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Variability of convection velocities and structure
inclination angles in wall-bounded turbulence
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The scale-dependent variability of convective velocities and structure inclination
angles in wall-bounded turbulence was studied experimentally via space–time energy
spectrum measurements. We found that the variability of convection velocities for
large-scale motions (LSMs) decreased inversely with streamwise wavenumbers, and
that the variability trend was not fully explained by earlier applications of Kraichnan’s
‘random-sweeping’ model of turbulence that assumed perfect scale separation. By
analytically extending the random-sweeping model to allow for a dominant large scale
in the random-sweeping signal that can interact with other LSMs, we showed how scale
interactions can explain the variability trend in convection velocities for LSMs. The
variability in convection velocities was also shown to correlate with the scale-dependent
inclination angles of coherent structures that were obtained via cross-spectral analysis.
Large-scale motions tended to exhibit shallower inclination to the wall with increasing
convection velocity, while small-scale motions and those far from the wall exhibited the
reverse behaviour. We proposed that these two opposite relationships between inclination
angle and convection velocity can be explained in terms of a balance between opposing
effects of the mean shear and the coherent structure geometry. Descriptions and models
of convection velocity variability effects are useful both for modelling turbulence spectra
and explaining the geometry of coherent structures.

Key words: turbulent boundary layers, turbulence theory, boundary layer structure

1. Background

The problem of describing the scale-dependent convection velocities of coherent structures
in wall-bounded turbulence has been important since the earliest questions about the
validity of Taylor’s frozen turbulence hypothesis. Most of this work has focused on
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quantifying useful measures of the mean convection velocity as an alternative to Taylor’s
hypothesis, while comparatively less attention has been devoted toward describing the
scale-dependent variation of the convection velocities about their mean. But understanding
this variation has become important for developing models of the space–time turbulence
spectrum and for understanding the structural differences between coherent motions
moving at different velocities. The current study seeks to address both of these problems.

Lin (1953) first identified the conditions under which Taylor’s froze turbulence
hypothesis is expected to fail, particularly for large-scale coherent structures in highly
anisotropic flows. Since then, efforts to describe the deviations from Taylor’s hypothesis
have broadly fallen into two categories: modelling the space–time correlations and
spectra from which convection velocities can be predicted, and quantifying the convection
velocities obtained from experiments and computational simulations.

1.1. Models of the space–time spectrum of turbulence
Kraichnan (1964) and Lumley (1965) both proposed a model spectrum of turbulence in
which small-scale turbulent fluctuations, u, were convected by a spatially and temporally
uniform fluctuating field, v, in addition to some mean velocity, U. Lumley found that
the width of the resulting frequency spectrum, as measured by its normalized second
moment, was described by the magnitude of fluctuations of the convective velocity, 〈v2〉,
divided by their corresponding Taylor microscale. Therefore, the observed broadening of
the energy spectrum was indicative of variations in instantaneous convection velocities
about the mean convection velocity predicted by Taylor’s hypothesis. Kraichnan utilized
this same scalar convection model of turbulence to study the more general validity of
Kolmogorov’s assumption that large and small scales are statistically independent when
sufficiently separated. Since Kraichnan’s work, this convection model has been referred to
as the ‘random-sweeping hypothesis’, since the large scale, v, was assumed to sweep the
turbulence along as a passive scalar.

The random-sweeping model was extended by Wilczek & Narita (2012) to obtain
an analytical expression for the frequency–wavenumber spectrum, in which the mean
convection velocity was represented by Taylor’s hypothesis and the width of the spectrum
in the frequency domain was found to scale with the magnitude of fluctuations of the
convective velocity, 〈v2〉, consistent with Lumley. They also showed that their model was
consistent with predictions from an alternative, elliptic approximation model (He & Zhang
2006; He, Jin & Yang 2017). Wilczek, Stevens & Meneveau (2015b) later applied this
analytical spectral model to the case of wall-bounded flows by using the Townsend’s
log law for the Reynolds stresses to represent the turbulence intensity associated with
the spectral width (Marusic et al. 2013). They reported good qualitative agreement
between the analytical frequency–wavenumber spectrum and that obtained via large eddy
simulations (LES), although some deviations were apparent.

Importantly, Wilczek et al. (2014) noted that the true spectral width (in the
frequency domain) is non-zero when approaching the smallest wavenumbers, and yet the
one-dimensional (1-D) random-sweeping model predicted zero width in this limit. They
attributed this discrepancy to two possible sources: the neglect of scale interactions at
the large scales of turbulence and the lack of influence from spanwise wavenumbers.
Later, Wilczek, Stevens & Meneveau (2015a) extended the 1-D sweeping model to include
spanwise wavenumbers and showed how this appeared to resolve the low-wavenumber
singularity, but they did not provide a quantitative comparison of spectral width variation
with wavenumbers, and they left open the question of the influence of scale interactions.
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Convection velocity variability and structure inclination

Liu & Gayme (2020) proposed an alternative approach to calculating the distribution
of convection velocities based on a linearized, input–output model of turbulent channel
flow, and they estimated power-spectral densities as a function of convection velocity,
where the width of the power spectrum was shown to narrow for smaller scales and
was found to be roughly symmetric about the mean convection velocity (except for
certain intermediate-sized scales), largely consistent with the sweeping model predictions.
However, they also did not report quantitative comparisons of spectral width with respect
to wavenumber, and their linear analysis necessarily neglected the influence of scale
interactions.

There are a number of analytical tools available for describing and reconstructing the
width of the space–time spectrum, most of which appear in the important study by Beall,
Kim & Powers (1982). If we denote the turbulent spectral density of the streamwise
velocity component, u, with streamwise wavenumber, kx, and frequency, ω, as φuu(kx, ω),
then Beall et al. (1982) introduced the idea of a ‘conditional spectral density’, φuu(ω|kx),
as the normalized spectrum

φuu(ω|kx) = φuu(kx, ω)∫∞
−∞ φuu(kx, ω) dω

, (1.1)

such that φuu(ω|kx)�ω represents the fraction of power at kx due to fluctuations between
(ω, ω + �ω) and is analogous to a conditional probability. This means that the conditional
spectral density can be interpreted naturally as a probability density function (p.d.f.),
and according to the model of Wilczek & Narita (2012), that p.d.f. is predicted to be
a normal distribution. (The results of Liu & Gayme (2020) show some non-Gaussian
spectral distributions for intermediate kx scales, but Wilczek et al. (2015a) found that
the Gaussian behaviour was largely maintained even for anisotropic, wall-bounded flows.)
As a consequence, the conditional spectral density can be used directly to determine the
spectral width by integrating its second moment (variance) directly, as discussed in Narita
(2017).

Because the spectral width in the frequency domain, ω, can be transformed into a
spectral width in the phase-speed domain, c, for a fixed wavenumber, where c = ω/kx, the
spectral width provides a direct measure of the variability of the turbulent energy across
phase speeds, which is a natural way of thinking about the sweeping model described
above, where the variance of the analytical spectrum was found to depend on the variance
of the large-scale velocity signal, 〈v2〉.

In addition to the direct measurement of the spectral moments from the space–time
spectrum, Beall et al. (1982) also showed that the spectral moments can be inferred
from the joint p.d.f. of the auto-spectral energy and local frequencies (or wavenumbers)
that are defined via the cross-spectrum. This technique allows for the reconstruction
of the space–time spectrum with limited two-point measurements in either one of the
dimensions, a technique that was later employed by De Kat & Ganapathisubramani (2015).
Furthermore, Beall et al. (1982) showed that the spectral variance calculated from the
joint p.d.f. is expected to differ from the direct integration of the spectral moment by an
amplitude-dependent term – this result was later emphasized by Wu et al. (2017) who
empirically compensated for the discrepancy in their spectral models (see their review
of these topics in Wu & He 2021a). However, all of these techniques for quantifying the
spectral width must be applied with care, in particular, accounting for the limitations of
experiments, which have mostly focused on establishing a mean convection velocity and
not its variance.
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1.2. Measurement and quantification of convection velocities
A significant number of experimental studies have sought to measure the mean convection
velocities of coherent structures in turbulence, from the early studies of Cliff & Sandborn
(1973) and later Kim & Hussain (1992), to more recent efforts to measure the space–time
spectrum directly with particle image velocimetry (PIV) by Dennis & Nickels (2008),
Elsinga et al. (2012) and LeHew, Guala & McKeon (2011). The key computational study
by Del Álamo & Jiménez (2009) summarized many of the challenges in defining a single
characteristic convection velocity for each wavenumber or frequency, given the width
of the space–time spectrum in both dimensions, and they proposed weighted-integral
approaches to answer this question consistently. Some physical insights into this problem
from a transport perspective were later offered by Geng et al. (2015). A comprehensive
study of the convection velocity, based on an LES calculation at Reθ = 13 000 was
performed by Renard & Deck (2015), who also reviewed and tabulated all the previous
measurements and calculation techniques.

Despite the extensive studies involving wavenumber–frequency spectra, there are very
few reports of the wavenumber dependence of the frequency spectrum variance. Direct
numerical simulation (DNS) channel flow calculations of the spectral variance at Reτ =
187 (Yang et al. 2020) and Reτ = 550 (Wu & He 2021b) have been reported, although
they enforced Taylor’s hypothesis in their definition of the second spectral moment, and
their Reynolds numbers were relatively low.

1.3. Convection velocities and the inclination angles of coherent structures
Like the interest in the scale dependence of convection velocities, there has been similar
interest in the scale dependence of coherent structure inclination angles. Deshpande,
Monty & Marusic (2019) reported inclination angle variation as a function of streamwise
wavelength for different spanwise scale sizes, and validated the traditionally assumed
inclination angle of 45◦ for individual, large-scale, wall-attached structures (as opposed
to the 15◦ for overall packets). Li et al. (2022) examined the same scale dependence of
inclination angles in the atmospheric surface layer under both unstable and neutrally stable
conditions. Following Chauhan et al. (2013), they developed a log-law-type empirical
formula to relate the inclination angle and structure wavelength.

A few studies have looked at how structure geometry and scale-specific convection
velocity are related. LeHew, Guala & McKeon (2013) examined the connection between
the convection velocity of vortices and whether they were attached to the wall and found
a higher variance in the convection velocity for attached structures. Lozano-Durán &
Jiménez (2014) performed a similar analysis, computationally. More recently, Huang
(2019) developed a model to relate the mean velocity profile to the inclination angles
of coherent structures by utilizing an expression for the variance of velocity fluctuations
for an individual eddy by Banerjee & Katul (2013). They confirmed that the inclination
angle can be used to improve predictions of the mean velocity profile, via comparison
with DNS profiles, although they did not explore the indirect dependence of their model
on the local convection velocity variance, which would require detailed measurements of
the local, scale-dependent convection velocities of the eddies. The relationship between
scale-specific convection velocity and inclination angle of coherent structures also arises
in the context of resolvent-based modelling of turbulence, in which the phase velocity of
modes dictates the mode shape, including its relative inclination to the wall (see McKeon
(2017) for an overview and Cui & Jacobi (2023) for specific observations on inclination
angles).
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In this study we performed experimental measurements of a turbulent boundary layer
to obtain the scale-dependent variance of phase speeds and to examine its relationship to
the scale-dependent inclination angles of coherent structures in the flow. The experiments
are described in § 2. In § 3 we report the spectral variance of phase speed as a function
of streamwise and spanwise wavenumbers and identify persistent discrepancies with
previous versions of the random-sweeping model. We extend the random-sweeping model
of turbulence (under simplifying assumptions) to include 1-D scale interactions in order
to explain the dominant streamwise-wavenumber dependence of variance for large-scale
motions (LSMs). Then, in § 4 we explore the relations between structure size, inclination
angle and phase speed, using space–time cross-spectral analysis, in order to develop
intuition about how variations in phase speed are associated with the average inclination
angles of velocity modes, the size of the modes and the strength of the mean shear of the
flow field.

