# THE ANNIHILATOR OF TENSOR SPACE IN THE *q*-ROOK MONOID ALGEBRA

## **ZHANKUI XIAO**

(Received 16 October 2016; accepted 11 December 2016; first published online 2 March 2017)

### Abstract

In this paper, we give an explicit construction of a quasi-idempotent in the *q*-rook monoid algebra  $R_n(q)$  and show that it generates the whole annihilator of the tensor space  $U^{\otimes n}$  in  $R_n(q)$ .

2010 *Mathematics subject classification*: primary 20C08; secondary 05E10, 20G05, 20M30. *Keywords and phrases*: tensor space, *q*-rook monoid, Schur–Weyl duality.

## 1. Introduction

The *q*-rook monoid algebra  $R_n(q)$  (see Section 2.1 for a precise definition), was first studied by Solomon [15] as the Iwahori–Hecke algebra for the monoid of matrices over a finite field. Then the representation theory of *q*-rook monoid algebras and their specialisation analogues (with *q* = 1) was taken up in [1, 4, 5, 16]. Paget in [13] considered the modular representation theory of *q*-rook monoid algebras and proved that the *q*-rook monoid algebra  $R_n(q)$  (where *q* may be a unit root) is a cellular algebra in the sense of Graham and Lehrer [3] (see [2] for the case of *q* = 1).

In [17], Solomon defined an action of  $R_n(q)$  on the tensor space  $U^{\otimes n}$ , where  $U = L(0) \oplus L(\varepsilon_1)$  is the direct sum of the trivial and natural module for the quantum general linear group  $U_q(\mathfrak{gl}_m)$ . Halverson in [5] found a new presentation of  $R_n(q)$  and used it to show that Solomon's action of  $R_n(q)$  on the tensor space  $U^{\otimes n}$  can be extended to a Schur–Weyl duality as follows.

**THEOREM** 1.1 [5, Corollary 4.3]. The map  $\varphi : R_n(q) \to \operatorname{End}_{U_q(\mathfrak{gl}_m)}(U^{\otimes n})$  is a surjective algebra homomorphism and, if  $m \ge n$ , then  $\varphi$  is an isomorphism.

When m < n, the algebra homomorphism  $\varphi$  is in general not injective. Therefore it is natural to ask how to describe the kernel of the homomorphism  $\varphi$ , that is, the annihilator of  $U^{\otimes n}$  in the algebra  $R_n(q)$ . The purpose of this article is to answer the question. Furthermore, we characterise the generators of Ker( $\varphi$ ) at an integral level so as to be compatible with the cellular structure of  $R_n(q)$  and  $\operatorname{End}_{U_q(\mathfrak{gl}_m)}(U^{\otimes n})$ . In other words, the generators of Ker( $\varphi$ ) belong to a  $\mathbb{Z}[q, q^{-1}]$ -lattice of  $R_n(q)$ .

The work of the author is supported by the National Natural Science Foundation of China (Grant No. 11301195) and the research foundation of Huaqiao University (Project 2014KJTD14).

<sup>© 2017</sup> Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

In the invariant theory of classical and quantum groups, characterising the annihilator of a tensor power of the natural module of a classical or quantum group in a Hecke algebra, Brauer algebra, or Birman–Murakami–Wenzl (BMW) algebra is one formulation of the second fundamental theorem of invariant theory (see [11] and the references therein for a detailed description of this topic). Recently, Hu and the author [8] proved the second fundamental theorem for symplectic groups and Lehrer and Zhang [10] gave the second fundamental theorem for orthogonal groups, taking advantage of a different formulation of the invariant theory. It is surprising to some extent that in both the symplectic and orthogonal cases and their quantised versions, the annihilator of *n*-tensor space in a specialised Brauer algebra or BMW algebra is generated by an explicitly described quasi-idempotent. Motivated by these results, we have found that the annihilator of tensor space  $U^{\otimes n}$  in a rook monoid algebra (the case q = 1 in the present paper) is also generated by a quasi-idempotent [18]. We shall construct a quasi-idempotent  $\Phi_{m+1}$  (see Section 3) in Ker $\varphi$  and prove the following result.

**THEOREM 1.2.** With the above notation, if m < n, then  $\operatorname{Ann}_{R_n(q)}(U^{\otimes n}) = \langle \Phi_{m+1} \rangle$ .

