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Abstract. Totally η-umbilic real hypersurfaces are the simplest examples of real
hypersurfaces in a non-flat complex space form. Geodesic hyperspheres in this ambient
space are typical examples of such real hypersurfaces. We characterise every geodesic
hypersphere by observing the extrinsic shapes of its geodesics and using the derivative
of its contact form.
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1. Introduction. An n-dimensional non-flat complex space form M̃n(c) is a
complex n(� 2)-dimensional complete and simply connected Kähler manifold of non-
zero constant holomorphic sectional curvature c. It is holomorphically isometric to
either an n-dimensional complex projective space �Pn(c) of constant holomorphic
sectional curvature c or an n-dimensional complex hyperbolic space �Hn(c) of constant
holomorphic sectional curvature c accordingly as c is positive or negative.

In this paper, we study real hypersurfaces isometrically immersed into M̃n(c) from
two points of view. One is to observe extrinsic shapes of geodesics on a real hypersurface
M in the ambient space M̃n(c), and the other is to study the contact form η on M in
M̃n(c). In submanifold theory, it is natural to understand the shape of a Riemannian
submanifold by observing the extrinsic shapes of geodesics on the submanifold (for
example, see [3, 6, 7, 10, 12, 16]). A surface M in �3 is locally either a plane or
a standard sphere if every geodesic on M is mapped to a circle in �3 through the
isometric immersion. In M̃n(c), unfortunately, there exist no real hypersurfaces all of
whose geodesics are mapped to circles in M̃n(c), because this ambient space admits no
totally umbilic real hypersurfaces. However, there do exist real hypersurfaces some of
whose geodesics are mapped to circles in M̃n(c). Totally η-umbilic real hypersurfaces
are the simplest examples of real hypersurfaces satisfying this geometric property. From
the second point of view concerning contact forms, it is known that there exist no real
hypersurfaces whose contact form is closed with respect to the exterior derivative on M
(cf. [15]). We are hence interested in making a condition on contact forms weaken. We
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investigate the exterior derivatives of contact forms, extrinsic shapes of geodesics and
sectional curvatures on totally η-umbilic real hypersurfaces, and characterise geodesic
hyperspheres among all real hypersurfaces in M̃n(c).

2. Characterisations. Let M2n−1 be a real hypersurface in a non-flat complex
space form M̃n(c) with a unit normal local vector field N . It has an almost contact
metric structure (φ, ξ, η, 〈 , 〉) induced from the standard Riemannian metric 〈 , 〉 and
the complex structure J of the ambient space M̃n(c). This quadruple is formed by
induced metric and a (1, 1)-tensor φ, a vector field ξ and a 1-form η given by

〈φX, Y〉 = 〈JX, Y〉, ξ = −JN and η(X) = 〈ξ, X〉 = 〈JX,N 〉.
These ξ and η are usually called the characteristic vector field and the contact form on
M, respectively.

A real hypersurface M of M̃n(c) (n � 2) is called totally η-umbilic if its shape
operator A is of the form A = αI + βη ⊗ ξ for some smooth functions α and β on
M. Note that these two smooth functions α and β are automatically constant. We
usually say a real hypersurface M to be Hopf if its characteristic vector field ξ is
principal at each point of M. By the definition, we see that every totally η-umbilic
real hypersurface M with A = αI + βη ⊗ ξ is a Hopf hypersurface having two distinct
constant principal curvatures α and δ = α + β (cf. [14, 15]). A totally η-umbilic real
hypersurface of M̃n(c) (n � 2) with shape operator A = αI + βη ⊗ ξ is hence locally
congruent to one of the following:

(P) a geodesic hypersphere G(r) of radius r (0 < r < π/
√

c ) in �Pn(c),
(Hi) a horosphere HS in �Hn(c),
(Hii) a geodesic hypersphere G(r) of radius r (0 < r < ∞) in �Hn(c),
(Hiii) a tube T(r) of radius r (0 < r < ∞) around a totally geodesic holomorphic

hyperplane �Hn−1(c) in �Hn(c).
In these cases, α, β are as follows:

α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
√

c /2) cot(
√

c r/2),√|c| /2,

(
√|c| /2) coth(

√|c| r/2),

(
√|c| /2) tanh(

√|c| r/2),

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(
√

c /2) tan(
√

c r/2), G(r) in �Pn(c),√|c| /2, HS,

(
√|c| /2) tanh(

√|c| r/2), G(r) in �Hn(c),

(
√|c| /2) coth(

√|c| r/2), T(r).

