THE ANNIHILATOR OF TENSOR SPACE IN THE q-ROOK MONOID ALGEBRA

ZHANKUI XIAO

(Received 16 October 2016; accepted 11 December 2016; first published online 2 March 2017)

Abstract

In this paper, we give an explicit construction of a quasi-idempotent in the q-rook monoid algebra $R_{n}(q)$ and show that it generates the whole annihilator of the tensor space $U^{\otimes n}$ in $R_{n}(q)$.

2010 Mathematics subject classification: primary 20C08; secondary 05E10, 20G05, 20M30.
Keywords and phrases: tensor space, q-rook monoid, Schur-Weyl duality.

1. Introduction

The q-rook monoid algebra $R_{n}(q)$ (see Section 2.1 for a precise definition), was first studied by Solomon [15] as the Iwahori-Hecke algebra for the monoid of matrices over a finite field. Then the representation theory of q-rook monoid algebras and their specialisation analogues (with $q=1$) was taken up in [1, 4, 5, 16]. Paget in [13] considered the modular representation theory of q-rook monoid algebras and proved that the q-rook monoid algebra $R_{n}(q)$ (where q may be a unit root) is a cellular algebra in the sense of Graham and Lehrer [3] (see [2] for the case of $q=1$).

In [17], Solomon defined an action of $R_{n}(q)$ on the tensor space $U^{\otimes n}$, where $U=L(0) \oplus L\left(\varepsilon_{1}\right)$ is the direct sum of the trivial and natural module for the quantum general linear group $U_{q}\left(\mathfrak{g l}_{m}\right)$. Halverson in [5] found a new presentation of $R_{n}(q)$ and used it to show that Solomon's action of $R_{n}(q)$ on the tensor space $U^{\otimes n}$ can be extended to a Schur-Weyl duality as follows.

Theorem 1.1 [5, Corollary 4.3]. The map $\varphi: R_{n}(q) \rightarrow \operatorname{End}_{U_{q}\left(\mathrm{gl}_{m}\right)}\left(U^{\otimes n}\right)$ is a surjective algebra homomorphism and, if $m \geq n$, then φ is an isomorphism.

When $m<n$, the algebra homomorphism φ is in general not injective. Therefore it is natural to ask how to describe the kernel of the homomorphism φ, that is, the annihilator of $U^{\otimes n}$ in the algebra $R_{n}(q)$. The purpose of this article is to answer the question. Furthermore, we characterise the generators of $\operatorname{Ker}(\varphi)$ at an integral level so as to be compatible with the cellular structure of $R_{n}(q)$ and $\operatorname{End}_{U_{q}\left(\mathrm{gl}_{m}\right)}\left(U^{\otimes n}\right)$. In other words, the generators of $\operatorname{Ker}(\varphi)$ belong to a $\mathbb{Z}\left[q, q^{-1}\right]$-lattice of $R_{n}(q)$.

[^0]In the invariant theory of classical and quantum groups, characterising the annihilator of a tensor power of the natural module of a classical or quantum group in a Hecke algebra, Brauer algebra, or Birman-Murakami-Wenzl (BMW) algebra is one formulation of the second fundamental theorem of invariant theory (see [11] and the references therein for a detailed description of this topic). Recently, Hu and the author [8] proved the second fundamental theorem for symplectic groups and Lehrer and Zhang [10] gave the second fundamental theorem for orthogonal groups, taking advantage of a different formulation of the invariant theory. It is surprising to some extent that in both the symplectic and orthogonal cases and their quantised versions, the annihilator of n-tensor space in a specialised Brauer algebra or BMW algebra is generated by an explicitly described quasi-idempotent. Motivated by these results, we have found that the annihilator of tensor space $U^{\otimes n}$ in a rook monoid algebra (the case $q=1$ in the present paper) is also generated by a quasi-idempotent [18]. We shall construct a quasi-idempotent Φ_{m+1} (see $\operatorname{Section} 3$) in $\operatorname{Ker} \varphi$ and prove the following result.

Theorem 1.2. With the above notation, if $m<n$, then $\operatorname{Ann}_{R_{n}(q)}\left(U^{\otimes n}\right)=\left\langle\Phi_{m+1}\right\rangle$.
On the other hand, Halverson and Ram in [6] proved that the q-rook monoid algebra $R_{n}(q)$ is a quotient of the Hecke algebra of type B. From this point of view, they showed that the Schur-Weyl duality for $R_{n}(q)$ (Theorem 1.1) comes from a Schur-Weyl duality for cyclotomic Hecke algebras studied in [7, 14]. Another motivation of this paper is to try to build a bridge to characterise the annihilator of tensor space in a cyclotomic Hecke algebra.

Note that one of the main differences between q-rook monoid algebras and the Hecke algebras, Brauer algebras and BMW algebras is that the q-rook monoid algebra $R_{n}(q)$ generally cannot be realised as a diagram algebra except in the case of $q=1$ (see [5, Remark 4.4]). Therefore our proof of Theorem 1.2 differs from that in $[8,11,18]$ and we will view $R_{n}(q)$ as a module of the Hecke algebra of a symmetric group.

2. Preliminaries

2.1. The \boldsymbol{q}-rook monoid. Let q be an indeterminate. Halverson [5] defined the q-rook monoid algebra $R_{n}(q)$ to be the unital associative $\mathbb{C}(q)$-algebra generated by $T_{1}, T_{2}, \ldots, T_{n-1}$ and $P_{1}, P_{2}, \ldots, P_{n}$ subject to the relations:
(A1) $T_{i}^{2}=\left(q-q^{-1}\right) T_{i}+1$,
for $1 \leq i \leq n-1$,
(A2) $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$,
for $1 \leq i \leq n-2$,
(A3) $T_{i} T_{j}=T_{j} T_{i}$,
for $|i-j|>1$,
(R1) $P_{i}^{2}=P_{i}$,
for $1 \leq i \leq n$,
(R2) $P_{i} P_{j}=P_{j} P_{i}$,
for $1 \leq i, j \leq n$,
(R3) $P_{i} T_{j}=T_{j} P_{i}$,
(R4) $P_{i} T_{j}=T_{j} P_{i}=q P_{i}$,
for $1 \leq i<j \leq n-1$,
for $1 \leq j<i \leq n$,
(R5) $P_{i+1}=q P_{i} T_{i}^{-1} P_{i}=q P_{i} T_{i} P_{i}-\left(q^{2}-1\right) P_{i}$,
for $1 \leq i \leq n-1$.

