { 0} . It implies, that L of fulfills condition (i) of Theorem 1.2. 
Since y is a regular value off, then d(f\ /fn)(x),..., d(fn-\/fn)(x) are linearly indepen

dent. The differentials d(f\ — y\fn)(x),.. .,d(fn-\ — yn-]fn)(x) are linearly independent, 
since for every i G { 1, . . . , n - 1}, d(ft/fn)(x) = (l/fn(x))d(fi-yfn)(x) if x G Av\ { 0} . 
The mapping Lof fulfills condition (ii) of Theorem 1.2 , so it completes the proof of 
Proposition 2.3. 

COROLLARY 2.4. In the statement of Theorem 1.2 we may replace the function fn by 
any function f, i — 1, . . . , n — 1. 

At the end of this section we will compare | deg0/ | with the number of the irreducible 
components of A. 
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Let/ i , . . . , /„_i(R\0) —> (R,0) be analytic functions and let their differentials be 
linearly independent at non-empty set A\ { 0} . Then A has k > 1 irreducible components. 
Let/n: (R ", 0) -+ (Rn, 0) be any analytic function such, that AH { x £ Q, : /„(*) = 0} = 
{0}. Then the mapping/ = (/i,... ,/„) fulfils the assumptions of Theorem 1.2 and we 
obtain: 

THEOREM 2.5. | *W(/| < k. 

PROPOSITION 2.6. / / / i , . . . ,/„_i are AS above and 

AW = Jac(/i(x),... ,/„_,(*), l/2| |x| |2), 

r/?e« deg0/ = k. 

PROOF. One can check, that/ fulfills the assumptions of Theorem 1.2. The equalities 
(df\(pi(t)),pi(t)) = . . . = (dfn-\(pi(t)),pi(t)) = 0, / = 1,...,/:, properties of Gram's 
determinant G and Lemma 2.2 imply 

deg0 / -Edeg0[ jac(/1 , . . . , /n_1 , l /2 | |x | |2)( /7 /(0) 

det(4Ti (/>,(')), • • •, 4T«-i (P . - (0) ,PJ(0)] 

= E deg0 G(4T, (M0), • • •, 4T»-i ( P / ( 0 ) ( P / ( 0 , ^ W ) ) 
1=1 

= Edego(P«-W,PÎ(0) = * . 
i=i 

It ends the proof. 

3. One-dimensional smooth case. It is natural to ask about the particular case of 
the formula obtained in Theorem 1.2 , if A is a one-dimensional manifold around 0. 
We find a generalization of the formulas, known in R2 (cf. [7]). Let us put D(x) = 
d(fu • • • ,/n-i)/ d(*i. • • • ,x„-i)(x). 

THEOREM 3.1. Letf = (ft,... ,/„): (Rn, 0) —• (R", 0) ^ a real analytic mapping, 0 
is isolated inf~l(0) and D(0) ^ 0. Then A a is one-dimensional manifold in £1 with a 
parametrization p: I —• A and deg0/ = sgn D(0) dego(/n o p). 

PROOF. The first part of the thesis is a consequence of the implicit mapping theorem. 
One can check, that Theorem 1.2 gives 

(1) deg0/ = deg0[(/„ op)àsi(df\ op,.. .,dfn-x o/?,//)] 

If we differentiate the system of equations f\ {pit)) = 0, . . . ,/n_i {pit)) = 0 fulfill for 
every t £ I, then we will obtain 

(2) det(4fi(/K0), • • • ,4fn-i(p(0),p'«) = D{pit))\\p'it)\\2 

for every t £ I. By (1) and (2) we end the proof. 

Let us introduce the following notation (cf. [15]). For every C1 mapping 
/ = ( / i , . . . , / n ) l e t J ^ = / n a n d ^ + 1 = Jac(/i,... ,/*) for * > 0. 
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THEOREM 3.2. Iff: (R n, 0) —• (R ", 0) is an analytic mapping and Ĵ  (0) = — = 
Jkfx(0) = 0, /*(0) ^ 0, then 0 is isolated in f~\0\ and 

d e g 0 / = [ ( l - ( - l ) * ) / 2 ] s g n ^ ( 0 ) . 