Here, we take a unit normal vector field N on M in such a way that α is positive.
In this paper, we give characterisations of these totally η-umbilic real hypersurfaces.

For a real hypersurface M in M̃n(c), we consider the following conditions on extrinsic
shapes of geodesics:

(ES1) At each point p of M, there exist orthonormal vectors v1, v2, . . . , v2n−2 ∈
TpM orthogonal to ξp satisfying the following:

(i) geodesics γi = γi(s) (1 � i � 2n − 2) on M with γi(0) = p and γ̇i(0) = vi

are mapped to circles of positive curvature in M̃n(c),
(ii) geodesics γij = γij(s) (1 � i < j � 2n − 2) on M with γij(0) = p and

γ̇ij(0) = (vi + vj)/
√

2 are mapped to circles of positive curvature in
M̃n(c).

(ES2) At each point p ∈ M, there exist orthonormal vectors v1, v2, . . . , v2n−2 ∈
TpM orthogonal to ξp satisfying that geodesics γi = γi(s) (1 � i � 2n − 2)
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on M with γi(0) = p and γ̇i(0) = vi are mapped to circles of same positive
curvature in M̃n(c).

Weakening Condition (ES2), we also consider the following condition:

(ES2’) At each point p ∈ M, there exist orthonormal vectors v1, v2, . . . , v2n−2 ∈
TpM orthogonal to ξp, satisfying that geodesics γi = γi(s) (1 � i � 2n − 2)
on M with γi(0) = p and γ̇i(0) = vi are mapped to circles of positive curvature
in M̃n(c).

The difference between the conditions (ES2) and (ES2’) is whether we suppose the
curvatures of circles are the same or not. Our results are as follows.

THEOREM 1. Concerning a real hypersurface M in �Pn(c) with n � 2, the following
five conditions are mutually equivalent.

(1) It is locally congruent to a geodesic hypersphere G(r) (0 < r < π/
√

c ).
(2) M satisfies condition (ES1).
(3) M satisfies condition (ES2), and has at most one congruence class of geodesics

that are mapped to geodesics in �Pn(c) with respect to the isometry group
I(M) of M.

(4) M satisfies condition (ES2’ ) and is positively curved.
(5) M is non-negatively curved and the exterior derivative dη of the contact form η

on M satisfies dη(X, Y ) = kg(φX, Y ) for all X, Y ∈ TM with some non-zero
constant k.

THEOREM 2. Concerning a real hypersurface M in �Hn(c) with n � 2, the following
three conditions are mutually equivalent.

(1) M is locally congruent to a totally η-umbilic real hypersurface.
(2) M satisfies condition (ES1).
(3) M satisfies condition (ES2).

THEOREM 3. A real hypersurface M in �Hn(c) with n � 2 is locally congruent to a
geodesic hypersphere if and only if it satisfies the following two conditions:

(i) The exterior derivative dη of the contact form η on M satisfies dη(X, Y ) =
k〈φX, Y〉 for all X, Y ∈ TM with some non-zero constant k.

(ii) All sectional curvatures of M satisfy K > 3c/4.

3. Extrinsic shapes of geodesics. In this section, we study conditions on extrinsic
shapes of geodesics on a real hypersurface in an n-dimensional non-flat complex space
form M̃n(c). For a smooth curve γ on a real hypersurface M in M̃n(c), we call the curve
ι ◦ γ which is obtained through the isometric immersion ι : M → M̃n(c) the extrinsic
shape of γ . It is a basic idea to investigate a submanifold by observing how curves are
mapped through its isometric immersion.