2. Turbulent boundary layer experiments and validation

Measurements of a zero-pressure gradient turbulent boundary layer were performed along
the bottom wall of a high-speed water tunnel facility with a test section of length 2000 mm
and a cross-section 200 × 200 mm. The flow was tripped with a 1 mm trip wire at the inlet
to the test section, and two-dimensional (2-D), time-resolved, planar PIV measurements
were recorded in the streamwise/wall-normal (x/y) and wall-parallel (x/z) planes starting
1160 mm downstream of the trip. More details about the water tunnel and PIV experiment
in the tunnel can be found in Cui, Ruhman & Jacobi (2022).

Five different free-stream velocities, U∞, in the range 0.52 m s−1 to 3.76 m s−1 were
considered in the streamwise/wall-normal experiments to cover the low and moderate
range of Reτ = uτ δ/ν ranging from 530 to 3070, where uτ is the friction velocity, δ

is the boundary layer thickness based on δ99 and ν is the kinematic viscosity. The
wall-parallel experiment was performed at Reτ = 3070 only, at a wall location of 3 mm,
corresponding to the middle of the log layer at y/δ = 0.13 and y+ = 400. The streamwise
field of view (FOV) extended for >15δ for all cases and was imaged with two high-speed
cameras (Phantom VEO-340L and VEO-440L) operating at a spatial resolution of 2560 ×
440 pixels each, recording at 1.5 kHz for the wall-normal measurements and 2560 ×
800 pixels and 0.8 kHz for the wall-parallel case. The flow was seeded with 10 μm glass
particles with a density of 1.1 g cm−3 and illuminated with a high-speed laser (Litron
527). The laser was operated in single-pulsed mode for the lowest-Reynolds-number case,
and double-pulsed mode for the higher-Reynolds-number cases due to limitations on the
recording frequency of the cameras. For each Reynolds number, ten recordings were made
to accumulate at least 1000 eddy turnover times worth of temporal data (40 recordings for
the wall-parallel case). The velocity vectors were calculated using commercial software
(Davis 10.2.1). The multipass vector calculation includes two passes: a square 32 ×
32 pixel interrogation window, followed by a 16 × 16 pixel circular window, using 50 %
in both cases to avoid spatial aliasing (LeHew 2012). Details about the flow and resolution
for each case are summarized in table 1. The PIV was not fully resolved in time or space
for the smallest-scale features at higher Reynolds numbers, but the analysis will focus
primarily on large-scale features.

Figure 1(a,b) shows the mean velocity profiles and the streamwise normal Reynolds
stresses for all five Reynolds numbers compared with the canonical data by Fernholz &
Finley (1996) at similar Reτ . For the lowest Reynolds number, both the mean velocity
profile and the turbulent intensity match very well, whereas the normal Reynolds stress
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U∞ δ θ Reτ Reθ uτ Lx/δ �x+ �t �t+ TE
(m s−1) (mm) (mm) (m s−1) (μs)

0.52 23.6 2.5 530 1210 0.024 15.5 19.6 500 0.27 1210
1.21 22.9 2.5 1080 2830 0.050 16.0 41.1 678 1.60 1970
2.02 22.4 2.3 1690 4460 0.080 16.4 65.7 678 4.08 3360
2.85 23.6 2.5 2410 6660 0.108 15.5 89.2 678 7.52 4480
3.76 23.3 2.4 3070 8730 0.140 15.8 115.2 678 12.53 6010

3.76 23.3 2.4 3070 8730 0.140 15.0 76.1 1250 23.5 23 870

Table 1. Statistical features of the five different streamwise/wall-normal experiments, followed by the
wall-parallel experiment (below the line): free-stream velocity, U∞; boundary layer thickness, δ defined as
δ99; momentum thickness, θ ; friction Reynolds number, Reτ ; friction velocity, uτ ; streamwise field view, Lx;
spatial resolution (inner units), �x+; temporal resolution (inner units), �t+; record length in eddy turnover
times, TE . The spanwise extent for the wall-parallel experiment was Lz/δ = 2.4.

becomes attenuated with increasing Reτ as expected, due to the resolution limits of the
PIV window (Foucaut, Carlier & Stanislas 2004; LeHew et al. 2011).

Figure 1(c,d) shows the premultiplied 1-D spatial spectral densities of the streamwise
turbulent fluctuations with respect to the streamwise wavenumber, kx, compared with
spectra reported from channel flow DNS at comparable Reτ . As with the normal Reynolds
stress, the spectral density compares well at low Reτ (figure 1c) but shows the increasing
effect of attenuation at high Reτ (figure 1d). Foucaut et al. (2004) reported that the
spectral attenuation due to PIV becomes significant (i.e. more than 50 % attenuation)
above a wavenumber cutoff kcut = 2.8/W, where W = 2�x is the PIV window size (with
50 % overlap). This cutoff wavenumber is marked in the red dashed lines, and compares
well with the actual point of 50 % attenuation from the current experiments marked in
black dashed lines. All of the subsequent analysis will focus on wavenumbers below this
threshold.

3. Scale-dependent variance of convection velocities

3.1. Space–time spectral density
The 2-D space–time spectral energy density with respect to streamwise wavenumber,
kx, and frequency, ω, was calculated from the 2-D fast Fourier transform (FFT) of
the fluctuating velocity for each height from the streamwise/wall-normal measurements.
Each of the continuous time series was segmented by Welch’s method with a temporal
segment size selected to be comparable to the spatial domain size of the FOV. The mean
was removed and Hanning windows were applied to both the streamwise spatial and
temporal segments. The data was zero padded, and the FFT was calculated with 50 %
overlap between the segments, all following the procedure in LeHew et al. (2011) with
the exception of mean removal, where they removed the global mean and we removed
the segment mean. The effect of the choice of mean removal on the energy of LSMs is
explored in detail in Appendix A.

The kx/ω spectrum is shown in figure 2(a), where the slope of the solid red line indicates
the convective velocity associated with Taylor’s hypothesis and the dashed cyan line
indicates the frequency-weighted average velocity obtained from the first spectral moment
(Jiménez, Del Alamo & Flores 2004; Flores & Jimenez 2006). The black contour line
marks the isocontour of spectral energy density that contains within it 30 % of the total
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Figure 1. (a) Mean streamwise velocity profiles for all five Reτ (black symbols: Reθ = 1210 circle; = 2830
square; = 4460 triangle; 6660 diamond; 8730 cross) compared with measurements by Fernholz & Finley (1996)
at Reθ = 5023 (grey line). (b) Streamwise normal Reynolds stress profiles compared with Fernholz & Finley
(1996) at Reθ = 1208, 2777, 4736 (grey lines, thickness increasing with Reθ ). (c) Premultiplied, spatial energy
density measured at y/δ ≈ 0.1 for the lowest Reynolds number Reτ = 530 (black circles) compared with DNS
channel flow data at Reτ = 550 (Del Álamo et al. 2004) (grey line). (d) Premultiplied energy spectral density
for the highest Reynolds number Reτ = 3070 (black crosses) compared with DNS channel flow data at Reτ =
2000 (Hoyas & Jiménez 2006) and 5200 (Lee & Moser 2015) (grey lines, thickness increasing with Reτ ). The
vertical dashed lines represent the wavenumbers at which the PIV spectral energy density is attenuated by 50 %
compared with the DNS (black line is experimental, red line corresponds to the empirical result from Foucaut
et al. 2004).

streamwise turbulent kinetic energy (TKE), u′2. This constant energy fraction contour was
used to observe trends in the spectral distribution of the streamwise TKE as a function of
wall-normal height, shown in figure 2(b) and as a function of Reynolds number, shown in
figure 2(c). For validation, the space–time spectral density from the wall-parallel plane at
this height (not shown), integrated over all spanwise wavenumbers, kz, was found to match
the spectrum obtained from the streamwise/wall-normal measurements.

As the wall-normal position increases, the energy fraction contour expands to include
more small-scale, high frequency content (beyond the wall-normal location of the
outer LSM peak). The large-scale, low frequency region of the contour also shifts
slightly to larger, faster coherent motions appearing further away from the wall. For a
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Figure 2. (a) Space–time spectral energy density, φuu(kx, ω) at y/δ ≈ 0.1 for Reτ = 3070. The local mean
velocity (Taylor’s hypothesis) is marked in red; the average convection velocity (Jiménez et al. 2004) is marked
in dashed cyan. The isocontour of spectral energy containing 30 % of the streamwise TKE is in black. (b) The
30 % energy fraction contours for varying wall-normal locations, y/δ ≈ 0.04, 0.1, 0.5 (darker lines at higher y),
at fixed Reτ = 3070. (c) The energy fraction contours for varying Reτ (darker lines at higher Reτ ) at y/δ ≈ 0.1.

fixed wall-normal location (in outer units), increasing the Reynolds number results in
a contraction of the energy contour, indicating increased domination of the flow by
large-scale coherent motions. But ultimately, the Reynolds numbers effects on the large
scales are rather weak over this range, as noted in the subsequent analysis.

Previous studies (Jiménez et al. 2004; Flores & Jimenez 2006; LeHew et al. 2011) have
focused on the fact that the weighted-average convective velocity, marked as the cyan line
in figure 2(a), does not have a constant slope, as Taylor’s hypothesis would dictate (red
line), but varies with wavenumber, with the greatest deviation for the large scales near
the wall. However, in addition to the variation of the weighted average frequency with
wavenumber, figure 2(a) also shows a significant variation in the width of the frequency
spectrum with wavenumber. The width of the frequency spectrum for a given wavenumber
can be thought of in terms of the phase velocity variation, since c = ω/kx, and thus
represents the distribution of energy across different phase velocities associated with
velocity modes of that particular wavenumber. Based on this, variations in the width of
the space–time spectrum with wavenumber indicate that the distribution of convective
velocities is strongly size dependent. However, from figure 2(b,c), it is clear that the
distribution of convective velocities (the width of the ω-spectral density) varies only
weakly with wall-normal location, y, and Reτ . However, stronger y variation is expected
in the near wall region below the log layer that was not resolved in the experimental
measurements.
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Figure 3. The conditional wavenumber spectrum, φuu(c|kx), following Beall et al. (1982), but in terms of the
deviation of the phase speed, c, from the local mean velocity, ū dictated by Taylor’s hypothesis. For kxδ � 25,
the SNR < 10 and the distribution tails are truncated.

3.2. Conditional wavenumber spectrum and convection velocity variance
In order to quantify the changing distribution of convective velocities with structure
size, we first transform the frequency, ω, of the 2-D spectrum, φuu(kx, ω), into phase
speed c, via the relation c = ω/kx, to obtain φuu(kx, c). Then we employ the conditional
wavenumber spectral density described by Beall et al. (1982) to calculate the p.d.f. of phase
speeds for each wavenumber, φuu(c|kx). The conditional spectrum provides a spectral
view on the relative distribution of phase speeds associated with the coherent structures
in the boundary layer. The distribution of phase speeds is here taken as representative
of the distribution of convective velocities, and the terms will be used interchangeably,
forgiving the slight imprecision involved. Similarly, the mode shapes associated with
individual wavenumbers are assumed to characterize the typical coherent structure of
the corresponding scale, although in reality coherent structures contain spectral energy
content from a range of wavenumbers.