Note that our definition of $R_{n}(q)$ is slightly different from the definition in [5]. However, it is equivalent (see [6, Remark 1.2]). Halverson gave a basis of $R_{n}(q)$ which we now recall. Throughout this paper, we identify the symmetric group \mathbb{S}_{n} with the group of left permutations on the set $\{1,2, \ldots, n\}$. For $\sigma \in \Im_{n}$ with reduced expression $\sigma=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ define $T_{\sigma}:=T_{i_{1}} T_{i_{2}} \cdots T_{i_{k}}$. Then T_{σ} is well defined because of the braid relations (A2) and (A3). Furthermore, the subalgebra generated by $T_{1}, T_{2}, \ldots, T_{n-1}$, denoted by $H_{n}(q)$, is isomorphic to an Iwahori-Hecke algebra of type A (see [5, Corollary 3.4]).

For an integer r with $0 \leq r \leq n$, define

$$
\mathcal{D}_{r}:=\left\{d \in \mathbb{S}_{n} \mid d(1)<d(2)<\cdots<d(r), d(r+1)<\cdots<d(n)\right\} .
$$

Note that $\mathcal{D}_{0}=\{1\}$ and \mathcal{D}_{r} is the set of distinguished left coset representatives of the parabolic subgroup $\mathfrak{S}_{(r, n-r)}$ in $\mathfrak{\Im}_{n}$. Write $\Omega_{r}:=\left\{\left(d_{1}, d_{2}, \sigma\right) \mid d_{1}, d_{2} \in \mathcal{D}_{r}, \sigma \in \mathbb{S}_{\{r+1, \ldots, n\}}\right\}$ and $\Omega:=\bigcup_{r=0}^{n} \Omega_{r}$. For $\left(d_{1}, d_{2}, \sigma\right) \in \Omega_{r}$, define

$$
T_{\left(d_{1}, d_{2}, \sigma\right)}:=T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{-1} .
$$

When $r=0$, we interpret $P_{0}=1$. For $d \in \mathcal{D}_{r}$, if we assume that $a_{i}=d(i)$ for $1 \leq i \leq r$, then there is a reduced expression

$$
d=\left(s_{a_{1}-1} \cdots s_{2} s_{1}\right)\left(s_{a_{2}-1} \cdots s_{3} s_{2}\right) \cdots\left(s_{a_{r}-1} \cdots s_{r+1} s_{r}\right) .
$$

Hence our notation coincides with that in [5, Section 2].
Lemma 2.1 [5, Theorem 2.1 and Corollary 2.2]. The set $\left\{T_{\left(d_{1}, d_{2}, \sigma\right)} \mid\left(d_{1}, d_{2}, \sigma\right) \in \Omega\right\}$ forms a basis of $R_{n}(q)$.

As foreshadowed in the introduction, we want to characterise the generators of $\operatorname{Ker}(\varphi)$ at an integral level so as to be compatible with the cellular structure of $R_{n}(q)$ and $\operatorname{End}_{U_{q}\left(\mathfrak{g}_{m}\right)}\left(U^{\otimes n}\right)$. We shall use a slightly different basis of $R_{n}(q)$ to that in Lemma 2.1. Let $*$ be the involution, an anti-automorphism of order 2 , of $R_{n}(q)$ defined on the generators by

$$
T_{i}^{*}:=T_{i}, \quad P_{j}^{*}:=P_{j} \quad \text { for } 1 \leq i \leq n-1,1 \leq j \leq n .
$$

The proof of the following lemma is similar to that of [13, Proposition 3] and hence we omit it here.

Lemma 2.2. The set $\left\{T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} \mid\left(d_{1}, d_{2}, \sigma\right) \in \Omega\right\}$ forms a basis of $R_{n}(q)$.
2.2. The classical case $(\boldsymbol{q}=\mathbf{1})$. In this subsection, we recall the main results of [18] for later use. Let R_{n} be the set of all $n \times n$ matrices that contain at most one entry equal to 1 in each row and column and zeros elsewhere. With the operation of matrix multiplication, R_{n} has the structure of a monoid. The monoid R_{n} is known both as the rook monoid and the symmetric inverse semigroup [15]. The following presentation
of R_{n} is much more helpful. The rook monoid R_{n} is generated by $s_{1}, s_{2}, \ldots, s_{n-1}$ and $p_{1}, p_{2}, \ldots, p_{n}$ subject to the following relations:

$$
\begin{array}{ll}
s_{i}^{2}=1 & \text { for } 1 \leq i \leq n-1, \\
s_{i} s_{j}=s_{j} s_{i} & \text { for }|i-j|>1, \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} & \text { for } 1 \leq i \leq n-2, \\
p_{i}^{2}=p_{i} & \text { for } 1 \leq i \leq n, \\
p_{i} p_{j}=p_{j} p_{i} & \text { for } i \neq j, \\
s_{i} p_{i}=p_{i+1} s_{i} & \text { for } 1 \leq i \leq n-1, \\
s_{i} p_{j}=p_{j} s_{i} & \text { for } j \neq i, i+1, \\
p_{i} s_{i} p_{i}=p_{i} p_{i+1} & \text { for } 1 \leq i \leq n-1
\end{array}
$$

From this presentation, it is clear that the q-rook monoid algebra $R_{n}(q)$ is indeed a q-analogue of the rook monoid algebra $\mathbb{C} R_{n}$. Notice, when we take the specialisation $q \rightarrow 1$, that $\lim _{q \rightarrow 1} P_{j}=p_{1} p_{2} \cdots p_{j}$ for each $1 \leq j \leq n$.