Generally, we consider a hypersurface M of a Riemannian manifold M̃. The
Riemannian connections ∇̃ of M̃ and ∇ of M are related by the following formulas of
Gauss and Weingarten:

∇̃X Y = ∇X Y + 〈AX, Y〉N , (3.1)

∇̃XN = −AX, (3.2)
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for arbitrary vector fields X and Y on M, where 〈 , 〉 is the Riemannian metric of M
induced from the metric on the ambient space M̃ and A is the shape operator of M in
M̃. When M is a real hypersurface of M̃ = M̃n(c), as we have ∇̃J = 0, these equalities
show that

(∇Xφ)Y = η(Y )AX − 〈AX, Y〉ξ, (3.3)

∇Xξ = φAX. (3.4)

We call a smooth curve γ parameterised by its arclength on a Riemannian manifold
M a circle if it satisfies ∇γ̇ γ̇ = kY, ∇γ̇ Y = −kγ̇ with some non-negative constant k
and a unit vector field Y along γ . Clearly, a smooth curve γ parameterised by its
arclength is a circle if and only if it satisfies ∇γ̇ ∇γ̇ γ̇ = −k2γ̇ with some non-negative k.

PROPOSITION 1. On a totally η-umbilic real hypersurface M in M̃n(c) having the
shape operator A = αI + βη ⊗ ξ , every geodesic γ = γ (s) on M with initial vector γ̇ (0)
orthogonal to ξγ (0) is mapped to a circle of the same positive curvature α in M̃n(c).

Proof. As we have

d
ds

〈γ̇ (s), ξγ (s)〉 = 〈γ̇ (s), φAγ̇ (s)〉 = 〈
γ̇ (s), φ

(
αγ̇ (s) + βη(γ̇ (s))ξ

)〉 = 0

by use of (3.4), we find that γ̇ (s) is orthogonal to ξγ (s) at every s. Therefore, we have
∇̃γ̇ γ̇ = αN and ∇̃γ̇N = −αγ̇ by (3.1) and (3.2). We get the conclusion. �

As can be seen in the above proof, for a geodesic γ on a totally η-umbilic real
hypersurface M in M̃n(c), the constant ργ = 〈γ̇ , ξ 〉 is an important invariant. We
call this its structure torsion. Clearly, it satisfies −1 � ργ � 1. Structure torsions of
geodesics show their congruency. We say two geodesics are congruent to each other
in strong sense with respect to the isometry group I(M) of M if there exists ϕ ∈ I(M)
satisfying γ2(s) = (ϕ ◦ γ1)(s) for all s. On a totally η-umbilic real hypersurface M in
M̃n(c), two geodesics are congruent to each other in strong sense if and only if the
absolute values of their structure torsions coincide (see Proposition 2.3 and Corollary
3.2 in [4]).

PROPOSITION 2.

(1) A geodesic hypersphere G(r) of radius r with π/(2
√

c ) � r < π/
√

c in �Pn(c)
has just one congruence class of geodesics that are mapped to geodesics in the
ambient space �Pn(c) with respect to the isometry group I(G(r)) of G(r).

(2) Other totally η-umbilic real hypersurfaces M in M̃n(c) has no geodesics that
are mapped to geodesics in M̃n(c).

Proof. We take a geodesic γ on a totally η-umbilic real hypersurface M. We
then have ∇̃γ̇ γ̇ = (α + βρ2

γ )N . When M = G(r) in �Pn(c), we find that the constant
α + βρ2

γ is equal to (
√

c/2)
{
cot

(√
c r/2

) − ρ2
γ tan

(√
c r/2

)}
. Since |ργ | � 1, we see that

when π/(2
√

c ) � r < π/
√

c , it is zero if and only if ργ = ± cot
(√

c r/2
)
, and that it

is positive when r < π/(2
√

c ). When M is a totally η-umbilic real hypersurface in
�Hn(c), as both α and β are positive, we see that α + βρ2

γ is always positive. We hence
get the conclusion. �

We here show a characterisation of totally η-umbilic real hypersurfaces in M̃n(c)
by extrinsic shapes of geodesics. For this sake, we here recall a characterisation of
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‘standard real hypersurfaces’ in a non-flat complex space form. In �Pn(c) (n � 2), a
Hopf hypersurface all of whose principal curvatures are constant is locally congruent
to one of the following (see [8, 17]):