On the other hand, Halverson and Ram in [6] proved that the *q*-rook monoid algebra  $R_n(q)$  is a quotient of the Hecke algebra of type *B*. From this point of view, they showed that the Schur–Weyl duality for  $R_n(q)$  (Theorem 1.1) comes from a Schur–Weyl duality for cyclotomic Hecke algebras studied in [7, 14]. Another motivation of this paper is to try to build a bridge to characterise the annihilator of tensor space in a cyclotomic Hecke algebra.

Note that one of the main differences between q-rook monoid algebras and the Hecke algebras, Brauer algebras and BMW algebras is that the q-rook monoid algebra  $R_n(q)$  generally cannot be realised as a diagram algebra except in the case of q = 1 (see [5, Remark 4.4]). Therefore our proof of Theorem 1.2 differs from that in [8, 11, 18] and we will view  $R_n(q)$  as a module of the Hecke algebra of a symmetric group.

## 2. Preliminaries

**2.1. The** *q***-rook monoid.** Let *q* be an indeterminate. Halverson [5] defined the *q*-rook monoid algebra  $R_n(q)$  to be the unital associative  $\mathbb{C}(q)$ -algebra generated by  $T_1, T_2, \ldots, T_{n-1}$  and  $P_1, P_2, \ldots, P_n$  subject to the relations:

| (A1) | $T_i^2 = (q - q^{-1})T_i + 1,$                           | for $1 \le i \le n - 1$ ,     |
|------|----------------------------------------------------------|-------------------------------|
| (A2) | $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$                 | for $1 \le i \le n - 2$ ,     |
| (A3) | $T_i T_j = T_j T_i,$                                     | for $ i - j  > 1$ ,           |
| (R1) | $P_i^2 = P_i,$                                           | for $1 \le i \le n$ ,         |
| (R2) | $P_i P_j = P_j P_i,$                                     | for $1 \le i, j \le n$ ,      |
| (R3) | $P_i T_j = T_j P_i,$                                     | for $1 \le i < j \le n - 1$ , |
| (R4) | $P_i T_j = T_j P_i = q P_i,$                             | for $1 \le j < i \le n$ ,     |
| (R5) | $P_{i+1} = qP_iT_i^{-1}P_i = qP_iT_iP_i - (q^2 - 1)P_i,$ | for $1 \le i \le n - 1$ .     |
|      |                                                          |                               |

Note that our definition of  $R_n(q)$  is slightly different from the definition in [5]. However, it is equivalent (see [6, Remark 1.2]). Halverson gave a basis of  $R_n(q)$  which we now recall. Throughout this paper, we identify the symmetric group  $\mathfrak{S}_n$  with the group of *left* permutations on the set  $\{1, 2, ..., n\}$ . For  $\sigma \in \mathfrak{S}_n$  with reduced expression  $\sigma = s_{i_1}s_{i_2}\cdots s_{i_k}$  define  $T_{\sigma} := T_{i_1}T_{i_2}\cdots T_{i_k}$ . Then  $T_{\sigma}$  is well defined because of the braid relations (A2) and (A3). Furthermore, the subalgebra generated by  $T_1, T_2, ..., T_{n-1}$ , denoted by  $H_n(q)$ , is isomorphic to an Iwahori–Hecke algebra of type A (see [5, Corollary 3.4]).

For an integer *r* with  $0 \le r \le n$ , define

$$\mathcal{D}_r := \{ d \in \mathfrak{S}_n \mid d(1) < d(2) < \dots < d(r), d(r+1) < \dots < d(n) \}.$$

Note that  $\mathcal{D}_0 = \{1\}$  and  $\mathcal{D}_r$  is the set of distinguished left coset representatives of the parabolic subgroup  $\mathfrak{S}_{(r,n-r)}$  in  $\mathfrak{S}_n$ . Write  $\Omega_r := \{(d_1, d_2, \sigma) \mid d_1, d_2 \in \mathcal{D}_r, \sigma \in \mathfrak{S}_{\{r+1,\dots,n\}}\}$  and  $\Omega := \bigcup_{r=0}^n \Omega_r$ . For  $(d_1, d_2, \sigma) \in \Omega_r$ , define

$$T_{(d_1, d_2, \sigma)} := T_{d_1} P_r T_{\sigma} T_{d_2}^{-1}.$$

When r = 0, we interpret  $P_0 = 1$ . For  $d \in \mathcal{D}_r$ , if we assume that  $a_i = d(i)$  for  $1 \le i \le r$ , then there is a reduced expression

$$d = (s_{a_1-1} \cdots s_2 s_1)(s_{a_2-1} \cdots s_3 s_2) \cdots (s_{a_r-1} \cdots s_{r+1} s_r).$$

Hence our notation coincides with that in [5, Section 2].