PROOF. Since J^(0) ^ 0, then the differentials: dfi(0),..., dfn-\(0) are linearly in
dependent. There exists an n — 1 minor of the matrix (dfi(0),... ,d/„_i(0)) not equal 
0. After some permutation of the coordinates we may assume D(0) ^ 0. Then, by the 
implicit mapping theorem, there exists £2, in which the set A is a one-dimensional man
ifold parametrized by p(t) — {h\(f),..., hn-\(t), r), t G /. If we differentiate the system 
of equations/ (/?(*)) = 0, . . . ,fn-\(p(tj) = 0, f € /, then 

(1) Jfl{p(t)) = D(p(t))[ff(p(t))] / = 0 , 1 , . . . 

Using (1) we can prove by induction (f^l) means i-th differential) 

(2) ]fn{p(t))f = [l/D(p(t))pl
f(p(t)) +Al(t)ff-

l(p(t)) + • • • +A I - (^(p(0) 

where Ajj= 1 , . . . , / are analytic functions oft El. 
The assumption J^(0) = • • • = Jkfx (0) = 0 and (2) follow 

(3) (fnoPf\0)=[l/D(0)]kJ*(0) 

By Jr(0) ^ 0 and (3) we conclude, that/„ op has an isolated zero at t — 0. It implies, 
/ has isolated zero at x = 0. Since we can use Theorem 3.1, then we obtain 

(4) deg0/ = sgn D(0) deg0(/„ o p) 

The equality (3) follows 

(5) dego(Ao/>)= [( l - ( - l )*) /2]sgnD(0)sgnj£(0) 

Finally (4) and (5) complete the proof of Theorem 3.2. 

4. Evaluation of the degree by some complex invariants. Eisenbud-Levine-
Teissier's inequalities. Let g = (gi, . . . 9gn): (Cn,0) —» (Cn,0) be a finite holomor-
phic mapping (i.e. 0 is isolated in g_1(0)). By mo(g) we mean the multiplicity of g 
at 0 (cf. [2],[16]) and ordg = min{ordg;,... ,ordgn}, where ordg/ means the order 
of the function gt at 0. For any / = (/i;... ; ln) G Pn_1(C) the set g~l(lC) = {z : 
g(z) = It, t G C} is an analytic curve in some neighbourhood of 0 G Cn. By mult05 
we mean the multiplicity of the puredimensional analytic subset S at 0 G 5 (cf. [16]). 
Let us put 7o(g) = multog_1(^C) for any / in some Zariski open subset of P"_1(C) 
(cf. [12],[13],[14]). A real analytic mapping is finite if its complexification fç is finite. 

In this part of the paper we investigate the relations between the following invariants 
of the finite real analytic mapping/: the degree deg0/, the Teissier's number 7b(/c) and 
the multiplicity mo(/c )• 
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PROPOSITION 4.1. If g = (g\,...,gn) : (Cn,0) —• (C\0) is a finite holomorphic 
mapping, then: 

(a) 7b(s) < (1 / max7=1{ord^})/note) with '=' i / n ^ i O " ^ ) " ^ ) = 0 in P " " 1 ^ ) . 
ffej 7o(g) > (1 / maxJLjj ord^/} ) n"=i ordg; vv/7/i '= ' if there exists io E { 1, . . . , n} 

such that ord gt > ord gt for i ^ /0 andC]n
i=x(ingi)~x(0) is finite in Pn-1(C). 

PROOF. We can assume that ordg„ > ordg/, / = 1, . . . ,n — 1. Let / = (l\\... ; ln) 
be in some Zariski open subset of Pn_1(C), /„ ^ 0. Then To(g) = mu\io{lng\(z) — 
hgn(z) = 0, . . . , Ingn-l(z) - ln-lgn(z) = 0 } = m u l t o ^ / C ) . If g~\lC) = 5i U • • • U 

Sr is the decomposition of the analytic curve g~l(lC) into irreducible components with 
parametrisations pf.U —+ 5/ where U is a small enough disc around 0, then 

/no(g) = multo(/„gl - / lg„, . . . , lngn-l ~ k-lgn, gn) 

k k 
= X] fe ord(^n °Pi) > ord gn J2 ord pi 

i=i /=i 

= ordgrtmulto^_1(/C), 

where &; are some positive integers (cf. [9]). If we assume additionally that 
n"=i(/wg/)-1(0) = 0 in Pn_1(C), then above inequality we can replace by the equality. 
This ends the proof of (a). 

Let L:Cn —+ Cn be a linear form with sufficient general coefficients. Using well 
known inequality m§h > ord /*/••• ord/i„ (if h — (h\,..., hn)) we have 

r0(g) = mult()^1(/C) 

= mu0(lngi -hgn,...,lngn-i ~ k-ign, L) > ordgi •••ordgrt-i. 