(A1) a geodesic hypersphere of radius r, where 0 < r < π/
√

c ,
(A2) a tube T(r) of radius r around a totally geodesic �P(c) (1 �  � n − 2),

where 0 < r < π/
√

c ,
(B) a tube R(r) of radius r around a complex hyperquadric �Qn−1, where 0 <

r < π/(2
√

c ),
(C) a tube of radius r around a �P1(c) × �P(n−1)/2(c), where 0 < r < π/(2

√
c )

and n (� 5) is odd,
(D) a tube of radius r around a complex Grassmannian �G2,5, where 0 < r <

π/(2
√

c ) and n = 9,
(E) a tube of radius r around a Hermitian symmetric space SO(10)/U(5), where

0 < r < π/(2
√

c ) and n = 15.
These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D) and (E).
Unifying real hypersurfaces of types (A1) and (A2), we call them hypersurfaces of type
(A). The numbers of distinct principal curvatures of these real hypersurfaces are 2, 3,
3, 5, 5 and 5, respectively.

In �Hn(c) (n � 2), a Hopf hypersurface all of whose principal curvatures are
constant is locally congruent to one of the following (see [5]);

(A0) a horosphere in �Hn(c);
(A1,0) a geodesic hypersphere of radius r (0 < r < ∞),
(A1,1) a tube of radius r around a totally geodesic �Hn−1(c), where 0 < r < ∞,

(A2) a tube T(r) of radius r around a totally geodesic �H(c) (1 �  � n − 2),
where 0 < r < ∞,

(B) a tube R(r) of radius r around a totally real totally geodesic �Hn(c/4), where
0 < r < ∞.

These real hypersurfaces are said to be of types (A0), (A1), (A1), (A2) and (B). We note
that both geodesic hyperspheres and tubes around �Hn−1(c) are called of type (A1).
Unifying real hypersurfaces of types (A0), (A1) and (A2), we call them hypersurfaces of
type (A). The numbers of distinct principal curvatures of these real hypersurfaces are
not greater than 3. We shall call these real hypersurfaces as standard real hypersurfaces
in a non-flat complex space form. For their principal curvatures, see [5, 15, 18]. These
standard real hypersurfaces are characterised in the following manner:

FACT ([3, 6]). A connected real hypersurface M of M̃n(c) is locally congruent to a
standard real hypersurface if and only if it satisfies condition (ES2’ ).

We should note that in the above characterisation, curvatures of extrinsic shapes
of γi (i = 1, . . . , 2n − 2) are not necessarily the same. We here study the relationship
between principal curvatures and geodesics that are mapped to circles.

LEMMA 1. Let M be a hypersurface isometrically immersed into a Riemannian
manifold M̃. A geodesic γ on M is mapped to a circle of positive curvature k if and only
if either Aγ̇ = kγ̇ or Aγ̇ = −kγ̇ holds.

Proof. By (3.1), we have ∇̃γ̇ γ̇ = 〈Aγ̇ , γ̇ 〉N . If Aγ̇ = kγ̇ or Aγ̇ = −kγ̇ holds with
some positive k, we find by (3.2) that

∇̃γ̇ ∇̃γ̇ γ̇ = ±k∇̃γ̇N = ∓kAγ̇ = −k2γ̇ ,
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hence γ is mapped to a circle of curvature k. On the other hand, if γ is mapped to a circle
of positive curvature k, then 〈Aγ̇ , γ̇ 〉 is constant. Thus, we have ∇̃γ̇ ∇̃γ̇ γ̇ = 〈Aγ̇ , γ̇ 〉Aγ̇ .
Hence, we obtain 〈Aγ̇ , γ̇ 〉Aγ̇ = −k2γ̇ . Since k > 0, we obtain Aγ̇ = kγ̇ or Aγ̇ =
−kγ̇ . �

Proof of Theorem 1, 2 (Characterisations by extrinsic shapes of geodesics).
Propositions 1 and 2 show that (1) ⇒ (2), (3) in Theorems 1 and 2.
(2) ⇒ (1). By Lemma 1, condition (ES1) shows that vi (1 � i � 2n − 2) and vi +

vj (1 � i < j � 2n − 2) are principal curvature vectors. Therefore, they have the same
principal curvature; hence, we find that all tangent vectors orthogonal to ξ are principal.
This guarantees that ξ is principal and M is η-umbilic in M̃n(c).