For calculating conditional spectral density, it is important to remove the noise floor of
the spectrum due to the PIV measurements first, in order not to contaminate the shape
of the resulting p.d.f. by the appearance of spurious distribution tails that are actually
just noise. This baseline subtraction was based on the power calculated at the Nyquist
frequency, following Oxlade et al. (2012). The resulting conditional spectrum is shown in
figure 3. The wavenumber dependence of the width of the convective velocity distribution
is quite prominent, particularly for the large scales, kxδ � 2π. Past a wavenumber of
kxδ � 25, the signal-to-noise (SNR) ratio – defined as the ratio between the spectral peak
and noise floor – dips below 10. Thus, the noise floor becomes so large relative to the
turbulent spectral energy that the distribution becomes noticeably truncated for these high
wavenumbers.

The predicted shape of the conditional spectrum φuu(c|kx) was obtained by Wilczek &
Narita (2012), based on the random-sweeping model of Kraichnan (1964). As noted in the
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introduction, the sweeping model assumes that a small-scale turbulence field, u(x, t), is
advected by a large-scale (sweeping) velocity field, v, and a background mean velocity,
U, where the u and v are statistically independent due to scale separation. For notational
simplicity, only the streamwise components and derivatives of the fields are described
here. The streamwise linearized advection equation describing this system can be written
as

∂u
∂t

+ (U + v)
∂

∂x
u = 0, (3.1)

where U + v represents the instantaneous velocity advecting the small-scale turbulence,
u. Wilczek & Narita (2012) then developed a full space–time spectrum from this equation
by transforming and solving it in wavenumber space, then constructing the two-point
covariance tensor and finally transforming again to frequency space. In this procedure,
the velocity u(x, t) was assumed to vary in space and time, while v was assumed
uniform in space and time, with Gaussian-distributed fluctuations across the ensemble.
The uniformity of v represented a significant scale separation between the turbulence
being advected and the large-scale fluctuations causing the advection. The final form of the
space–time spectrum, φuu(kx, ω), took the form of normal distributions in the frequency
domain for each wavenumber kx, centred on the frequency kxU that is associated with
Taylor’s hypothesis:

φuu(kx, ω)

φuu(kx)
= 1√

2π

1√
k2

x
〈
v2
〉 exp

[
−1

2
(ω − kxU)2

k2
x
〈
v2
〉

]
. (3.2)

Transforming this result from the frequency domain, ω, to the phase-speed domain, c =
ω/kx, and writing in the form of the conditional spectrum, yields

φuu(c|kx) = 1√
2π

1√〈
v2
〉 exp

[
−1

2
(c − U)2〈

v2
〉

]
, (3.3)

where we note that φuu(kx, c) = kxφuu(kx, ω) in this coordinate change. The resulting
conditional wavenumber spectrum takes the form of a normal distribution with mean
μ = U and standard deviation, σ = 〈v2〉1/2. This normal distribution model fits the
measured conditional spectrum well, with an r-squared coefficient of determination near
0.99 across the range of wavenumbers with high SNR. This is consistent with previous
qualitative comparisons of the shape of the conditional spectrum calculated from LES
(Wilczek et al. 2015b).

The two parameters of the normal distribution, μ and σ , provide a convenient way of
quantifying the variation in the spectrum with kx that is visible in figure 3. The parameters
can be obtained directly by integrating the conditional spectrum p.d.f.s, following the usual
definition of central moments described in Narita (2017) and Wu & He (2021a), according
to

μ =
∫ ∞

−∞
cφuu(c|kx, kz) dc, σ 2 =

∫ ∞

−∞
(c − μ)2φuu(c|kx, kz) dc. (3.4a,b)

However, for PIV measurements with a prominent noise floor, we found that fitting the
conditional spectrum to a normal distribution provided smoother trends with respect to the
wavenumber than direct integration (although both methods yield consistent kx variation).
Therefore, the conditional spectrum, φuu(c|kx) , at each wavenumber, kx, was fitted to
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Figure 4. The wavenumber variation of the (a) mean, μ, and (b) standard deviation, σ , of the conditional
spectrum normal distribution, φuu(c|kx) at y/δ = 0.2 in black solid lines. The grey line in (a) represents the
mean convection velocity cu1 from the DNS of Del Álamo & Jiménez (2009). The grey lines in (b) represent
other wall-normal locations, to show the very weak dependence on y. The red dashed line corresponds to the
analytical model presented in (3.20) with fitted parameters 〈|v̂(kv)|2〉1/2/uτ ≈ 1.3 and kvδ ≈ 3.8.

a normal distribution with respect to the variable c by a nonlinear least squares routine
(using the Levenberg–Marquardt algorithm implemented in Matlab). The resulting μ and
σ parameters for each kx are shown in figure 4(a,b).

The discrepancy between the mean phase speed, μ, and the local mean velocity, ū, is
shown in figure 4(a) along with DNS calculations at a lower Reτ previously reported in Del
Álamo & Jiménez (2009). Both show similar trends with most scales convecting slightly
slower than the mean velocity at y/δ = 0.2. However, as noted above, the problem of
describing and explaining this mean convection velocity has already received significant
attention and is provided here primarily for validation purposes.

The width of the phase-speed distribution, σ , as a function of wavenumber has
received less focus in past studies and is shown in figure 4(b). For high wavenumbers,
the distribution width appears roughly constant, consistent with the 1-D version of
the random-sweeping model, which assumes that the standard deviation should be
some constant associated with the magnitude of the fluctuations of the large-scale
advective motions, 〈v2〉1/2, which is independent of wavenumber (although can depend
on wall-normal location). The independence from wavenumber is a result of the
scale-separation assumption of the sweeping model that requires the advecting and
advected scales to be sufficiently separated as to be independent, and also a result of the
neglect of spanwise wavenumbers in the 1-D formulation.

However, for small wavenumbers, the standard deviation clearly varies quite strongly
with kx. For these LSMs, as kx increases, the width of the conditional spectrum decreases
as k−1

x , indicating that there is more variability in the convection velocity for increasingly
larger-scale coherent motions. Wilczek et al. (2014) already noted that the 1-D sweeping
model predicts constant variance (in the phase-speed domain) in the limit of small
wavenumbers, and thus suggested that two possible effects may explain the discrepancy:
the absence of scale interactions at large scales and the absence of spanwise wavenumber
contribution. Wilczek et al. (2015a) addressed the spanwise wavenumber assumption and
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derived a new expression for the standard deviation that accounts for kz dependence:

σ =
〈
v2

x

〉1/2
[

1 + C2
(

kz

kx

)2
]1/2

. (3.5)

Here the ratio of Reynolds stresses is denoted as C2 = 〈v2
z 〉/〈v2

x 〉 for any fixed wall-normal
location. This expression shows the same inverse dependence on kx visible in the
measurements in figure 4(b), although it is coupled with a direct dependence on spanwise
wavenumber, kz. Therefore, the three-dimensional (3-D) sweeping model implies that the
variance in the convection velocity increases with decreasing kx but also decreases with
decreasing kz. But this cannot be verified from the streamwise/wall-normal measurements
utilized so far. In order to validate this model, and to determine whether there is still
a need to consider the role of scale interactions in addition to 3-D effects, we needed
to quantitatively compare (3.5) to 3-D spectral measurements from the wall-parallel
experiment.

3.3. Unexplained convection velocity variance from the (kx, kz, ω) spectrum
Wall-parallel velocity measurements were used to construct the 3-D spectrum,
φuu(ω, kx, kz), at a single wall-normal location, y/δ = 0.13. The conditional spectrum,
φuu(c|kx, kz), was then calculated and the standard deviation of the convection velocity
was determined as a function of both wavenumbers, σ(kx, kz), shown in figure 5(a). As
in figure 4(b), we see a strong trend in σ with streamwise wavenumber, kx, decreasing as
the scales become smaller. But now we also observe a relatively weak variation of σ with
the spanwise wavenumber, kz. This weak variation in kz means it is unlikely that the 3-D
sweeping model fully explains the variance trend at lower kx, since it unavoidably couples
the two wavenumbers together as kz/kx.

To compare the model in (3.5), we fitted the two model parameters (〈v2
x 〉1/2, C) ≈

(0.10, 0.56) by least squares over the full range of wavenumbers resolved in this
experiment to obtain the predicted map of σ shown in figure 5(b). The result of the
coupling between the two wavenumbers is now quite clear: it is impossible to capture the
true kx variation without also generating an exaggerated kz variation. The relative errors
resulting from the model fit approach 50 % for the lowest wavenumbers in both directions.

The question is how to model the kx dependence of σ without coupling it to a kz
dependence? The other unexplored source of potential variance is scale interactions.
Therefore, we return to the 1-D sweeping model in order to focus on just the streamwise
dependence, but now introduce scale interactions in order to generate a kx dependence that
is decoupled from kz.

3.4. Wavenumber-dependent sweeping model
In this section we develop a modification to the 1-D random-sweeping model of Wilczek
& Narita (2012) that can capture the kx dependence of the conditional spectrum width
shown in figures 4(b) and 5(a). We apply the basic procedure of Wilczek & Narita (2012)
but now we assume that the advective velocity signal, v, can vary spatially, v(x), such that
it possess a Fourier transform in wavenumber space. This spatially varying v extension
was first proposed in Kraichnan (1964), although its specific implications on the spectral
width were not elaborated. In doing so, we allow for the wavenumbers associated with
v to overlap those associated with the turbulence contained in u. Therefore, the v and u
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Figure 5. (a) Standard deviation of phase speed, σ(kx, kz), for all streamwise and spanwise wavenumbers
calculated from the wall-parallel experiments, showing weak kz dependence. (b) The standard deviation
calculated from (3.5), where the fitting constants were obtained from the same wall-parallel experimental data
shown in (a). In this model, the kz dependence cannot be separated from kx.

no longer strictly represent large- and small-scale motions, but rather signals of actively
advecting and passively advected structures.

The pure convection equation (3.1) is Fourier transformed from x into spectral space
with wavenumber kx, where the Fourier transform of the velocity u(x, t) is denoted û(kx, t)
and the transform of v(x) as v̂(kx). The resulting momentum equation is then

∂ û
∂t

+ ikxUû +
∑

k′
i(kx − k′)û(kx − k′)v̂(k′) = 0, (3.6)

where the final term is the discrete convolution that results from application of the
convolution theorem to the v and u signals. The convolution indicates that only
triads of wavenumbers, (kx, k′, kx − k′), participate in the nonlinear interactions. In his
earlier proposal of a spatially varying advection signal, Kraichnan (1964) assumed
that the fluctuations were confined to a narrow range of large wavenumbers. This
assumption appears even more reasonable, now, in light of studies on scale interactions in
turbulence that have established that a narrow range of wavenumbers associated just with
very-large-scale motions (VLSMs) dominate the observed amplitude modulation effect
(see the spectral analysis in Jacobi & McKeon 2013). Based on this, we assumed that
the set of triads is highly restricted, such that there is only a single wavenumber k′ that
interacts with each kx. This is equivalent to assuming that there is only one wavenumber
k′ of the v signal that predominantly interacts with each wavenumber kx − k′ to result in
the observed energy at wavenumber kx of the u signal. All the other interactions that could
potentially contribute to the energy at kx are assumed negligible. Because this wavenumber
is associated with the v signal, we call it kv .