Let V be an m-dimensional vector space over the field \mathbb{C}. Let $U_{1}=\mathbb{C} \oplus V$ and $\operatorname{GL}(V)$ denote the general linear group over V. The following analogue of Theorem 1.1 was proved by Solomon [16, Theorem 5.10 and Corollary 5.18].

Proposition 2.3. The map $\varphi_{1}: \mathbb{C} R_{n} \rightarrow \operatorname{End}_{G L(V)}\left(U_{1}^{\otimes n}\right)$ is a surjective algebra homomorphism and, if $m \geq n$, then φ is an isomorphism.

For any positive integer $k \leq n$, the natural map $s_{i} \mapsto s_{i}, p_{j} \mapsto p_{j}$ for all $1 \leq i \leq k-1$ and $1 \leq j \leq k$ extends to an algebra embedding from $\mathbb{C} R_{k}$ into $\mathbb{C} R_{n}$. In [18, Section 4], when $m<n$, we defined a quasi-idempotent

$$
Y_{m+1}=\sum_{\sigma \in \Im_{m+1}}(-1)^{\ell(\sigma)} \sigma-\sum_{\left(d_{1}, d_{2}, \sigma\right) \in \Omega_{1}}(-1)^{\ell\left(d_{1}\right)+\ell(\sigma)+\ell\left(d_{2}\right)} d_{1} p_{1} \sigma d_{2}^{-1} \in \mathbb{C} R_{m+1}
$$

Proposition 2.4 [18, Theorem 1.2]. If $m<n$, then $\operatorname{Ann}_{\mathbb{C} R_{n}}\left(U_{1}^{\otimes n}\right)=\left\langle Y_{m+1}\right\rangle$.
2.3. Specialisations. We now relate the quantised case to the classical $(q=1)$ case and then find a way to construct the generators of $\operatorname{Ker}(\varphi)$ at an integral level. Let \mathcal{A}_{q} be the subring of $\mathbb{C}(q)$ consisting of the rational functions with no pole at $q=1$. The evaluation map $\psi_{1}: \mathcal{A}_{q} \rightarrow \mathbb{C}$ taking q to 1 is a \mathbb{C}-algebra homomorphism.

Let $R_{n}\left(\mathcal{A}_{q}\right)$ be the \mathcal{A}_{q}-span of the set $\left\{T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} \mid\left(d_{1}, d_{2}, \sigma\right) \in \Omega\right\}$. Then $R_{n}\left(\mathcal{A}_{q}\right)$ is an \mathcal{A}_{q}-subalgebra of $R_{n}(q)$ and $R_{n}(q)=\mathbb{C}(q) \otimes_{l} R_{n}\left(\mathcal{A}_{q}\right)$, where ι is the inclusion of \mathcal{A}_{q} into $\mathbb{C}(q)$ (see the cellular structure of a q-rook monoid algebra in [13]). On the other hand, since $U=L(0) \oplus L\left(\varepsilon_{1}\right)$ is the direct sum of the trivial and natural module for $U_{q}\left(\mathfrak{g l}_{m}\right)$, both $U_{q}\left(\mathfrak{g l}_{m}\right)$ and $U^{\otimes n}$ have \mathcal{A}_{q}-forms $U_{\mathcal{A}_{q}}\left(\mathfrak{g l}_{m}\right)$ and $U_{\mathcal{A}_{q}}^{\otimes n}$, such that $U_{\mathcal{A}_{q}}\left(\mathfrak{g l}_{m}\right)$ acts on $U_{\mathcal{A}_{q}}^{\otimes n}$. We can therefore take the specialisation $\lim _{q \rightarrow 1}:=\mathbb{C} \otimes_{\psi_{1}}$, for all the $\mathcal{A}_{q^{-}}$ modules just mentioned. It is well known that $\lim _{q \rightarrow 1} U_{\mathcal{A}_{q}}\left(\mathfrak{g l}_{m}\right)=U\left(\mathfrak{g l}_{m}\right)$, the universal enveloping algebra of $\mathfrak{g l}_{m}$ over \mathbb{C}. Clearly $\lim _{q \rightarrow 1} R_{n}\left(\mathcal{A}_{q}\right)=\mathbb{C} R_{n}$. We refer to [9] for more details of the specialisation of quantum groups.

The following proposition indicates a way to construct the generators of $\operatorname{Ker}(\varphi)$. The proof is similar to that in [11, Theorem 8.2].

Proposition 2.5. With the above notation, let Φ be an idempotent in $\mathbb{C} R_{n}$ such that the ideal $\langle\Phi\rangle=\operatorname{Ker}\left(\varphi_{1}\right)$. Assume that $\Phi_{q} \in R_{n}\left(\mathcal{A}_{q}\right)$ is such that:
(1) $\Phi_{q}^{2}=f(q) \Phi_{q}$, where $f(q) \in \mathcal{A}_{q}$;
(2) $\lim _{q \rightarrow 1} \Phi_{q}=c \Phi$, where $c \neq 0$.