(3) ⇒ (1). By Fact and Lemma 1, the existence of geodesics that are mapped
to circles shows that M is a standard real hypersurface in M̃n(c) and the principal
curvatures λi of vi (1 ≤ i ≤ 2n − 2) satisfy |λ1| = · · · = |λ2n−2|. Thus, if we restrict the
shape operator A to the sub-bundle T0M of tangent vectors orthogonal to ξ , then
it has at most two distinct principal curvatures. We here give principal curvatures of
hypersurfaces of types (A2) and (B) which correspond to vectors orthogonal to ξ :

λ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
√

c/2) cot
(√

c r/2
)
,

(
√

c/2) cot
(
(2

√
c r−π )/4

)
,

(
√|c|/2) coth

(√|c| r/2
)
,

(
√|c|/2) coth

(√|c| r/2
)
,

λ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(
√

c/2) tan
(√

c r/2
)
, T(r) in �Pn(c),

(
√

c/2) cot
(
(2

√
c r+π )/4

)
, R(r) in �Pn(c),

(
√|c|/2) tanh

(√|c| r/2
)
, T(r) in �Hn(c),

(
√|c|/2) tanh

(√|c| r/2
)
, R(r) in �Hn(c).

In view of principal curvatures given as above and those for totally η-umbilic real
hypersurfaces given in the previous section, we find that in �Hn(c), the hypersurface
M is totally η-umbilic, and that in �Pn(c), it is either a geodesic hypersphere or a tube
T

(
π/(2

√
c)

)
of type (A2).

We here study the tube T

(
π/(2

√
c)

)
. This tube has three distinct principal

curvatures
√

c/2,−√
c/2, 0. Here, 0 is the principal curvature of ξ . For a geodesic

γ on T

(
π/(2

√
c)

)
, we decompose its velocity vector as γ̇ (t) = Xγ (t) + Yγ (t) + ργ ξγ (t),

where AXγ = (
√

c/2)Xγ and AYγ = −(
√

c/2)Yγ . Since the shape operator A of a
hypersurface M of type (A) satisfies

〈(∇X A)Y, Z〉 = −(c/4){η(Y )〈φX, Z〉 + η(Z)〈φX, Y〉}

for arbitrary vectors X, Y, Z ∈ TM (see [9, 15]), we find that d
dt 〈Aγ̇ , γ̇ 〉 =

〈(∇γ̇ A
)
γ̇ , γ̇ 〉 = 0. Therefore, we have 〈Aγ̇ , γ̇ 〉 = (

√
c/2)(‖Xγ ‖2 − ‖Yγ ‖2) is constant.

As we have ‖Xγ ‖2 + ‖Yγ ‖2 = 1 − ρ2
γ , we find that both ‖Xγ ‖ and ‖Yγ ‖ are constant

along γ . We also find that the extrinsic shape of γ is a geodesic if and only if
‖Xγ ‖ = ‖Yγ ‖ =

√
(1 − ρ2

γ )/2. It is clear that two geodesics are not congruent to each
other if the absolute values of their structure torsions do not coincide. As a matter, of
course, it is known that two geodesics γ1, γ2 on T(r) are congruent to each other if
their structure torsions satisfy |ργ1 | = |ργ2 | and ‖Xγ1‖ = ‖Xγ2‖ (see [1, 2]). Therefore,
the tube T

(
π/(2

√
c)

)
does not satisfy the condition that the number of congruence

classes of geodesics that are mapped to circles is at most one. We hence conclude that
a real hypersurface satisfying the conditions in (3) is totally η-umbilic. �

Our proof also shows the following.
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THEOREM 4 ([13]). A real hypersurface M in �Pn(c) is congruent to a tube
T

(
π/(2

√
c )

)
of type (A2) if and only if it satisfies condition (ES2) and has more than

one congruence class of geodesics that are mapped to geodesics in �Pn(c) with respect to
the isometry group I(M) of M.