In reality, a small but finite set of components of v are involved in scale interactions, and
thus we include an O(1) energy scaling factor, Cv , to represent the actual spectral energy
associated with the v interactions that are not included in the mathematically simpler,
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single wavenumber formulation. Then we write the spectral convection equation as

∂ û(kx)

∂t
+ i(kx − kv)û(kx − kv)Cvv̂(kv) + Uikxû(kx) = 0. (3.7)

In order to solve this initial value problem for û(kx, t), we need to rewrite û(kx − kv)

in terms of û(kx). In the original formulation of the sweeping model, a significant scale
separation was assumed between the wavenumbers of the u and v signals, and that was
the basis for treating the v signals as spatially uniform with respect to the u. Here, we
do not assume spatial uniformity and we allow for kx and kv to be close to one another.
Therefore, we expand û(kx − kv) in a Taylor series about kx in the form û(kx − kv) =
û(kx) − (∂ û(kx)/∂kx)kv and substituting this expansion yields a linear, first-order partial
differential equation:

∂ û(kx)

∂t
− i(kx − kv)Cvv̂(kv)

∂ û(kx)

∂kx
kv + i(kx − kv)û(kx)Cvv̂(kv) + Uikxû(kx) = 0.

(3.8)
This initial value problem can be solved with the initial spectral velocity signal, û(kx, 0),
to obtain

û(kx, t) = û(kx, 0) exp
{
−ikvtU + kv − kx

kv

U + Cvv̂

Cvv̂

(
eikv tCvv̂ − 1

)}
. (3.9)

This velocity signal will result in non-stationary two-point statistics over long times. In
order to obtain stationary statistical quantities, we can expand the inner exponential in
Taylor series for early times, t, according to exp(ikvtCvv̂) − 1 ≈ ikvCvv̂t − 1

2 k2
vC2

vv̂
2t2 +

· · · to obtain

û(kx, t) ≈ û(kx, 0) exp
{
−ikvtU + kv − kx

kv

U + Cvv̂

Cvv̂

(
ikvCvv̂t − 1

2
k2
vC2

vv̂
2t2 + · · ·

)}
.

(3.10)
Assuming that the time is early enough such that kvCv|v̂(kv)|t 	 1, we can truncate this
approximation and simplify to obtain

û(kx, t) = û(kx, 0) exp
{−ikvtU + it(kv − kx)(U + Cvv̂)

}
. (3.11)

This early time assumption is equivalent to assuming that the dominant wavenumber of the
interacting scale is very low, i.e. that the scale is very large. Therefore, our analysis applies
only within the time scale that characterizes the large-interacting structure. Kraichnan
(1964) adopted a similar early time assumption and argued that it enforced minimal shear
distortion of the u field by v in space.

Now, we employ the two-point time covariance following the procedure described
in Wilczek & Narita (2012, Appendix B), which we will eventually transform in the
frequency spectrum. We write the spectral quantities at distinct wavenumbers kx, kv and
k′

x, k′
v and times t and t + τ and, for simplicity, we abbreviate û(k′

x, 0) = û′ and v̂(k′
v) = v̂′,
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to obtain

〈û(kx, t)û(k′
x, t + τ)〉 = 〈[

û exp
({−ikvtU + it(kv − kx)(U + Cvv̂)

})]
[
û′ exp

({−ik′
v(t + τ)U + i(t + τ)(k′

v − k′
x)(U + Cvv̂

′)
})]〉
(3.12)

= 〈
ûû′〉 〈exp

({−ikvtU + it(kv − kx)(U + Cvv̂)
})

exp
({−ik′

v(t + τ)U + i(t + τ)(k′
v − k′

x)(U + Cvv̂
′)
})〉

,

(3.13)

where we have assumed that the initial conditions are independent of the fluctuating
statistics. Then multiplying both sides by the delta function and rewriting in terms of the
initial spectral density, we find that

δ(kx + k′
x)φuu(k′

x, τ ) = δ(kx + k′
x)φuu(k′

x, 0)〈
exp

({−ikvtU + it(kv − kx)(U + Cvv̂) − ik′
v(t + τ)U + i(t + τ)(k′

v − k′
x)(U + Cvv̂

′)
})〉

.

(3.14)

We integrate over k′
x to eliminate the delta functions and simplify, noting that kv is also

affected indirectly by the delta function due to the triadic relationship (kx, kv, kx − kv). We
also assume, for simplicity, that the dominant structure in the v signal is symmetric in the
streamwise direction, such that v̂(kv) = v̂(−kv), to obtain

φuu(−kx, τ ) = φuu(−kx, 0)e{ikxτU} 〈exp
({−iτ(kv − kx)Cvv̂

})〉
(3.15)

and taking account of the kx symmetry of the power spectrum yields

φuu(kx, τ ) = φuu(kx, 0)e{−ikxτU} 〈exp
({−iτ(kv + kx)Cvv̂

})〉
. (3.16)

To evaluate the ensemble average, we need to make use of the definition of the
expectation value for the random variable −iτ(kv + kx)Cvv̂(kv). This variable is just a
scaled version of the ensemble of Fourier coefficients for v̂(kv). Following Brillinger
(2001, theorem 4.4.1), we can treat the distribution of Fourier coefficients of a random
stationary signal, v, as a complex normal distribution with zero mean, with variance
denoted τ 2(kv + kx)

2C2
v〈|v̂(kv)|2〉. Calculating the ensemble average then yields

φuu(kx, y, τ ) = φuu(kx, y)e−ikxτU exp
(

−1
2
(k1 + k1v)

2τ 2C2
v

〈
|v̂(kv)|2

〉)
. (3.17)

Finally, we Fourier transform this spectral slice from the time domain, τ , to the frequency
domain, ω, to obtain a model for the space–time spectrum:

φuu(kx, ω) = φuu(kx, 0)
1√
2π

1√
(kx+kv)2C2

v

〈|v̂(kv)|2
〉 exp

[
−1

2
(ω − kxU)2

(kx+ kv)2C2
v

〈|v̂(kv)|2
〉
]

.

(3.18)
This formulation can be reduced to the form reported above in (3.2) for the case where v

has no spatial variation, in which case then 〈|v̂(kv)|2〉 = 〈v2〉 by Parseval’s theorem, and
the kv dependence drops out. But given the presence of a spatially varying v signal, we see
that the variance of the p.d.f. now depends on both kx and kv .
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If we rewrite the frequency dependence, ω, in terms of phase speed, c = ω/kx, as above,
we obtain

φuu(c|kx) = 1√
2π

1√(
1 + kv

kx

)2

C2
v

〈|v̂(kv)|2
〉 exp

⎡
⎢⎢⎢⎣−1

2
(c − U)2(

1 + kv

kx

)2

C2
v

〈|v̂(kv)|2
〉
⎤
⎥⎥⎥⎦ ,

(3.19)
from which we see that the bandwidth of the space–time spectrum now takes the
wavenumber-dependent form

σ(kxδ) = Cv

〈
|v̂(kvδ)|2

〉1/2
(

1 + kvδ

kxδ

)
, (3.20)

where we have returned to non-dimensional form for comparison with the experimental
results above. We note that this wavenumber-dependent analytical result has the inverse
kx dependence anticipated from figure 4(b), but without the coupling to the spanwise
wavenumber, kz.

Like in the case of the 3-D sweeping model of Wilczek et al. (2015a), this 1-D
scale-interaction sweeping model has two parameters that determine the value of the
conditional spectrum bandwidth, kv and Cv〈|v̂(kv)|2〉1/2. The first of these parameters
represents the wavenumber, kv , of the dominant, large-scale contribution to the advection
included in the model. The second parameter represents the spectral energy content in that
wavenumber, 〈|v̂(kv)|2〉1/2, together with the scale factor, Cv , used to capture energy from
other, large scales with analogous behaviour. Although we would expect that generally
kv < kx, in principle there is nothing in the model that requires the large-scale advection
mode to be larger than the modes it is advecting in u. And, in particular, we are interested
in describing the variation of σ for small kx where the kx dependence is apparent; as kx
becomes large, the model predicts that σ converges to a constant value independent of
wavenumber.

Fitting the model in (3.20) to the measured σ in figure 4(b) at y/δ = 0.2 by linear
least squares optimization yields Cv〈|v̂(kvδ)|2〉1/2/uτ ≈ 1.3 and kvδ ≈ 3.8, illustrated
as the red dashed line in the figure. The value of kvδ corresponds to a large-scale
coherent structure for the turbulent boundary layer, λv ≈ 1.6δ, and thus appears consistent
with the physical interpretation of the advection equation in (3.1). But we expect these
modelling parameters to vary with wall-normal position as the relevant advective scales
and energy content of those scales change with y, although that variation is likely to be
very subtle given the weak dependence of σ on y shown in figure 4(b). We also expect the
wavenumber, kv , and spectral energy, Cv〈|v̂(kvδ)|2〉1/2, parameters to be related in a way
consistent with other spectral models of wall-bounded turbulence. Therefore, we examine
whether the empirical parameters from the scale-interaction model are consistent with
these physical trends.

3.5. Physical motivation and trends for the model parameters
The parameter, kv , represents the characteristic length scale associated with the large eddy
that is advecting the eddy of size kx. In the region from the wall and extending out to the
location of the VLSM peak, we would expect this scale to be the VLSM scale itself, which
exerts a footprint down to the wall (Hutchins & Marusic 2007). Past the VLSM peak, we
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Figure 6. (a) The y variation of kvδ fitted to the model (3.20) shown by the black line. The grey square points
represent the large-scale peak from pipe flow measurements at Reτ = 1649 in Kim & Adrian (1999); the two
dashed lines represent the attached-eddy trend near the wall, and the inverse trend for large scales in the outer
region, which is parallel to the model fit. (b) The power law between the fitted kv and the fitted energy spectrum
C2

v〈|v̂(kv)|2〉 for all wall-normal locations, as a function of kv . Inset (c) shows the estimated value of Cv inferred
from the quotient of C2

v〈|v̂(kv)|2〉 and φuu(kx = kv).

expect the energetically dominant large scale to decrease in size linearly with y as reported
based on experiments by Kim & Adrian (1999).

Figure 6(a) shows the variation of kvδ with wall-normal position as the solid black line.
Near the wall, the characteristic length scale of the advection according to the model is
roughly constant with a value around kvδ ≈ 3.8, consistent with the footprint of a LSM.
However, for y/δ � 0.3, the wavenumber, kv , begins to increase linearly with wall-normal
height, as Kim & Adrian (1999) observed for the dominant large scale in the outer region
of pipe flow experiments. Comparing the trend in kvδ with the pipe flow observations
(shown in squares), the relevant wavenumber for the model fit tends to be about three
times larger than the dominant VLSM scale, kv ≈ 3kVLSM , and thus, is better represented
by the boundary layer thickness itself in the near-wall region and then by smaller scales
farther from the wall. In other words, the empirical kv represent an intermediate range of
energetically dominant wavenumbers between the outer scale and smaller, viscous scales,
varying with wall-normal location.

The parameter, C2
v〈|v̂(kv)|2〉, represents the spectral energy associated with the

dominant large scale of the advection, 〈|v̂(kv)|2〉, and the energy associated with similar,
neighbouring scales that is captured through the scaling factor Cv . The expected behaviour
of the spectral energy parameter was considered from the perspective of the spectral
overlap theory of Perry, Henbest & Chong (1986). For a general, wall-bounded flow, within
the log layer, we expect a k−1

x scaling of the spectral energy density as a result of overlap
between outer- and attached-eddy length scales, and a k−5/3

x scaling as a result of overlap
between attached-eddy and dissipative length scales. Assuming a continuous spectral
energy density, we would then expect a spectral scaling kn

x with exponent, n, between these
two limits −5/3 < n < −1 for scales that range from outer scales to detached eddies that
are larger than dissipative scales. Figure 6(b) shows the variation of C2

v〈|v̂(kv)|2〉 with
kvδ and indicates a power law spectral scaling with exponent −3/2, consistent with the
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range of length scales identified in figure 6(a). This power law spectral scaling provides
qualitative support for the interpretation of the kv and C2

v〈|v̂(kv)|2〉 parameters in our single
wavenumber approximation of the advection signal, v.