Then Φ_{q} generates the ideal $\operatorname{Ker}(\varphi)$.
Proof. It follows from $\lim _{q \rightarrow 1}\left\langle\Phi_{q}\right\rangle=\langle\Phi\rangle$ that $\operatorname{dim}_{\mathbb{C}(q)}\left\langle\Phi_{q}\right\rangle \geq \operatorname{dim}_{\mathbb{C}}\langle\Phi\rangle$. Here $\left\langle\Phi_{q}\right\rangle$ is the ideal in $R_{n}(q)$ generated by Φ_{q}. Hence, if $\Phi_{q} \in \operatorname{Ker}(\varphi)$,

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}} \mathbb{C} R_{n} /\langle\Phi\rangle & \geq \operatorname{dim}_{\mathbb{C}(q)} R_{n}(q) /\left\langle\Phi_{q}\right\rangle \\
& \geq \operatorname{dim}_{\mathbb{C}(q)} R_{n}(q) / \operatorname{Ker}(\varphi) \\
& =\operatorname{dim}_{\mathbb{C}(q)} \operatorname{End}_{U_{q}\left(\mathfrak{g}_{m}\right)}\left(U^{\otimes n}\right)=\operatorname{dim}_{\mathbb{C}} \mathbb{C} R_{n} /\langle\Phi\rangle .
\end{aligned}
$$

We now prove $\Phi_{q} \in \operatorname{Ker}(\varphi)$, that is, $\Phi_{q} U^{\otimes n}=0$. In fact, we only need to prove $\Phi_{q} U_{\mathcal{A}_{q}}^{\otimes n}=0$. Note that $\lim _{q \rightarrow 1} \Phi_{q} U_{\mathcal{A}_{q}}^{\otimes n}=c \Phi U_{1}^{\otimes n}=0$ and hence $\Phi_{q} U_{\mathcal{A}_{q}}^{\otimes n} \subseteq(q-1) U_{\mathcal{A}_{q}}^{\otimes n}$. We use a recursive procedure to show that $\Phi_{q} U_{\mathcal{A}_{q}}^{\otimes n} \subseteq(q-1)^{i} U_{\mathcal{A}_{q}}^{\otimes n}$ for each positive integer i, which in turn implies that $\Phi_{q} U_{\mathcal{A}_{q}}^{\otimes n}=0$. Assume that $\Phi_{q} U_{\mathcal{A}_{q}}^{\otimes n} \subseteq(q-1)^{i} U_{\mathcal{A}_{q}}^{\otimes n}$ for some positive integer i. Then $f(q) \Phi_{q} U_{\mathcal{A}_{q}}^{\otimes n}=\Phi_{q}^{2} U_{\mathcal{A}_{q}}^{\otimes n} \subseteq(q-1)^{i+1} U_{\mathcal{A}_{q}}^{\otimes n}$ by the inductive hypothesis. But $f(q)$ is not divisible by $q-1$ in \mathcal{A}_{q}, since $\lim _{q \rightarrow 1} \Phi_{q}^{2}=c^{2} \Phi=f(1) \Phi \neq 0$. In other words, $f(q)$ is invertible in \mathcal{A}_{q}. Therefore $\Phi_{q} U_{\mathcal{A}_{q}}^{\otimes n} \subseteq(q-1)^{i+1} U_{\mathcal{A}_{q}}^{\otimes n}$ and this completes the proof of the proposition.

3. Proof of Theorem 1.2

By Propositions 2.5 and 2.4 , to construct the generators of $\operatorname{Ker}(\varphi)$, we only need to construct a q-analogue of Y_{m+1}. In other words, we need to construct an element $\Phi_{m+1} \in R_{m+1}(q)$ having the one-dimensional sign representation of $R_{m+1}(q)$ (see [18, Section 3]), that is,

$$
T_{i} \Phi_{m+1}=\Phi_{m+1} T_{i}=(-q)^{-1} \Phi_{m+1} \quad \text { and } \quad P_{j} \Phi_{m+1}=\Phi_{m+1} P_{j}=0
$$

for all $1 \leq i \leq m$ and $1 \leq j \leq m+1$.
Since we work on the field $\mathbb{C}(q)$, the q-rook monoid algebra $R_{n}(q)$ is semisimple [17]. By the representation theory of $R_{n}(q)$ [5, 13], there exists an element $\Phi_{n} \in R_{n}(q)$ for $n \geq 2$ such that $T_{i} \Phi_{n}=\Phi_{n} T_{i}=(-q)^{-1} \Phi_{n}$ and $P_{j} \Phi_{n}=\Phi_{n} P_{j}=0$ for all $1 \leq i \leq n-1$ and $1 \leq j \leq n$.

Lemma 3.1. The element Φ_{n} can be taken of the form

$$
\Phi_{n}=\sum_{\sigma \in \mathbb{E}_{n}}(-q)^{-\ell(\sigma)} T_{\sigma}+\sum_{r=1}^{n} \sum_{\left(d_{1}, d_{2}, \sigma\right) \in \Omega_{r}} C_{\left(d_{1}, d_{2}, \sigma\right)}(-q)^{-\ell\left(d_{1}\right)-\ell(\sigma)-\ell\left(d_{2}\right)} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*},
$$

where $C_{\left(d_{1}, d_{2}, \sigma\right)} \in \mathbb{C}(q)$.

Proof. For $0 \leq r \leq n$, let $R_{n}^{(r)}$ be the two-sided ideal of $R_{n}(q)$ generated by P_{r}. This gives a filtration

$$
R_{n}(q)=R_{n}^{(0)} \supset R_{n}^{(1)} \supset R_{n}^{(2)} \supset \cdots \supset R_{n}^{(n)} \supset 0
$$

of two-sided ideals. It is clear that there is an algebra epimorphism

$$
\theta: R_{n}(q) \rightarrow R_{n}(q) / R_{n}^{(1)} \cong H_{n}(q),
$$

where $H_{n}(q)$, generated by $T_{1}, T_{2}, \ldots, T_{n-1}$, is isomorphic to an Iwahori-Hecke algebra of type A. Since the algebras $R_{n}(q)$ and $H_{n}(q)$ are both semisimple, the image $\theta\left(\Phi_{n}\right)$ must correspond to the Young anti-symmetriser of $H_{n}(q)$. Then the lemma follows from Lemma 2.2 and the well-known representation theory of the Iwahori-Hecke algebra $H_{n}(q)$.

Since $R_{n}(q)$ generally cannot be realised as a diagram algebra except in the case $q=1$ (see [5, Remark 4.4]), we find another way to describe Φ_{n} different from the methods in $[8,11,18]$. Note that the Iwahori-Hecke algebra $H_{n}(q)$ is a subalgebra of $R_{n}(q)$ by [5, Corollary 3.4]. Hence $R_{n}(q)$ can be viewed as a left $H_{n}(q)$-module in the natural manner. Define

$$
R_{n}^{[r]}:=\mathbb{C}(q)-\operatorname{Span}\left\{T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} \mid\left(d_{1}, d_{2}, \sigma\right) \in \Omega_{r}\right\}
$$

for $0 \leq r \leq n$. The following technical lemma aims to give some explicit structure constants.