4. Sectional curvatures. We denote by R the curvature tensor of a real
hypersurface M in M̃n(c). The equation of Gauss is as follows:

〈R(X, Y )Z, W 〉 = c
4

{〈Y, Z〉〈X, W 〉 − 〈X, Z〉〈Y, W 〉 + 〈φY, Z〉〈φX, W 〉
− 〈φX, Z〉〈φY, W 〉 − 2〈φX, Y〉〈φZ, W 〉}
+ 〈AY, Z〉〈AX, W 〉 − 〈AX, Z〉〈AY, W 〉.

(4.1)

Therefore, the sectional curvature K(X, Y ) of the plane spanned by a pair (X, Y ) of
orthonormal vectors is given as

K(X, Y ) = c
4

(
1 + 3〈φX, Y〉2) + 〈AX, X〉〈AY, Y〉 − 〈AX, Y〉2. (4.2)

To calculate sectional curvatures, we may suppose one of spanning vectors X, Y does
not have the component parallel to the characteristic vector ξ . We put ρX = 〈X, ξ 〉 and
ρY = 〈Y, ξ 〉. If they are not zero, we set

X̃ = (ρX X + ρY Y )
/√

ρ2
X + ρ2

Y , Ỹ = (ρX Y − ρY X)
/√

ρ2
X + ρ2

Y .

Then X̃, Ỹ are orthonormal, span the same plane as that spanned by X, Y , and
ρỸ = 0. Thus, we may suppose ρY = 0.

We now study sectional curvatures of a totally η-umbilic real hypersurface M in
M̃n(c). Suppose its shape operator satisfy A = αI + βη ⊗ ξ . We take a pair of (X, Y )
of orthonormal tangent vectors that are orthogonal to ξ . We then find the sectional
curvature of the plane spanned by sin θ X + cos θ ξ and Y is given as

K(sin θ X + cos θ ξ, Y ) = c
4

{
1 + 3 sin2 θ 〈φX, Y〉2} + α2 + αβ cos2 θ.

If we write down individually by make use of values of α, β in Section 2, we have the
following (cf. [11]).

EXAMPLE 1. When M = G(r) in �Pn(c), we have

K(sin θX + cos θξ, Y ) = c
4

{
sin2 θ

(
1 + 3〈φX, Y〉2) + cot2(√c r/2

)}
.

We hence find that sectional curvatures of G(r) satisfy

(c/4) cot2(√c r/2
)

� K � c + (c/4) cot2(√c r/2
)
.

EXAMPLE 2. When M = HS in �Hn(c), we have

K(sin θX + cos θξ, Y ) = c
4

{
sin2 θ

(
1 + 3〈φX, Y〉2) − 1

}
.

We find that sectional curvatures of HS satisfy 3c/4 � K � −c/4.
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EXAMPLE 3. When M = G(r) in �Hn(c), we have

K(sin θX + cos θξ, Y ) = c
4

{
sin2 θ

(
1 + 3〈φX, Y〉2) − coth2(√|c| r/2

)}
.

We find that sectional curvatures of G(r) satisfy

c − (c/4) coth2(√c r/2
)

� K � −(c/4) coth2(√c r/2
)
.

EXAMPLE 4. When M = T(r) in �Hn(c), we have

K(sin θX + cos θξ, Y ) = c
4

{
sin2 θ

(
1 + 3〈φX, Y〉2) − tanh2(√|c| r/2

)}
.

We hence find that sectional curvatures of T(r) satisfy

c − (c/4) tanh2(√c r/2
)

� K � −(c/4) tanh2(√c r/2
)
.

Here, we should note that in the above examples, each estimate on sectional
curvatures not only gives an estimate but also shows the following: Given K with
Kmin � K � Kmax, there exists a plane α ⊂ TpM at each point p ∈ M satisfying
K(α) = K .