The scaling factor Cv is designed to capture the additional energy associated with other
interacting large scales of the v signal that was neglected by the single wavenumber
mathematical simplification. In order to assess its relative magnitude, independent from
the spectral energy associated with the single scale, 〈|v̂(kv)|2〉, we used the streamwise
energy spectral density, φuu(kx, y), evaluated at the fitted wavenumbers, kv , as a means
of estimating 〈|v̂(kv)|2〉. Figure 6(c) shows C2

v〈|v̂(kv)|2〉 divided by φuu(kx = kv), in
order to isolate an approximation of Cv . As expected, Cv is roughly constant across the
boundary layer, with a magnitude around 4–6, indicating that the other wavenumbers
that contribute to the scale-interaction behaviour similarly (proportionally) to the single
dominant wavenumber, kv .

The spectral trends for the 1-D scale-interaction model shown in figure 6 were also
examined for the other Reynolds numbers described in table 1 and the equivalent results
are presented in Appendix D. The experiments at all Reynolds numbers demonstrated
roughly the same behaviour, but we were not able to identify any trends in the parameter
values with respect to the Reynolds number, itself.

Because the 1-D scale-interaction version of the sweeping model does not contain any
kz dependence, the fit displayed in figure 4(b) applies for all kz, consistent with the very
weak dependence on kz shown in figure 5(a). In reality, we might expect both the 3-D and
scale-interaction effects to contribute, and ideally a combined model could be derived to
express both of these effects. But in the present analysis, we are limited to concluding
that the scale-interaction model provides an explanation for the increased convection
velocity variance at low kx, without introducing kz dependence. This appears consistent
with experiments, although the exact quantification of the relative contributions of the
nonlinear effect remains unknown, and the experiments considered a limited range of
spanwise wavenumbers.

Besides examining the variability of the convection velocity, we also investigated the
relationship between variations in convection velocity to the average inclination angles of
the corresponding velocity modes.

4. Inclination angles, convection velocities and structure size

4.1. Inclination angles from the space–time cross-spectrum
The streamwise cross-spectrum between two wall-normal locations has been used by
Deshpande et al. (2019) to obtain the wavenumber dependence of structure inclination
angles, and here we extend their procedure to the 2-D kx/ω spectrum in order to obtain the
simultaneous wavenumber and phase-speed dependence of the inclination angles. Starting
from two fluctuating streamwise velocity signals separated in height by �y, u(x, t; y) and
u(x, t; y + �y), we define the cross-spectrum as

φuyuy+�y(kx, ω; y) = 〈û∗(kx, ω, y)û(kx;ω, y + �y)〉, (4.1)

where û denotes the space–time Fourier transform of u, superscript ∗ denotes the complex
conjugate and 〈·〉 denotes the ensemble average over all space–time segments in the
ensemble (calculated following the same procedure as the space–time spectrum itself,
described in § 3.1). The phase of the ensemble-averaged complex cross-spectrum, θ , is
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Δα > 0 Δα < 0

αc̃– αc̃=0 αc̃+

Δα = 0 Δα < 0

c̃ < 0 c̃ = 0 c̃ > 0

c̃ < 0 c̃ = 0 c̃ > 0 x

y

y0

y0 + �y

Δα = 0 Δα > 0

(a) (b)

Figure 7. Illustration of the inclination angle, α, calculated from the cross-spectrum between measurements at
y0 and y0 + �y, for modes with three different relative phase speeds, c̃. The relative inclination angle, �α, with
respect to the inclination angle of the mode with the mean phase velocity, c̃ = 0, is also marked. The differing
trends for large scales near the wall (a) and smaller scales away from the wall (b) are explained in § 4.2.

then defined as

θ(kx, ω; y) = tan−1

{
Im
[
φuyuy+�y

]
Re
[
φuyuy+�y

]
}

(4.2)

and the average inclination angle, α, measured with respect to the wall, is defined as

α(kx, ω; y) = tan−1
{

�y
�x

}
, where �x = −θ(kx, ω; y)

kx
. (4.3)

Note that because the cross-spectrum phase is bounded to the branch −π < θ <

π, the measurable inclination angle is also bounded for each wavenumber, kx,
by tan−1(kx�y/π) < α < π − tan−1(kx�y/π). In other words, the minimum (and
maximum) detectable inclination angle magnitudes increase with increasing kx. Physically,
inclination angles smaller than π/2 indicate downstream inclination, where α = 0 aligns
with the wall itself; angles greater than π/2 indicate upstream inclination.

Figure 7 illustrates the geometric sense of the inclination angle defined from the
cross-spectrum. Because of resolution limits at high Reynolds number, the near-wall
region was not resolved and, thus the origin for the angle measurement, y0, was fixed to the
minimum wall-normal location, y/δ ≈ 0.04. The distance between neighbouring points
for the inclination calculation was chosen as the spatial resolution in the wall-normal
direction, �y/δ ≈ 0.0375. But the resulting trends in inclination angle, α, with scale and
phase speed were relatively robust to the specific choices of y0 and �y. The variation with
the choice of y0 is a result of the changing velocity profile across the boundary layer and
will be examined below in figure 9. We also examined doubling the magnitude of �y and
observed no qualitative differences in the inclination angle trends (not shown).

In the analysis below, we employed a normalized phase speed, c̃ = (c − μ)/σ , using
the average phase speed μ and standard deviation, σ , for each wavenumber kx. Figure 7
illustrates modes going faster than the mean, c̃ > 0, at the mean, c̃ = 0, or slower than
the mean, c̃ < 0. Each of these modes has a corresponding inclination angle, α, and we
defined the difference between that inclination angle and the angle associated with modes
at the mean phase speed as �α(kx, c̃) = α(kx, c̃) − α(kx, c̃ = 0). Then �α > 0 indicates
a mode that is inclined farther away from the wall than the mode at the mean velocity, and
�α < 0 indicates a mode inclined shallower with respect to the wall than the mode at the
mean velocity.

The interpretation of the inclination angle requires a bit of care due to the potential
bias induced by isotropy of small scales. Appendix B discusses the details, but the crucial
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Figure 8. (a) Inclination angle α for all wavenumbers and phase speeds within one standard deviation of
the mean, |c̃| < 1 at y/δ ≈ 0.1. (b) The inclination angle deviation from the mean convection velocity,
�α(kx, c̃) = α(kx, c̃) − α(kx, c̃ = 0), which shows opposite inclination trends for faster and slower moving
large-scale structures.

point for the following analysis is that the calculated α represents an upper bound on
the inclination angle. This bound is tighter for lower kx and becomes increasingly loose,
biased toward 90◦ with higher kx. The confidence in the meaning of α for any given
combination of (kx, c, y) can be determined via appropriate thresholds on the linear
coherence spectrum, γ 2, used previously in Deshpande et al. (2019) and Baars, Hutchins
& Marusic (2017), and only angle measurements with sufficient robustness are included in
this analysis.

4.2. Inclination angle variation with convection velocity
Applying this cross-spectrum technique, and transforming from ω to c = ω/kx, we
calculated the ensemble average inclination angles for each (kx, c) pair. Figure 8(a) shows
the variation in the average inclination angle α with respect to kx for the range of phase
speeds within one standard deviation of the mean, |c̃| < 1. Examining the trend along the
mean phase speed, c̃ = 0, we note that as the wavenumber increases, there is a steady
increase in inclination angle from an angle of approximately 20◦ for the largest scales
up to 90◦ for the smallest scales. This increase was also observed by Deshpande et al.
(2019), albeit for just the lower range of wavenumbers. They concluded that the typical
attached-eddy inclination angle was 45◦, whereas the inclination of large-scale packets was
closer to the traditionally assumed 15◦. For the small scales, the nearly linear increase in
inclination angle with increasing kx is roughly uniform across all phase speeds, c̃. However,
for the LSMs, there is a noticeable variation of inclination angle with phase speed.

Figure 8(b) shows the relative inclination angle, �α, with respect to that of modes
travelling at the mean phase speed. For large scales, kxδ � 4, modes moving slower than
the mean appear to be more steeply inclined than those convecting at the mean itself,
whereas modes moving faster than the mean appear to have shallower inclination to the
wall. For small-scale structures, the trend is reversed, albeit weakly.
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(a) (b)
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〈�α(kx, c̃–)〉 〈�α(kx, c̃+)〉

Figure 9. Scale-dependent inclination angle difference, �α, averaged over phase speeds (a) c̃ < 0 and
(b) c̃ > 0, for different wall-normal locations. The black dashed line represents the scale of kxδ = 0.5(y/δ)−1

that appears to divide the shear-driven region in the lower-left corner from the eddy-structure region in the
upper right.

These trends can be explained in terms of the form of the coherent structures and the
mean shear of the flow. Due to their size, the large-scale structures are affected strongly by
the mean shear of the boundary layer, which elongates and inclines coherent motions near
the wall, as noted by Li et al. (2022). As these structures convect faster, the relative effect
of the mean shear across the structure height becomes stronger, resulting in increased
inclination toward the wall.

By contrast, the small-scale structures are not as strongly distorted by the mean shear.
As they convect faster, they experience an associated increase in inclination angle that we
speculate is a consequence of the asymmetry of the eddy shape itself. For instance, in
Theodorsen’s classic hairpin vortex shape, the geometry of the two legs is substantially
different from the head. And more generally, depending on the eddy composition (e.g. the
orientation of pairs of prograde and retrograde vortices, see Natrajan, Wu & Christensen
2007), different spatial regions of an eddy can experience different accelerations from
purely kinematic considerations, resulting in a change of inclination even in the absence
of a mean shear. Of course, eddy dynamics may also be an important consideration beyond
kinematics, but we focus here on the simplest considerations that can fit the observations.

According to this proposed explanation, the cutoff wavenumber, kx, between eddies
whose inclination is shear dominated versus eddies whose inclination is due to their
vortex structure should vary with wall-normal location, y, as the strength of the mean
velocity gradient varies. Furthermore, for a logarithmic velocity profile, where the velocity
gradient scales as y−1, we would expect the cutoff wavenumber to vary according to
kx ∼ y−1. To test this hypothesis, we averaged the profile of �α separately over the
positive and negative phase-speed deviations, weighted by the spectral energy, φuu(kx, c),
to obtain 〈�α(kx, c̃−)〉 for c̃ < 0 and 〈�α(kx, c̃+)〉 for c̃ > 0. These average trends in the
inclination angle discrepancy were then plotted against wall-normal location, as shown in
figure 9(a,b).

For the case of slower than average phase speeds, shown in figure 9(a), we find clear
evidence for a shear-dominated region near the wall, at lower wavenumbers, where the
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inclination angle variation, �α, is opposite (red) in sign to the phase-speed variation, c̃.
This shear region appears to be confined by kx � y−1. Outside of the region, the sign
between �α and c̃ is reversed (blue), where we speculate that the inclination angle change
is largely determined by the eddy vortex structure and not the shear. For the case of faster
than average phase speeds, shown in figure 9(b), the same trends appear, although the
evidence for the kx � y−1 cutoff is weaker. These distinct regions also appear across
other Reynolds numbers, as illustrated in Appendix D. This general trend is also shown
in figure 7, for large-scale, near-wall structures (right) compared with small-scale, outer
structures (left).