Lemma 3.2. The space $R_{n}^{[r]}$ is an $H_{n}(q)$-submodule of $R_{n}(q)$ for each r with $0 \leq r \leq n$.
Proof. For any $\left(d_{1}, d_{2}, \sigma\right) \in \Omega_{r}$, we only need to prove $T_{i} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} \in R_{n}^{[r]}$ for each $1 \leq i \leq n-1$. Since \mathcal{D}_{r} is the set of distinguished left coset representatives of $\mathbb{S}_{(r, n-r)}$ in \Im_{n}, there exists a sequence of positive integers $1 \leq a_{1}<a_{2}<\cdots<a_{r} \leq n$ such that

$$
T_{d_{1}}=\left(T_{a_{1}-1} \cdots T_{2} T_{1}\right)\left(T_{a_{2}-1} \cdots T_{3} T_{2}\right) \cdots\left(T_{a_{r}-1} \cdots T_{r+1} T_{r}\right)
$$

Then four cases arise.
Case 1. $i, i+1 \notin\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. Then $d_{1}(j)=i$ with $j>r$. Moreover,

$$
\begin{aligned}
T_{i} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} & =T_{d_{1}} T_{j} P_{r} T_{\sigma} T_{d_{2}}^{*} \\
& =T_{d_{1}} P_{r}\left(T_{j} T_{\sigma}\right) T_{d_{2}}^{*} \quad \text { (by relation (R3)) } \\
& = \begin{cases}T_{d_{1}} P_{r} T_{s_{j} \sigma} T_{d_{2}}^{*} & \text { if } \ell\left(s_{j} \sigma\right)=\ell(\sigma)+1, \\
\left(q-q^{-1}\right) T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}+T_{d_{1}} P_{r} T_{s_{j} \sigma} T_{d_{2}}^{*} & \text { if } \ell\left(s_{j} \sigma\right)=\ell(\sigma)-1 .\end{cases}
\end{aligned}
$$

Case 2. $i \in\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ and $i+1 \notin\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. Then $s_{i} d_{1} \in \mathcal{D}_{r}$ and $\ell\left(s_{i} d_{1}\right)=$ $\ell\left(d_{1}\right)+1$. Hence

$$
T_{i} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}=T_{s_{i} d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}
$$

Case 3. $i \notin\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ and $i+1 \in\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. Then $s_{i} d_{1} \in \mathcal{D}_{r}$ and $\ell\left(s_{i} d_{1}\right)=$ $\ell\left(d_{1}\right)-1$. Hence

$$
T_{i} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}=\left(q-q^{-1}\right) T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}+T_{s_{i} d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} .
$$

Case 4. $i, i+1 \in\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. Then $d_{1}(j)=i$ with $j<r$. From relation (R4),

$$
T_{i} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}=T_{d_{1}} T_{j} P_{r} T_{\sigma} T_{d_{2}}^{*}=q T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} .
$$

In each case, $T_{i} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}$ is a linear combination of the basis elements belonging to the space $R_{n}^{[r]}$, and hence this completes the proof of the lemma.

Let us now calculate the coefficients $C_{\left(d_{1}, d_{2}, \sigma\right)}$ in Lemma 3.1. The following lemma is well known for symmetric groups.

Lemma 3.3. Let r be an integer with $0 \leq r \leq n$. There exists a unique element $w_{0} \in \mathcal{D}_{r}$ of maximal length $r(n-r)$. If $s_{i_{r(n-r)}} \cdots s_{i_{2}} s_{i_{1}}$ is a reduced expression of w_{0}, then for any integer j with $0 \leq j \leq r(n-r)$, there is $s_{i_{j}} \cdots s_{i_{2}} s_{i_{1}} \in \mathcal{D}_{r}$. Conversely, for any $d \in \mathcal{D}_{r}$, there exists a reduced expression $s_{i_{r(n-r)}} \cdots s_{i_{2}} s_{i_{1}}$ of w_{0} such that $d=s_{i_{j}} \cdots s_{i_{2}} s_{i_{1}}$ for some j with $0 \leq j \leq r(n-r)$.

For an arbitrary element $a \in R_{n}(q)$, we say that $T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}$ is involved in a, if $T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}$ appears with nonzero coefficient when writing a as a linear combination of the basis in Lemma 2.2.

Lemma 3.4. For any r with $1 \leq r \leq n$ and any $\left(d_{1}, d_{2}, \sigma_{1}\right),\left(d_{3}, d_{4}, \sigma_{2}\right) \in \Omega_{r}$, we have $C_{\left(d_{1}, d_{2}, \sigma_{1}\right)}=C_{\left(d_{3}, d_{4}, \sigma_{2}\right)}$. In particular, the element Φ_{n} can be taken of the form

$$
\Phi_{n}=\sum_{\sigma \in \mathbb{E}_{n}}(-q)^{-\ell(\sigma)} T_{\sigma}+\sum_{r=1}^{n} c_{r} \sum_{\left(d_{1}, d_{2}, \sigma\right) \in \Omega_{r}}(-q)^{-\ell\left(d_{1}\right)-\ell(\sigma)-\ell\left(d_{2}\right)} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*},
$$

where $c_{r} \in \mathbb{C}(q)$.
Proof. We first claim that $C_{\left(d_{1}, d_{2}, \sigma\right)}=C_{\left(d_{3}, d_{2}, \sigma\right)}$. By Lemma 3.3, it suffices to prove that

$$
C_{\left(d_{1}, d_{2}, \sigma\right)}=C_{\left(s_{i} d_{1}, d_{2}, \sigma\right)}
$$