Proof of the third characterisation in Theorem 1. Proposition 1 and Examples 1–4
show that (1) ⇒ (4) holds. We hence consider the converse. By condition (ES2), we
find M is a standard real hypersurface. We therefore study the curvature condition
individually.

A real hypersurface T(r) of type (A2) has two distinct constant principal curvatures
corresponding to vectors orthogonal to ξ . They are

λ1 = (
√

c /2) cot(
√

c r/2), λ2 = −(
√

c r/2) tan(
√

c r/2).

If we denote by Vλi the sub-bundle of principal curvature vectors associated with λi,
these sub-bundles Vλ1 , Vλ2 are invariant under the action of φ. We take orthonormal
vectors X ∈ Vλ1 and Y ∈ Vλ2 . We then find that K(X, Y ) = 0 by (4.2).

A real hypersurface R(r) of type (B) has also two distinct constant principal
curvatures corresponding to vectors orthogonal to ξ , which are

λ1 = (
√

c /2) cot(
√

c r/2 − π/4), λ2 = (
√

c /2) cot(
√

c r/2 + π/4).

The sub-bundles Vλ1 , Vλ2 of principal curvature vectors associated with λ1, λ2 satisfy
φ(Vλ1 ) = Vλ2 , φ(Vλ2 ) = Vλ1 . Taking a unit vector Y ∈ Vλ1 , we find that

K(ξ, Y ) = −c(2 + sin
√

c r)
4 sin

√
c r

< 0. (4.3)

Real hypersurfaces of types (C), (D) and (E) have four distinct constant principal
curvatures corresponding to vectors orthogonal to ξ . They are

λ1 = (
√

c /2) cot(
√

c r/2 − π/4), λ2 = (
√

c /2) cot(
√

c r/2 + π/4),

λ3 = (
√

c /2) cot(
√

c r/2), λ4 = −(
√

c /2) tan(
√

c r/2),
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if their radii as tubes are r. Sub-bundles associated with these principal curvatures
satisfy φ(Vλ1 ) = Vλ2 , φ(Vλ2 ) = Vλ1 , φ(Vλ3 ) = Vλ3 and φ(Vλ4 ) = Vλ4 . If we take a unit
vector Y ∈ Vλ1 , we obtain the expression (4.3) on the sectional curvature of a plane
spanned by ξ and Y . Thus, we find that real hypersurfaces of types (A2), (B), (C), (D)
and (E) are not positively curved. We hence get the conclusion. �

5. Exterior derivative of the contact form. In this section, we characterise totally
η-umbilic real hypersurfaces in a non-flat complex space form by using a property of
exterior derivatives of their contact forms.

For the contact form η on a real hypersurface M of M̃n(c), we consider its exterior
derivative dη, which is given by

dη(X, Y ) := (1/2)
{
X

(
η(Y )

) − Y
(
η(X)

) − η([X, Y ])
}
.

The equality (3.4) implies that

dη(X, Y ) = 1
2
〈(φA + Aφ)X, Y〉. (5.1)

This equation means that there exist no real hypersurfaces having the closed contact
form η in M̃n(c) (see Corollary 2.12 in [15]). For totally η-umbilic real hypersurfaces,
(5.1) shows the following.

PROPOSITION 3. Let M be a totally η-umbilic real hypersurface of M̃n(c) having
the shape operator A = αI + βη ⊗ ξ . The exterior derivative dη of its contact form η

satisfies dη(X, Y ) = α〈φX, Y〉 for all vectors X, Y ∈ TM.

We are interested in the converse of this result.

PROPOSITION 4. A real hypersurface M in M̃n(c) is either totally η-umbilic or of type
(B) if and only if there is a non-zero constant k satisfying dη(X, Y ) = k〈φX, Y〉 for all
X, Y ∈ TM.