To further support the above claim that eddy geometry and mean shear are key factors
in explaining the inclination angle/phase-speed trends, we develop a crude kinematical
model based on an asymmetric rigid ‘eddy’ in Appendix E. The model illustrates how
the shear-driven inclination effect and the vortex structure inclination effect can result in
opposite behaviour with respect to small changes in the convection velocity of an eddy.
More detailed examination of the fine structure of instantaneous eddies is still needed to
provide additional validation for these observations. But the basic variation of inclination
angle across structures with different phase speeds appears to be the result of competing
physical mechanisms in the turbulent boundary layer.

5. Conclusions

Understanding the scale-dependent convection velocities of coherent structures in
wall-bounded turbulence is crucial for both the fundamental problem of modelling
turbulent flows and for the practical task of transforming temporal experimental
measurements into meaningful spatial descriptions. Significant research efforts have
been devoted towards quantifying scale-dependent mean convection velocities and their
deviations from Taylor’s frozen turbulence hypothesis, but less attention has been paid
toward the statistical variation in convection velocities about their mean. In the last decade,
efforts at modelling the space–time turbulence spectrum have suggested that the spectral
width in the frequency domain, which corresponds to the variation in phase speeds, can
be associated with fluctuations in the large-scale advective motions in the flow. But these
models did not consider the scale dependence of the phase-speed variability or the physical
consequences of that variability.

In the present study, we first calculated the 2-D space–time spectra of turbulent
boundary layers in the range of Reτ = 530–3070 and validated the measurements against
hotwire and DNS calculations, to within the attenuation limits of PIV. We then transformed
the frequency domain, ω, into phase speed, c, and calculated the conditional spectra in
order to observe the variation in its phase-speed width, σ , with wavenumber, kx. Using
this experimental data, we arrived at the following four primary conclusions.

(i) We noted that the largest-scale motions exhibit the highest variability in phase
speeds, and that variability decreased inversely with streamwise wavenumber until
it saturated at a constant level for small-scale motions. Wilczek et al. (2014) had
suggested that the kx dependence of spectral width could be the result of scale
interactions or 3-D effects, and they generated a model for the latter.

(ii) We showed that this 3-D sweeping model couples the spanwise and streamwise
wavenumbers together in a stronger way than was observed in our wall-parallel
experiments, and thus we considered the possibility that scale interactions in one
dimension could better explain the variation in spectral width with kx alone.
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(iii) By extending the 1-D random-sweeping model of the space–time spectrum
developed by Wilczek & Narita (2012) to allow for scale interactions between
the large sweeping motions and the small-scale turbulence, we obtained a simple
analytical description of the kx-dependent spectral width that depended on two
parameters: the wavenumber of the LSMs, kv , and the corresponding spectral power,
C2

v〈|v̂(kv)|2〉. And importantly, this model for the variance was not coupled to the
spanwise wavenumber. We then showed that the empirical values of these two
parameters were consistent with their physical interpretations within the proposed
model. The wavenumber, kv , identified a range of energetically dominant large-scale
modes, and the spectral power, C2

v〈|v̂(kv)|2〉, was related to the wavenumber via a
power law scaling that was consistent with spectral similarity theory.

Despite the consistency of the 1-D scale-interaction sweeping model and
its ability to describe the phase-speed variance for large scales without a
coupled kz dependence, it was impossible to quantitatively separate the 3-D and
scale-interaction effects on the phase-speed variance, which may both contribute to
the true convection velocity variance.

After modelling the kx dependence in the phase-speed variance, we then explored
the physical consequences of a distribution of different phase speeds for a given
wavenumber. Using the cross-spectrum between space–time measurements at two
adjacent wall-normal locations in the boundary layer, the structure inclination angles
were calculated as a function of wavenumber and phase speed. Consistent with
previous observations by Deshpande et al. (2019), we found an increasing inclination
angle with decreasing scale size.

(iv) We also noted variation in inclination angles with phase speed for the large-scale
structures. Velocity modes moving slower than the mean phase speed for their
size tended to be inclined away from the wall more than faster moving modes.
The variation in inclination angle was described as a consequence of shear-driven
stretching of large eddies in proportion to their convective velocity, and this
explanation appeared to capture important qualitative features of the observed
phase-speed variation.

The research provides both a simple model to describe the scale-dependent variability in
phase speeds of coherent motions, as well as a heuristic picture of how variations in phase
speed are associated with variations in modal inclination angles via a shearing mechanism.
These results may allow for improving turbulence models that depend on the superposition
of velocity modes with varying phase speeds, and for understanding how the choice of
phase speeds is be expected to impact velocity mode geometries.
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Figure 10. The 2-D spectral energy density for Reτ = 3070 at y/δ ≈ 0.1 with mean subtraction of (a) the
global ensemble mean; and (b) the local mean of each sample within the ensemble. Due to symmetries of the
2-D spectral density, the integral over any half-plane includes half of the total streamwise velocity variance,
u′2, at the corresponding height, and the spectra have been normalized accordingly. The red line represents the
isocontour of spectral energy density containing 30 % of the total streamwise energy.

Appendix A. Mean subtraction in spectral calculations

There are two approaches to mean subtraction when calculating the turbulence spectra
that yield different results, particularly with respect to the large-scale energy. LeHew et al.
(2011) calculated the 2-D spectral density of the streamwise velocity fluctuations from
ensemble PIV measurements where the global mean velocity across the entire ensemble
was removed, following the standard procedure recommended in Bendat & Piersol (2010).
This procedure applied to the current measurements shown in figure 10(a). However,
because the velocity signals are not strictly stationary (the mean varies slightly across
the different samples of the ensemble), subtraction of the global mean results in spectral
energy at zero frequency/wavenumber (as noted in LeHew 2012).

This energy in the zero frequency component represents the average squared deviation
of the sample means, ūn, from the global ensemble mean, ū, given by 〈(ūn − ū)2〉,
and is a measure of the non-stationarity of the record (Otnes 1978). Unfortunately, this
DC component of the spectrum leaks into neighbouring low frequencies/wavenumbers
resulting in the appearance of spurious energy density at a range of large scales,
including scales larger than the measurement domain itself, which obviously were not
experimentally resolved. More problematically, in the case of LeHew et al. (2011), this
spurious energy appears for negative frequencies, indicating (perhaps misleadingly) that
a non-negligible amount of the spectral energy is associated with upstream-travelling
structures.

Because of the problem of DC spectral leakage, an alternative approach to spectral
estimation involves subtracting the local mean of each sample prior to the Fourier
transform, instead of removing the global ensemble mean. Local mean subtraction
has been widely employed (Nikias & Raghuveer 1987; Keisler 1976) and has been
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recommended as the preferable approach by Saunders & Hamrick (1982). Figure 10(b)
shows the current measurements processed accordingly.

By subtracting the local mean, zero spectral energy is explicitly enforced at zero
frequency/wavenumber, and thus no spurious energy appears at neighbouring large scales,
and the 2-D spectral density appears shifted away from the origin (in both directions)
with the maximum energy density centred near the size of the measurement domain itself.
Importantly, we note that without the DC spectral leakage, the energy density associated
with upstream-travelling structures (negative frequencies) is indeed negligible, as would
be expected for large-scale coherent structures travelling downstream.

In this study we have adopted the local sample mean subtraction in order to avoid the
spurious large-scale energy leakage, albeit at the cost of obscuring the deviations from
stationarity within the ensemble. The energy excluded by this choice can be quantified
by comparing the energy of the non-stationarity to the energy of fluctuations assuming
stationarity, as

〈(ūn − ū)2〉
u′2 ≈ 9 %, (A1)

and this compares well with the 12 % of total TKE that was attributed to
upstream-travelling waves in LeHew (2012) due to their use of the global mean.

Appendix B. The interpretation of the inclination angle from the cross-spectrum

In figure 8(a) the trend of increasing inclination angle with wavenumber was noted,
and caution was called for regarding its interpretation. Figure 11(a) shows that trend
more clearly for just the mean phase speed, c̃ = 0. As noted in the main text, the
interpretation of this inclination angle trend requires some care because α is the result
of an ensemble-averaged spectra that reflects changes in the dominant inclination angle of
structures but also increased variability of the inclination angle across the ensemble and
increased isotropy of the structures, both of which can bias the average inclination angle.

Deshpande et al. (2019) used the spectral coherence, γ 2, utilized in Baars et al. (2017), as
a method to threshold the significance of measurements inferred from the cross-spectrum.
The spectral coherence can be written as

γ ( y; kx, ω) =

∣∣∣∣∣∣∣∣∣∣∣∣

〈⎛⎜⎝ |û ( y; kx, ω) | |û ( y + �y; kx, ω) |〈∣∣û ( y; kx, ω)
∣∣2〉1/2 〈∣∣û ( y + �y; kx, ω)

∣∣2〉1/2

⎞
⎟⎠

︸ ︷︷ ︸
amplitude weighting

eiθ

〉
∣∣∣∣∣∣∣∣∣∣∣∣
, (B1)

where the ensemble average is performed over the product of the complex phase angle
between the two measurements, in the form eiθ , and a weighting function that describes
the amplitude of the spectral signals at the two measurements. Without the weighting
factor, the coherence is just the mean resultant length of the phase angle vectors, R, from
circular statistics (Fisher 1995) defined as

R =
∣∣∣〈eiθ

〉∣∣∣ , (B2)

which is related directly to the variance of the phase angle, Vθ = 1 − R. Therefore, (1 − γ )

is a weighted measure of the variance of the cross-spectrum phase (since γ is bounded
between [0, 1]).
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Figure 11. (a) Inclination angle α calculated from the cross-spectrum defined in (4.3) (black solid line) and
coherence, γ 2 (grey solid line) at c̃ = 0 and y/δ ≈ 0.1. A synthetic coherence calculated with the same
amplitude but uniform randomly distributed phase angles is shown in the dashed line. (b) The full coherence
map for the phase-speed range, |c̃| ≤ 1, at the same wall-normal location corresponding to the inclination angle
map shown in figure 8(a).

If we assume that the phase difference θ is uniform for all signals in the ensemble, then
we can consider the effect of just the amplitude weighting contribution. The weighting
depends on the extent of a kx-sized structure in the y direction: if the structure is highly
anisotropic and, thus extends far along its axis of inclination, the amplitude weighting
will be unaffected as the spectral amplitude at both locations can be comparable. But
as the structure becomes more isotropic and, thus extends less far along its axis of
inclination (i.e. takes on a more spherical shape), this will necessarily suppress the
amplitude weighting that is based on two measurements separated by �y, since the spectral
amplitude at one location will necessarily be substantially different than the amplitude
at its neighbour. So, for a fixed inclination angle, we would expect γ to decrease with
increasing kx as smaller scales become more isotropic, until γ hits an isotropic floor.
This floor could also be influenced by the noise floor from the PIV measurements that
is assumed isotropic at high wavenumbers. The grey line in figure 11 shows the coherence
versus wavenumber (on the right axis) and the isotropic floor of γ 2 is clearly visible for
wavenumbers kxδ � 20.

On the other hand, if we assume that the weighting is fixed and uniform, but the θ is
randomly distributed, then γ = 0. In other words, in order for γ to decrease below the
isotropy floor, there must be a significant variance in the phase angles, θ . The dashed line
in figure 11 shows a synthetic coherence, γ 2, calculated by randomizing the phase angles in
the ensemble average while keeping the weighting unchanged, and the coherence descends
to zero for the high wavenumbers, as expected.