whenever $s_{i} d_{1} \in \mathcal{D}_{r}$ with $\ell\left(s_{i} d_{1}\right)=\ell\left(d_{1}\right)+1$. Compare the coefficients of $T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}$ on both sides of the equality $T_{i} \Phi_{n}=(-q)^{-1} \Phi_{n}$. For any $\left(d_{5}, d_{6}, w\right) \in \Omega_{s}$, if $T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}$ is involved in $T_{i} T_{d_{5}} P_{s} T_{w} T_{d_{6}}^{*}$, then $s=r$ by Lemma 3.2. Furthermore, if $T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}$ is involved in $T_{i} T_{d_{5}} P_{r} T_{w} T_{d_{6}}^{*}$, it follows from the proof of Lemma 3.2 that $d_{5}=d_{1}$ or $s_{i} d_{5}=d_{1}$. However, if $d_{5}=d_{1}$, then $T_{i} T_{d_{5}} P_{r} T_{w} T_{d_{6}}^{*}=T_{s_{i} d_{1}} P_{r} T_{w} T_{d_{6}}^{*}$ since $s_{i} d_{1} \in \mathcal{D}_{r}$ with $\ell\left(s_{i} d_{1}\right)=\ell\left(d_{1}\right)+1$, a contradiction. Hence we must have $s_{i} d_{5}=d_{1}$ and then

$$
\begin{aligned}
T_{i} T_{d_{5}} P_{r} T_{w} T_{d_{6}}^{*} & =T_{i} T_{s_{i} d_{1}} P_{r} T_{w} T_{d_{6}}^{*}=T_{i}^{2} T_{d_{1}} P_{r} T_{w} T_{d_{6}}^{*} \\
& =\left(q-q^{-1}\right) T_{s_{i} d_{1}} P_{r} T_{w} T_{d_{6}}^{*}+T_{d_{1}} P_{r} T_{w} T_{d_{6}}^{*} .
\end{aligned}
$$

This yields $\left(d_{5}, d_{6}, w\right)=\left(s_{i} d_{1}, d_{2}, \sigma\right)$. Now, the coefficient of $T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}$ in $T_{i} \Phi_{n}$ is $C_{\left(s_{i} d_{1}, d_{2}, \sigma\right)}(-q)^{-\ell\left(d_{1}\right)-1-\ell(\sigma)-\ell\left(d_{2}\right)}$. Comparing with the coefficient of $T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*}$ in $(-q)^{-1} \Phi_{n}$, we have $C_{\left(d_{1}, d_{2}, \sigma\right)}=C_{\left(s_{i} d_{1}, d_{2}, \sigma\right)}$ and hence the claim is proved.

Using Lemma 3.1, we see that $\Phi_{n}^{*}=\Phi_{n}$. Combining this fact and the above claim,

$$
C_{\left(d_{1}, d_{2}, \sigma\right)}=C_{\left(1, d_{2}, \sigma\right)}=C_{(1,1, \sigma)}
$$

for all $\left(d_{1}, d_{2}, \sigma\right) \in \Omega_{r}$ and $1 \leq r \leq n$. Therefore, to prove the lemma, it suffices to prove $C_{\left(1,1, \sigma_{1}\right)}=C_{\left(1,1, \sigma_{2}\right)}$ for all $\sigma_{1}, \sigma_{2} \in \mathcal{S}_{\{r+1, r+2, \ldots, n\}}$. Equivalently, it is enough to show that $C_{\left(1,1, s_{i} \sigma\right)}=C_{(1,1, \sigma)}$ for any $\sigma \in \mathcal{S}_{\{r+1, r+2, \ldots, n\}}$ and $r+1 \leq i<n$ satisfying $\ell\left(s_{i} \sigma\right)=\ell(\sigma)+1$. Compare the coefficients of $P_{r} T_{\sigma}$ on both sides of the equality $T_{i} \Phi_{n}=(-q)^{-1} \Phi_{n}$. For any $\left(d_{5}, d_{6}, w\right) \in \Omega_{s}$, if $P_{r} T_{\sigma}$ is involved in $T_{i} T_{d_{5}} P_{s} T_{w} T_{d_{6}}^{*}$, then $s=r$ by Lemma 3.2. Furthermore, if $P_{r} T_{\sigma}$ is involved in $T_{i} T_{d_{5}} P_{r} T_{w} T_{d_{6}}^{*}$, it follows from the proof of Lemma 3.2 that $d_{5}=1$ (the identity element of the symmetric group \Im_{n}, that is, $\ell\left(d_{5}\right)=0$) or $d_{5}=s_{i}$. However, $d_{5}=s_{i}$ with $r+1 \leq i<n$ contradicts the condition $d_{5} \in \mathcal{D}_{r}$. Hence we must have $d_{5}=1$. Then, by relation (R3) and calculations in $H_{n}(q)$,

$$
\begin{aligned}
T_{i} P_{r} T_{w} T_{d_{6}}^{*} & =P_{r} T_{i} T_{w} T_{d_{6}}^{*} \\
& = \begin{cases}P_{r} T_{s_{i} w} T_{d_{6}}^{*} & \text { if } \ell\left(s_{i} w\right)=\ell(w)+1, \\
\left(q-q^{-1}\right) P_{r} T_{w} T_{d_{6}}^{*}+P_{r} T_{s_{i} w} T_{d_{6}}^{*} & \text { if } \ell\left(s_{i} w\right)=\ell(w)-1\end{cases}
\end{aligned}
$$

This yields $\left(d_{5}, d_{6}, w\right)=(1,1, \sigma)$ or $\left(d_{5}, d_{6}, w\right)=\left(1,1, s_{i} \sigma\right)$. If $\left(d_{5}, d_{6}, w\right)=(1,1, \sigma)$, then $T_{i} T_{d_{5}} P_{r} T_{w} T_{d_{6}}^{*}=T_{i} P_{r} T_{\sigma}=P_{r} T_{s_{i} \sigma}$, since $\ell\left(s_{i} \sigma\right)=\ell(\sigma)+1$, a contradiction. Hence $\left(d_{5}, d_{6}, w\right)=\left(1,1, s_{i} \sigma\right)$ and the coefficient of $P_{r} T_{\sigma}$ in $T_{i} \Phi_{n}$ is $C_{\left(1,1, s_{i} \sigma\right)}(-q)^{-\ell(\sigma)-1}$. Comparing with the coefficient of $P_{r} T_{\sigma}$ in $(-q)^{-1} \Phi_{n}$, we have $C_{(1,1, \sigma)}=C_{\left(1,1, s_{i} \sigma\right)}$ and this completes the proof of the lemma.