Proof. We first consider the ‘only if ’ part. We only need to investigate this for
real hypersurfaces of type (B). For a real hypersurface M of type (B), the sub-
bundle T0M = {X ∈ TM | 〈X, ξ 〉 = 0} is decomposed into two sub-bundles Vλ1 , Vλ2

of principal curvature vectors associated with principal curvatures λ1, λ2, and these
satisfy φ(Vλ1 ) = Vλ2 , φ(Vλ2 ) = Vλ1 . Therefore, we see φA + Aφ = (λ1 + λ2)φ. Thus,
we obtain dη(X, Y ) = 1

2 (λ1 + λ2)〈φX, Y〉 for all X, Y ∈ TM.
We next study the ‘if ’ part. We shall determine a real hypersurface M whose

shape operator A satisfies φA + Aφ = 2kφ. Clearly, we have φAξ = 0, which shows
that ξ is principal. For a Hopf hypersurface, it is known that the principal curvature
δ of ξ is locally constant on M and every principal curvature vector X orthogonal
to ξ satisfies (2λ − δ)AφX = (δλ + (c/2))φX , where λ denotes the principal curvature
of X (see [9, 15]). Making use of the relation φA + Aφ = 2kφ, we see X satisfies
(2λ − δ)(2k − λ)φX = (δλ + (c/2))φX . As φX �= 0, we find that λ satisfies the following
quadratic equation:

4λ2 − 8kλ + c + 4kδ = 0. (5.2)

Since k and δ are constant, this shows that λ is also constant on the connected real
hypersurface M. Thus, we can see that our real hypersurface is a Hopf hypersurface
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with at most three distinct constant principal curvatures. So, we find that M is of type
either (A) or (B). If we suppose M is of type (A2), then T0M is decomposed into
two sub-bundles Vλ1 , Vλ2 of principal curvature vectors that are invariant under the
action of φ. Taking non-zero vectors X ∈ Vλ1 , Y ∈ Vλ2 , we see (φA + Aφ)(X + Y ) =
2(λ1φX + λ2φY ). Therefore, real hypersurfaces of type (A2) do not satisfy the condition
φA + Aφ = 2kφ. We hence get the conclusion. �

Proof of Theorem 1 (Exterior derivatives of contact forms). Proposition 3
and Example 3 show that every geodesic hypersphere M is positively curved and
the exterior derivative of the contact form satisfies dη(X, Y ) = α〈φX, Y〉 for all
vectors X, Y ∈ TM. On the other hand, by Proposition 4, we see that M is either
totally η-umbilic or of type (B). As can be seen in the previous section, real
hypersurfaces of type (B) are not non-negatively curved. This completes the proof of
Theorem 1. �

Proof of Theorem 3. When we take a geodesic hypersphere, Example 3 shows
that sectional curvatures satisfy K > 3c/4 and Proposition 3 shows that the exterior
derivative of the contact form satisfies dη(X, Y ) = α〈φX, Y〉 for all vectors X, Y ∈
TM. On the other hand, by Proposition 4, we see that M is either totally η-umbilic
or of type (B). Examples 2 and 4 show that horospheres and tubes around �Hn−1

do not satisfy the curvature condition. We hence check sectional curvatures of real
hypersurfaces of type (B) in �Hn(c). A real hypersurface R(r) of type (B) has
two distinct principal curvatures corresponding to vectors orthogonal to ξ , which
are

λ1 = (
√

|c| /2) coth(
√

|c| r/2), λ2 = (
√

|c| /2) tanh(
√

|c| r/2).

If we take a unit vector X satisfying AX = λ1X , we have AφX = λ2φX . Hence, we find
by (4.2) that K(X, φX) = 3c/4. We therefore get the conclusion. �

As an immediate consequence of Theorem 3, we obtain the following:

PROPOSITION 5. A real hypersurface M of �Hn(c), n � 2 is locally congruent to a
geodesic hypersphere G(r) of radius r (0 < r � log 3/

√|c| ) in �Hn(c) if and only if M is
non-negatively curved and the exterior derivative dη of the contact form η on M satisfies
dη(X, Y ) = kg(φX, Y ) for all X, Y ∈ TM with some non-zero constant k.

Proof. Solving the following inequality

c − (c/4) coth2(√|c| r/2
)

� 0,

we obtain the conclusion (see Theorem 3 and Example 3). �
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