In the region of the isotropy floor of the coherence, we expect to measure an inclination
angle of 90◦, irrespective of the true inclination of the structures, as a consequence of
structure isotropy, as illustrated geometrically in Appendix C, and that is exactly what we
find in the black line for α in that wavenumber range. For inclination angle measurements
outside of this isotropy region, we expect the inclination angle to be biased upwards
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Figure 12. Illustration of how the eccentricity affects the inclination angle measurement. (a) An ellipse with
true inclination angle of 30◦ marked by the blue dashed line along its inclination axis, and the measured
inclination marked by the solid red line that is tangent to its boundary at the measurement location y = 0. The
width of the ellipse is fixed as the wavelength of the structure. (b) The measured inclination angle, α̃, is shown
as a function of the eccentricity of the ellipse, in solid black, compared with the true inclination angle marked
with the dashed blue line. For increasing isotropy, the measured inclination tends to 90◦.

towards 90◦ due to the isotropy effect, even when the phase angle is well defined (i.e. even
when the coherence is above the synthetic coherence threshold for random phases).

In light of this, we should interpret α as an upper bound on the mean inclination angle,
as long as the corresponding coherence γ exceeds both its random-phase value and its
isotropy floor. The larger the wall-bounded coherent structure is, the less isotropic, and
the closer α is to capturing a realistic inclination angle; the smaller and more isotropic the
structure, the closer α approaches an upper bound on the inclination angle.

In the main text we included only inclination angles that satisfied these coherence
criteria, keeping in mind the bias that may occur with increasing wavenumber. A map
of the coherence values corresponding to the inclination angle map of figure 8(a,b) is
shown in figure 11(b) to confirm that the entire range of phase speeds within one standard
deviation of the mean, |c̃| < 1, satisfies the coherence threshold requirements. (The values
of coherence shown here are substantially higher than those appearing in Deshpande et al.
(2019) due to the small, fixed value of �y used here versus the larger, variable wall-normal
displacement used in their study.)

Appendix C. Isotropy and inclination angle detection

In order to illustrate the difficulty of detecting inclination angles from highly isotropic
structures, we consider a simple geometrical model of a 2-D eddy. Here it is represented by
an elliptical region of space with high correlation of some flow variable, i.e. an elliptical
coherent structure, with the centre at (x0, y0) (taken here without loss of generality to
be the origin), major axis a and minor axis b, such that a ≥ b and eccentricity e =√

1 − (b/a)2, shown in figure 12(a). The inclination angle of the ellipse, α, is measured
from the positive x axis to the major axis a, in the first quadrant. The wavelength of the
structure, λ, is the diameter of the ellipse measured at y = 0.
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The general equation of a tilted ellipse is given in polar coordinates (r, θ) as

r = ab√
[b cos (θ − α)]2 + [a sin (θ − α)]2

. (C1)

Solving for the major and minor axis, (a, b) in terms of the fixed wavelength and
eccentricity, (λ, e), i.e. for the case where (r, θ) = (λ/2, 0), yields

a = λ

2
√

2

√
e2 − 2 + e2 cos (2α)

e2 − 1
, (C2)

b = λ
2

√
1 − e2 cos2 (α). (C3)

Finally, to solve for the slope of the ellipse based on its centre of mass, we can calculate
dy/dx along y = y0, or expanding

dy
dx

= ∂y
∂r

(
dx
dr

)−1

+ ∂y
∂θ

(
dx
dθ

)−1

, (C4)

where x = r cos (θ) and y = r sin (θ). Solving and substituting for θ = 0 yields

dy
dx

∣∣∣∣
(λ/2,0)

= b2 cot (α) + a2 tan (α)

a2 − b2 (C5)

= (1 − e2) cot (α) + tan (α)

e2 (C6)

and, therefore, the inferred/measured inclination angle, α̃, is given by

α̃(α, e) = tan−1
(

(1 − e2) cot (α) + tan (α)

e2

)
, (C7)

and we can see that in the limit as e → 1 (very elongated structures), α̃ → α and in the
limit as e → 0 (symmetric, isotropic structures), then α̃ → π/2, as shown in figure 12(b).
Thus, we expect to obtain 90◦ inclination angles for structures with low anisotropy,
consistent with the discussion of the small-scale coherence in Appendix B.

Appendix D. Reynolds number variation

The observations about the variation in phase speed and the relationships between
phase-speed variability and inclination angle were studied at all of the Reynolds numbers
described in table 1, although the main text includes only the results for the highest
Reynolds number.

Figure 13 is the companion for figure 6 that illustrates the trends in the two fitting
parameters, kv and C2

v〈|v̂(kv)|2〉, with wall-normal location. In the main text, these two
trends were explained in terms of the dominant large-scale wavenumbers and the spectral
similarity theory between wavenumbers and the energy distribution, respectively. We
observe similar results across all of the Reynolds numbers, although no distinct trends with
Reynolds number were obtained due to the limited range of flow velocities considered.

Figure 14 is the companion for figure 9 that illustrates the relationship between
the inclination angle variation and phase-speed variation for phase speeds slower than
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Figure 13. The same results as shown in figure 6 but for all five Reynolds numbers; darker shades of grey
correspond to increasing Reτ . The wavenumber and wall-normal trends are robust across experiments at
different Reynolds numbers.
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Figure 14. Scale-dependent inclination angle difference, �α, averaged over phase speeds for c̃ < 0 for
(a) Reτ = 3070 and (b) Reτ = 2410, for different wall-normal locations. The black dashed line represents
the scale of kxδ = 0.5(y/δ)−1 that appears to divide the shear-driven region in the lower-left corner from the
eddy-structure region in the upper right.

the average, c̃ < 0, for Reynolds number Reτ = 3070 (figure 14a) and Reτ = 2410
(figure 14b). As the Reynolds number decreases, the shear-driven region moves to slightly
lower wavenumbers, consistent with the uτ dependence predicted in the rigid ‘eddy’ model
in Appendix E. The other Reynolds number cases showed the same behaviour and are not
reproduced here.
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Appendix E. Inclination angle model with rigid ‘eddy’ kinematics

In order to obtain a very crude picture of the relationship between variations in inclination
angle and convection velocity, we model a coherent eddy as a rigid body moving with
velocity c in a turbulent flow with convection velocity U, with characteristic length scale
λx = 2π/kx and moment of inertia I. Like studies of vortex rings (Gan, Dawson & Nickels
2012), we further assume that the rigid eddy has independent, signed drag coefficients, Ci,
at its head, Ch, and feet, Cf , defined by

Ci = Fi

1
2
ρλ2

x(Ui − c)2
, (E1)

where Ui is the local mean velocity near the head or feet. The mean velocity can be
expanded in Taylor series about the centre of mass of the body as Ui = U0 ± Uy(λ/2)

for the head (+) and the feet (−), where Uy is the velocity gradient in the y direction
evaluated at the centre of mass. The force is taken as positive in the streamwise direction
when (Ui − c) > 0, as reflected in the drag coefficient sign. For a representative case of a
structure whose head is accelerated by the surrounding upper flow and feet are decelerated
by the surrounding lower flow, Ch > 0 and Cf < 0.

Treating the centre of mass as a fulcrum, the torques at the head and feet are defined as

τh = −λx

2
Fh, τf = λx

2
Ff , (E2a,b)

and then the angular acceleration about the fulcrum, a, can be written as

a = I−1 (τh + τf
)
, (E3)

such that when the head experiences a greater positive force than the feet, the body
accelerates in the negative angular direction, a < 0, i.e. the body would tend to roll
forward. Therefore, this net torque would tend to incline the body further towards the
wall, and thus, a negative acceleration, a < 0, corresponds to a reduction in the inclination
angle, �α < 0.

Substituting the force definitions into the angular momentum balance in (E3), we obtain

a = − I−1ρλ2
x

2

[
Ch

(
U0 + Uy

λx

2
− c

)2

− Cf

(
U0 − Uy

λx

2
− c

)2
]

. (E4)

Then we perturb the angular acceleration and convection velocities (a, c) to (a + �a, c +
�c), linearize and subtract the unperturbed angular momentum balance, to obtain

�a = I−1ρλ2
x

2

[
(Cf + Ch)λx

dU
dy

+ 2(Cf − Ch)(c − U0)

]
�c. (E5)

Assuming the typical case noted above for Ch > 0 and Cf < 0, we note that (Cf − Ch) <

0. We further assume asymmetry between the head and feet, such that the feet have a
larger magnitude drag coefficient than the head due to their shape or orientation, and then
(Cf + Ch) < 0 also. Writing these two quantities explicitly with their typical signs, we can
simplify

�a =
(

I−1ρλ2
x

2
|Cf + Ch|

)[
−λx

dU
dy

+ 2
|Cf − Ch|
|Cf + Ch|(U0 − c)

]
�c, (E6)

where the quantity in parenthesis is always positive and the sign of the term in brackets
depends on the balance between its two contributions.
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The first term in the brackets, −λx(dU/dy), represents acceleration of the body due to
the mean shear, which is relevant when the shear is sufficiently strong and the body is large
enough to be affected by the shear directly. If this term alone dominated the acceleration
then we would expect �a ∼ −�c in the region of large structures and high shear, i.e. we
would expect structures moving faster than typical to be inclined closer to the wall.

The second term in the brackets, 2(|Cf − Ch|/|Cf + Ch|)(U0 − c), applies even in the
absence of any mean shear or for scales that are so small that the mean shear does not affect
them directly. This term represents variation in the acceleration of the structure due to the
asymmetry of its shape, i.e. differences in the drag coefficient between the head and feet
of the eddy. For instance, this might be the result difference between the drag coefficients
of prograde and retrograde vortices that constitute a coherent structure (Natrajan et al.
2007). For most of the logarithmic region of the boundary layer, (U0 − c) > 0; evidence
of this can be seen from the plot of the mean convective velocity, μ at y/δ = 0.2 in
figure 4(a). Therefore, if this term were dominant, then we would expect �a ∼ +�c, such
that structures moving faster than typical become more inclined upward from the wall. In
the limit of perfect asymmetry, Cf = −Ch, the vortex shape term becomes unbounded in
this simplified model.

In general, both of these effects – shear and vortex structure – could be relevant, in which
case it is the balance between them that determines the sign of the relationship between
�a and �c. When the shear effect is sufficiently strong, �a ∼ −�c, and that occurs when

−λx
dU
dy

+ 2
|Cf − Ch|
|Cf + Ch|(U0 − c) < 0, (E7)

λx
dU
dy

> 2
|Cf − Ch|
|Cf + Ch|(U0 − c). (E8)

This result can be made more specific by assuming a logarithmic velocity profile with
friction velocity uτ and Kármán constant κ to obtain

kx <

(
π

κ

uτ

(U0 − c)
|Cf + Ch|
|Cf − Ch|

)
1
y

for �a ∼ −�c. (E9)

This criterion on kxy establishes a region where the eddy is inclined predominantly by
the effect of the velocity gradient due to its large size. Outside of this region, for smaller
structures or in low-shear regions far from the wall, the opposite relationship is obtained,
�a ∼ �c, which is likely a consequence of the detailed structure of the eddies, here
represented naively by the two drag coefficients. The separating line between the shear and
eddy-structure regions is kx ∼ y−1, as illustrated by the dashed lines in the maps shown in
figures 9 and 14.

It is worth reiterating that this model is based on crude kinematic considerations of a
rigid eddy, and is designed only to provide the intuition that the effect of shear and the
effect of eddy-structure/vortex geometry can produce opposing inclination trends.