Lemma 3.5. With the above notation, $c_{2}=c_{3}=\cdots=c_{n}=0$.
Proof. By Lemma 3.4, the element Φ_{n} can be taken of the form

$$
\Phi_{n}=\sum_{\sigma \in \mathbb{E}_{n}}(-q)^{-\ell(\sigma)} T_{\sigma}+\sum_{r=1}^{n} c_{r} \sum_{\left(d_{1}, d_{2}, \sigma\right) \in \Omega_{r}}(-q)^{-\ell\left(d_{1}\right)-\ell(\sigma)-\ell\left(d_{2}\right)} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*},
$$

where $c_{r} \in \mathbb{C}(q)$. To compute the coefficients c_{r} with $r \geq 2$, our strategy is to compare the coefficients of P_{r} on both sides of $T_{1} \Phi_{n}=(-q)^{-1} \Phi_{n}$.

Assume $\left(d_{1}, d_{2}, w\right) \in \Omega_{s}$ and P_{r} is involved in $T_{1} T_{d_{1}} P_{s} T_{w} T_{d_{2}}^{*}$. Then Lemma 3.2 implies that $s=r$. Furthermore, if P_{r} is involved in $T_{1} T_{d_{1}} P_{r} T_{w} T_{d_{2}}^{*}$, it follows from the proof of Lemma 3.2 that $d_{1}=1$ (the identity element of the symmetric group $\mathfrak{\Im}_{n}$), that is, $\ell\left(d_{1}\right)=0$ or $d_{1}=s_{1}$. But $s_{1} \notin \mathcal{D}_{r}$ because $r \geq 2$. Hence $d_{1}=1$ and

$$
T_{1} T_{d_{1}} P_{r} T_{w} T_{d_{2}}^{*}=T_{1} P_{r} T_{w} T_{d_{2}}^{*}=q P_{r} T_{w} T_{d_{2}}^{*},
$$

where the second equality follows from relation (R4). Therefore, P_{r} is involved in $T_{1} T_{d_{1}} P_{r} T_{w} T_{d_{2}}^{*}$ if and only if $\left(d_{1}, d_{2}, w\right)=(1,1,1)$. In this case, the coefficient of P_{r} in $T_{i} \Phi_{n}$ is $q c_{r}$. Comparing with the coefficient of P_{r} in $(-q)^{-1} \Phi_{n}$, we have $q c_{r}=(-q)^{-1} c_{r}$, which implies that $c_{r}=0$ since q is an indeterminate.
Lemma 3.6. With the above notation, $c_{1}=-q^{2(n-1)}$.
Proof. To compute the coefficient c_{1}, our strategy is to compare the coefficients of P_{1} on both sides of $P_{1} \Phi_{n}=0$.

We first find the $w \in \Im_{n}$ for which P_{1} is involved in $P_{1} T_{w}^{*}$. For any $w \in \Im_{n}$, we can write $w=s_{i-1} \cdots s_{2} s_{1} \sigma$ with $1 \leq i \leq n$ and $\sigma \in \mathbb{S}_{\{2, \ldots, n\}}$. Now

$$
P_{1} T_{w}^{*}=P_{1} T_{w^{-1}}=P_{1} T_{\sigma^{-1}}\left(T_{1} T_{2} \cdots T_{i-1}\right),
$$

which is an element in the set $\left\{T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} \mid\left(d_{1}, d_{2}, \sigma\right) \in \Omega\right\}$. Therefore, P_{1} is involved in $P_{1} T_{w}^{*}$ if and only if $w=1$, the identity element of the symmetric group $\mathfrak{\Im}_{n}$. Hence P_{1} is involved in $P_{1} T_{w}=P_{1} T_{w^{-1}}^{*}$ if and only if $w=1$.

Next, we find the $\left(d_{1}, d_{2}, w\right) \in \Omega_{1}$ for which P_{1} is involved in $P_{1} T_{d_{1}} P_{1} T_{w} T_{d_{2}}^{*}$. If $\ell\left(d_{1}\right)=0$, then $\left(d_{1}, d_{2}, w\right)=(1,1,1)$. If $\ell\left(d_{1}\right)>0$, we have $T_{d_{1}}=T_{i-1} \cdots T_{2} T_{1}$ for some $2 \leq i \leq n$. It follows from relations (R3) and (R5) that

$$
\begin{aligned}
P_{1} T_{d_{1}} P_{1} T_{w} T_{d_{2}}^{*} & =T_{i-1} \cdots T_{2}\left(P_{1} T_{1} P_{1}\right) T_{w} T_{d_{2}}^{*} \\
& =q^{-1} T_{i-1} \cdots T_{2} P_{2} T_{w} T_{d_{2}}^{*}+\left(q-q^{-1}\right) P_{1} T_{i-1} \cdots T_{2} T_{w} T_{d_{2}}^{*} .
\end{aligned}
$$

In this case, P_{1} is only involved in the term $P_{1} T_{i-1} \cdots T_{2} T_{w} T_{d_{2}}^{*}$. By calculations in the Iwahori-Hecke algebra $H_{n}(q)$ (see, for example, [12, Proposition 1.16]), P_{1} is involved in $P_{1} T_{i-1} \cdots T_{2} T_{w} T_{d_{2}}^{*}$ if and only if $w=s_{2} s_{3} \cdots s_{i-1}$ and $d_{2}=1$. Here, for $i=2$, we take $w=1$. Therefore, P_{1} is involved in $P_{1} T_{d_{1}} P_{1} T_{w} T_{d_{2}}^{*}$ with $\ell\left(d_{1}\right)>0$ if and only if $\left(d_{1}, d_{2}, w\right)=\left(s_{i-1} \cdots s_{2} s_{1}, 1, s_{2} \cdots s_{i-1}\right)$ with $2 \leq i \leq n$.