If we assume additionally that m=î(ingi)~l(Q) is finite in Pn_1(C) we can replace 
above inequality by the equality. This completes the proof of (b). 

COROLLARY 4.2. If n"=l(ingi)~\0) = Q in Pn~\C) and ordgn > ordgh i = 
l , . . . , / i - l,thenT0(g) = ordgi • • -ord^- i . 

PROOF. flllî(ingi)-l(0)9 is finite in Pn-1(C). By Proposition 4.1 (b) we obtain 
T0(g) = ordgi---ordg„_i. 

In the case n = 2 we know, that {ingt = 0} is finite for / = 1,2 (if gi ^ 0). By 
Proposition 4.1 (b) we have 

PROPOSITION 4.3. If g = (g\, g2): (C 2,0) —• (C 2,0) is a finite holomorphic mapping, 

then To(g) = min{ordgi,ordg2}-

We pass now to the estimation of the degree deg0/ by the complex invariants. 

PROOF OF THEOREM 1.3. According to Sard's theorem and the properties of the com-
plexification of the real analytic sets (cf. [10], Ch. 5) we can find / = (lu...,/«) G R", 
ln ^ 0 such that the mapping// = (Infi — l]fn, • • •, lnfn-\ — ln-\fn,fn) fulfills the assump
tions of Theorem 1.2, has the same degree as the mapping/ and T0(fc) = multo 5, where 
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S = {/«/i,c - l\fn,c = 0 , . . . , lnfn-\,c ~ ln-\fn,c = 0} . By Theorem 2.5 | deg0/ | < k, 
where k is the number of irreducible components of S P\ R ". If r is the number of irre
ducible components of S, then we have the following evaluation: 

I deg0/ | <k<r< multo S = T0(fc). 

This ends the proof of Theorem 1.3. 

By Theorem 1.3 and Proposition 4.3 we obtain immediately. 

COROLLARY 4.4 (CF. [4],THEOREM 2.1l). Iff: (R2,0) —+ (R2,0) is a finite real an
alytic mapping, then | deg0 / |2 < rao(/c)-

By Theorem 1.3 and the following Teissier's inequality: To(g)n < mo(g)n~l if g: 
(C\0) —• (C",0) is a finite holomorphicmapping, (cf. [13],[12],[14]) we have 

COROLLARY 4.6 (CF. [4] THEOREM 2.1I). Iff:(Kn,0) —> (Rn,G) is a finite real 
analytic mapping, then | deg0/ |" < mo(/fc)n_1. 

We need now the following, easy to prove lemma (comp. [11] Lemma 3.11). 

LEMMA 4.6. Let f: (Rw,0) —• (Rw,0) be a real analytic mapping such that 0 is 
isolated inf~l(0) and k = rankJf(O) > 0. Then there exists a real analytic mapping 
f. (R*,0) —̂  (R*,0) such that 0 is isolated in fl(0), | deg0/ | = | deg0j\ and ordof> 2. 
Moreover iff is finite, then mo(/c) = mo(fc). 

By the above lemma, Theorem 1.3 and Proposition 4.3 (a) we obtain 

COROLLARY 4.7 (CF. [4], THEOREM 2. In). Iff: (Rn,0) —• ( R \ 0 ) is a finite real 
analytic mapping singular at 0, then | deg0/ | < (1 / 2)rao(/c )• 

At the end of this paper let us mention the following problem: to find conditions on 
/ to have equality | deg0/ |n = mo(/c)n_1- According to Theorem 1.3 we can divide this 
problem into two questions: 

(1) when | deg0/| = 7o(/fc) ? (in the real-complex domain) and 

(2) when 7~b(/c)n = wo(/fc)n_1? (in the complex domain). 

The answer in the case n = 2 was given by Teissier (cf. [14]). The key point in Teissier's 
proof is to check that the assumption | deg0/ | = mo(/*c)2 implies that the tangents cones 
at 0 of/i,c = 0 and of/i.c = 0 have the same degree and no common components. We 
can give another proof, which is a consequence of the following proposition. 

PROPOSITION 4.7. Let g = (gu g2): (C 2,0) —» (C 2,0) be a finite holomorphic map
ping. Then T0(g) = m0(g)2 iff ordgi = ordg2 and {ingi = 0} H {ing2 = 0} = 0. 

PROOF. It is known that ra0(g) = ordgi ordg2 iff {ing\ = 0} D {ing2 = 0} = 0. 
To complete the proof it is enough to make use of Proposition 4.3. 
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