REFERENCES

BAARS, W.J., HUTCHINS, N. & MARUSIC, I. 2017 Self-similarity of wall-attached turbulence in boundary
layers. J. Fluid Mech. 823, R2.

BANERJEE, T. & KATUL, G.G. 2013 Logarithmic scaling in the longitudinal velocity variance explained by a
spectral budget. Phys. Fluids 25 (12), 125106.

BEALL, J.M., KIM, Y.C. & POWERS, E.J. 1982 Estimation of wavenumber and frequency spectra using fixed
probe pairs. J. Appl. Phys. 53 (6), 3933–3940.

989 A16-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

51
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.518


G. Cui and I. Jacobi

BENDAT, J.S. & PIERSOL, A.G. 2010 Random Data: Analysis and Measurement Procedures. John Wiley &
Sons.

BRILLINGER, D.R. 2001 Time Series: Data Analysis and Theory. SIAM.
CHAUHAN, K., HUTCHINS, N., MONTY, J. & MARUSIC, I. 2013 Structure inclination angles in the

convective atmospheric surface layer. Boundary-Layer Meteorol. 147 (1), 41–50.
CLIFF, W.C. & SANDBORN, V.A. 1973 Measurements and a model for convective velocities in the turbulent

boundary layer. NASA Tech. Rep. TN D7416.
CUI, G. & JACOBI, I. 2023 Prediction of the phase difference between large-scale velocity and Reynolds stress

fluctuations in wall turbulence. J. Fluid Mech. 969, A13.
CUI, G., RUHMAN, I. & JACOBI, I. 2022 Spatial detection and hierarchy analysis of large-scale particle

clusters in wall-bounded turbulence. J. Fluid Mech. 942, A52.
DE KAT, R. & GANAPATHISUBRAMANI, B. 2015 Frequency-wavenumber mapping in turbulent shear flows.

J. Fluid Mech. 783, 166–190.
DEL ÁLAMO, J.C. & JIMÉNEZ, J. 2009 Estimation of turbulent convection velocities and corrections to

Taylor’s approximation. J. Fluid Mech. 640, 5–26.
DEL ÁLAMO, J.C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R.D. 2004 Scaling of the energy spectra of

turbulent channels. J. Fluid Mech. 500, 135–144.
DENNIS, D.J.C. & NICKELS, T.B. 2008 On the limitations of Taylor’s hypothesis in constructing long

structures in a turbulent boundary layer. J. Fluid Mech. 614, 197–206.
DESHPANDE, R., MONTY, J.P. & MARUSIC, I. 2019 Streamwise inclination angle of large wall-attached

structures in turbulent boundary layers. J. Fluid Mech. 877, 1–13.
ELSINGA, G.E., POELMA, C., SCHRÃDER, A., GEISLER, R., SCARANO, F. & WESTERWEEL, J. 2012

Tracking of vortices in a turbulent boundary layer. J. Fluid Mech. 697, 273–295.
FERNHOLZ, H.H. & FINLEY, P.J. 1996 The incompressible zero-pressure-gradient turbulent boundary layer:

an assessment of the data. Prog. Aerosp. Sci. 32 (4), 245–311.
FISHER, N.I. 1995 Statistical Analysis of Circular Data. Cambridge University Press.
FLORES, O. & JIMENEZ, J. 2006 Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid

Mech. 566, 357–376.
FOUCAUT, J., CARLIER, J. & STANISLAS, M. 2004 PIV optimization for the study of turbulent flow using

spectral analysis. Meas. Sci. Technol. 15 (6), 1046.
GAN, L., DAWSON, J.R. & NICKELS, T.B. 2012 On the drag of turbulent vortex rings. J. Fluid Mech. 709,

85–105.
GENG, C., HE, G., WANG, Y., XU, C., LOZANO-DURÁN, A. & WALLACE, J.M. 2015 Taylor’s hypothesis

in turbulent channel flow considered using a transport equation analysis. Phys. Fluids 27 (2), 025111.
HE, G., JIN, G. & YANG, Y. 2017 Space–time correlations and dynamic coupling in turbulent flows. Annu.

Rev. Fluid Mech. 49, 51–70.
HE, G. & ZHANG, J. 2006 Elliptic model for space–time correlations in turbulent shear flows. Phys. Rev. E

73 (5), 2–5.
HOYAS, S. & JIMÉNEZ, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003.

Phys. Fluids 18 (1), 011702.
HUANG, H. 2019 Refining the connection between the logarithmic velocity profile and energy spectrum based

on eddy’s inclination angle. Phys. Rev. Fluids 4 (11), 1–10.
HUTCHINS, N. & MARUSIC, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A

365 (1852), 647–664.
JACOBI, I. & MCKEON, B.J. 2013 Phase relationships between large and small scales in the turbulent

boundary layer. Exp. Fluids 54 (3), 1481.
JIMÉNEZ, J., DEL ALAMO, J.C. & FLORES, O. 2004 The large-scale dynamics of near-wall turbulence.

J. Fluid Mech. 505, 179–199.
KEISLER, S.R. 1976 An assessment of prewhitening in estimating power spectra of atmospheric turbulence at

long wavelengths. NASA Tech. Rep. TN D8288.
KIM, J. & HUSSAIN, F. 1992 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A

5 (3), 695–706.
KIM, K.C. & ADRIAN, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417–422.
KRAICHNAN, R.H. 1964 Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys. Fluids 7 (11),

1723–1734.
LEE, M. & MOSER, R.D. 2015 Direct numerical simulation of turbulent channel flow up to. J. Fluid Mech.

774, 395–415.
LEHEW, J.A. 2012 Spatio-temporal analysis of the turbulent boundary layer and an investigation of the effects

of periodic disturbances. PhD thesis, California Institute of Technology.

989 A16-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

51
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.518


Convection velocity variability and structure inclination

LEHEW, J.A., GUALA, M. & MCKEON, B.J. 2011 A study of the three-dimensional spectral energy
distribution in a zero pressure gradient turbulent boundary layer. Exp. Fluids 51 (4), 997–1012.

LEHEW, J.A., GUALA, M. & MCKEON, B.J. 2013 Time-resolved measurements of coherent structures in the
turbulent boundary layer. Exp. Fluids 54 (4), 1508.

LI, X., HUTCHINS, N., ZHENG, X., MARUSIC, I. & BAARS, W.J. 2022 Scale-dependent inclination angle
of turbulent structures in stratified atmospheric surface layers. J. Fluid Mech. 942, 1–16.

LIN, C.C. 1953 On Taylor’s hypothesis and the acceleration terms in the Navier–Stokes equations. Q. Appl.
Maths 10 (4), 295–306.

LIU, C. & GAYME, D.F. 2020 An input–output based analysis of convective velocity in turbulent channels.
J. Fluid Mech. 888, A32.

LOZANO-DURÁN, A. & JIMÉNEZ, J. 2014 Time-resolved evolution of coherent structures in turbulent
channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471.

LUMLEY, J.L. 1965 Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids 8 (6),
1056–1062.

MARUSIC, I., MONTY, J.P., HULTMARK, M. & SMITS, A.J. 2013 On the logarithmic region in wall
turbulence. J. Fluid Mech. 716 (1976), 1–11.

MCKEON, B.J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech.
817, 1–86.

NARITA, Y. 2017 Spectral moments for the analysis of frequency shift, broadening, and wavevector anisotropy
in a turbulent flow. 3. Space science. Earth Planet. Space 69, 73.

NATRAJAN, V.K., WU, Y. & CHRISTENSEN, K.T. 2007 Spatial signatures of retrograde spanwise vortices in
wall turbulence. J. Fluid Mech. 574, 155–167.

NIKIAS, C.L. & RAGHUVEER, M.R. 1987 Bispectrum estimation: a digital signal processing framework.
Proc. IEEE 75 (7), 869–891.

OTNES, R.K. 1978 Applied Time Series Analysis. Wiley-Interscience.
OXLADE, A.R., VALENTE, P.C., GANAPATHISUBRAMANI, B. & MORRISON, J.F. 2012 Denoising of

time-resolved PIV for accurate measurement of turbulence spectra and reduced error in derivatives. Exp.
Fluids 53 (5), 1561–1575.

PERRY, A.E., HENBEST, S. & CHONG, M.S. 1986 A theoretical and experimental study of wall turbulence.
J. Fluid Mech. 165, 163–199.

RENARD, N. & DECK, S. 2015 On the scale-dependent turbulent convection velocity in a spatially developing
flat plate turbulent boundary layer at Reynolds number Reθ = 13 000. J. Fluid Mech. 775, 105–148.

SAUNDERS, K.D. & HAMRICK, F.C. 1982 A note on cross spectrum and coherence calculations. J. Geophys.
Res. 87 (C12), 9699–9703.

WILCZEK, M. & NARITA, Y. 2012 Wave-number-frequency spectrum for turbulence from a random sweeping
hypothesis with mean flow. Phys. Rev. E 86 (6), 1–8.

WILCZEK, M., STEVENS, R.J.A.M. & MENEVEAU, C. 2015a Height-dependence of spatio-temporal spectra
of wall-bounded turbulence – LES results and model predictions. J. Turbul. 16 (10), 937–949.

WILCZEK, M., STEVENS, R.J.A.M. & MENEVEAU, C. 2015b Spatio-temporal spectra in the logarithmic
layer of wall turbulence: large-eddy simulations and simple models. J. Fluid Mech. 769, 1–12.

WILCZEK, M., STEVENS, R.J.A.M., NARITA, Y. & MENEVEAU, C. 2014 A wavenumber-frequency spectral
model for atmospheric boundary layers. J. Phys.: Conf. Ser. 524 (1), 1–6.

WU, T., GENG, C., YAO, Y., XU, C. & HE, G. 2017 Characteristics of space–time energy spectra in turbulent
channel flows. Phys. Rev. Fluids 2 (8), 1–11.

WU, T. & HE, G. 2021a Space–time energy spectra in turbulent shear flows. Phys. Rev. Fluids 6 (10), 1–23.
WU, T. & HE, G. 2021b Stochastic dynamical model for space–time energy spectra in turbulent shear flows.

Phys. Rev. Fluids 6 (5), 1–23.
YANG, B., JIN, G., WU, T., YANG, Z. & HE, G. 2020 Numerical implementation and evaluation of

resolvent-based estimation for space–time energy spectra in turbulent channel flows. Acta Mechanica Sin.
36 (4), 775–788.

989 A16-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

51
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.518

	1 Background
	1.1 Models of the space--time spectrum of turbulence
	1.2 Measurement and quantification of convection velocities
	1.3 Convection velocities and the inclination angles of coherent structures

	2 Turbulent boundary layer experiments and validation
	3 Scale-dependent variance of convection velocities
	3.1 Space--time spectral density
	3.2 Conditional wavenumber spectrum and convection velocity variance
	3.3 Unexplained convection velocity variance from the (kx,kz,) spectrum
	3.4 Wavenumber-dependent sweeping model
	3.5 Physical motivation and trends for the model parameters

	4 Inclination angles, convection velocities and structure size
	4.1 Inclination angles from the space--time cross-spectrum
	4.2 Inclination angle variation with convection velocity

	5 Conclusions
	Appendix A. Mean subtraction in spectral calculations
	Appendix B. The interpretation of the inclination angle from the cross-spectrum
	Appendix C. Isotropy and inclination angle detection
	Appendix D. Reynolds number variation
	Appendix E. Inclination angle model with rigid `eddy' kinematics
	References