By the above argument, the coefficient of P_{1} in $P_{1} \Phi_{n}$ is

$$
\begin{aligned}
1+c_{1}\left(1+\sum_{i=2}^{n}(-q)^{-(i-1)-(i-2)}\left(q-q^{-1}\right)\right) & =1+c_{1}\left(1+\left(1-q^{2}\right) \sum_{i=1}^{n-1} q^{-2 i}\right) \\
& =1+c_{1} q^{-2(n-1)}
\end{aligned}
$$

Thus $P_{1} \Phi_{n}=0$ implies that $c_{1}=-q^{2(n-1)}$.
We now turn to the proof of the main result of this paper. For any positive integer $k \leq n$, the natural map $T_{i} \mapsto T_{i}, P_{j} \mapsto P_{j}$ for all $1 \leq i \leq k-1$ and $1 \leq j \leq k$ can be extended to an algebra embedding from $R_{k}(q)$ into $R_{n}(q)$. From this point of view, when $m<n$ (where $m=\operatorname{dim} L\left(\varepsilon_{1}\right)$),

$$
\Phi_{m+1}=\sum_{\sigma \in \mathfrak{G}_{m+1}}(-q)^{-\ell(\sigma)} T_{\sigma}-q^{2 m} \sum_{\left(d_{1}, d_{2}, \sigma\right) \in \Omega_{1}}(-q)^{-\ell\left(d_{1}\right)-\ell(\sigma)-\ell\left(d_{2}\right)} T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} \in R_{n}(q) .
$$

Proof of Theorem 1.2. By Proposition 2.4, the element $\Phi:=Y_{m+1} /(m+1)$! is an idempotent such that $\langle\Phi\rangle=\operatorname{Ker}\left(\varphi_{1}\right)$. Assume $\Phi_{q}=\Phi_{m+1}$, which belongs to the lattice $\mathbb{Z}\left[q, q^{-1}\right]-\operatorname{Span}\left\{T_{d_{1}} P_{r} T_{\sigma} T_{d_{2}}^{*} \mid\left(d_{1}, d_{2}, \sigma\right) \in \Omega\right\}$. Note that $\Phi_{q}^{2}=\sum_{\sigma \in \Im_{m+1}} q^{-2 \ell(\sigma)} \Phi_{q}$ and $\lim _{q \rightarrow 1} \Phi_{q}=(m+1)!\Phi$. Thus Proposition 2.5 completes the proof of the theorem.

Acknowledgements

The author expresses sincere gratitude to the anonymous referees for their substantial and insightful comments which significantly helped to improve the final presentation of this article.

References

[1] M. Dieng, T. Halverson and V. Poladian, 'Character formulas for q-rook monoid algebras', J. Algebraic Combin. 17 (2003), 99-123.
[2] J. East, ‘Cellular algebras and inverse semigroups’, J. Algebra 296 (2006), 505-519.
[3] J. J. Graham and G. I. Lehrer, 'Cellular algebras', Invent. Math. 123 (1996), 1-34.
[4] C. Grood, 'A Specht module analog for the rook monoid', Electron. J. Combin. 9 (2002), Article ID \#R2, 10 pages.
[5] T. Halverson, 'Representations of the q-rook monoid', J. Algebra 273 (2004), 227-251.
[6] T. Halverson and A. Ram, ' q-rook monoid algebras, Hecke algebras, and Schur-Weyl duality', J. Math. Sci. 121 (2004), 2419-2436; translated from Zap. Nauch. Sem. POMI 283 (2001), 224-250.
[7] J. Hu, 'Schur-Weyl reciprocity between quantum groups and Hecke algebras of type $G(r, 1, n)$ ', Math. Z. 238 (2001), 505-521.
[8] J. Hu and Z.-K. Xiao, 'On tensor spaces for Birman-Murakami-Wenzl algebras', J. Algebra 324 (2010), 2893-2922.
[9] G. I. Lehrer and R. B. Zhang, 'Strongly multiplicity free modules for Lie algebras and quantized groups', J. Algebra 306 (2006), 138-174.
[10] G. I. Lehrer and R. B. Zhang, 'The second fundamental theorem of invariant theory for the orthogonal group', Ann. of Math. (2) 176 (2012), 2031-2054.
[11] G. I. Lehrer and R. B. Zhang, 'The Brauer category and invariant theory', J. Eur. Math. Soc. (JEMS) 17 (2015), 2311-2351.
[12] A. Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, 15 (Amreican Mathematical Society, Providence, RI, 1999).
[13] R. Paget, 'Representation theory of q-rook monoid algebras', J. Algebraic Combin. 24 (2006), 239-252.
[14] S. Sakamoto and T. Shoji, 'Schur-Weyl reciprocity for Ariki-Koike algebras', J. Algebra 221 (1999), 293-314.
[15] L. Solomon, 'The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field', Geom. Dedicata 36 (1990), 15-49.
[16] L. Solomon, 'Representations of the rook monoid', J. Algebra 256 (2002), 309-342.
[17] L. Solomon, 'The Iwahori algebra of $\mathbf{M}_{n}\left(\mathbf{F}_{q}\right)$, a presentation and a representation on tensor space', J. Algebra 273 (2004), 206-226.
[18] Z.-K. Xiao, 'On tensor spaces for rook monoid algebras', Acta Math. Sinica, English Series 32 (2016), 607-620.

[^0]: The work of the author is supported by the National Natural Science Foundation of China (Grant No. 11301195) and the research foundation of Huaqiao University (Project 2014KJTD14).
 (C) 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