LEMMA 2.1 [5, Theorem 2.1 and Corollary 2.2]. The set  $\{T_{(d_1,d_2,\sigma)} | (d_1,d_2,\sigma) \in \Omega\}$  forms a basis of  $R_n(q)$ .

As foreshadowed in the introduction, we want to characterise the generators of  $\text{Ker}(\varphi)$  at an integral level so as to be compatible with the cellular structure of  $R_n(q)$  and  $\text{End}_{U_q(\mathfrak{gl}_m)}(U^{\otimes n})$ . We shall use a slightly different basis of  $R_n(q)$  to that in Lemma 2.1. Let \* be the involution, an anti-automorphism of order 2, of  $R_n(q)$  defined on the generators by

$$T_i^* := T_i, \quad P_i^* := P_i \quad \text{for } 1 \le i \le n-1, \ 1 \le j \le n.$$

The proof of the following lemma is similar to that of [13, Proposition 3] and hence we omit it here.

# LEMMA 2.2. The set $\{T_{d_1}P_rT_{\sigma}T_{d_2}^* \mid (d_1, d_2, \sigma) \in \Omega\}$ forms a basis of $R_n(q)$ .

**2.2.** The classical case (q = 1). In this subsection, we recall the main results of [18] for later use. Let  $R_n$  be the set of all  $n \times n$  matrices that contain *at most* one entry equal to 1 in each row and column and zeros elsewhere. With the operation of matrix multiplication,  $R_n$  has the structure of a monoid. The monoid  $R_n$  is known both as the *rook monoid* and the *symmetric inverse semigroup* [15]. The following presentation

of  $R_n$  is much more helpful. The rook monoid  $R_n$  is generated by  $s_1, s_2, \ldots, s_{n-1}$  and  $p_1, p_2, \ldots, p_n$  subject to the following relations:

$$s_i^2 = 1 & \text{for } 1 \le i \le n-1, \\ s_i s_j = s_j s_i & \text{for } |i-j| > 1, \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} & \text{for } 1 \le i \le n-2, \\ p_i^2 = p_i & \text{for } 1 \le i \le n, \\ p_i p_j = p_j p_i & \text{for } i \ne j, \\ s_i p_i = p_{i+1} s_i & \text{for } 1 \le i \le n-1, \\ s_i p_j = p_j s_i & \text{for } j \ne i, i+1, \\ p_i s_i p_i = p_i p_{i+1} & \text{for } 1 \le i \le n-1. \\ \end{cases}$$

From this presentation, it is clear that the *q*-rook monoid algebra  $R_n(q)$  is indeed a *q*-analogue of the rook monoid algebra  $\mathbb{C}R_n$ . Notice, when we take the specialisation  $q \to 1$ , that  $\lim_{q\to 1} P_j = p_1 p_2 \cdots p_j$  for each  $1 \le j \le n$ .

Let *V* be an *m*-dimensional vector space over the field  $\mathbb{C}$ . Let  $U_1 = \mathbb{C} \oplus V$  and GL(V) denote the general linear group over *V*. The following analogue of Theorem 1.1 was proved by Solomon [16, Theorem 5.10 and Corollary 5.18].

**PROPOSITION** 2.3. The map  $\varphi_1 : \mathbb{C}R_n \to \operatorname{End}_{\operatorname{GL}(V)}(U_1^{\otimes n})$  is a surjective algebra homomorphism and, if  $m \ge n$ , then  $\varphi$  is an isomorphism.

For any positive integer  $k \le n$ , the natural map  $s_i \mapsto s_i$ ,  $p_j \mapsto p_j$  for all  $1 \le i \le k - 1$ and  $1 \le j \le k$  extends to an algebra embedding from  $\mathbb{C}R_k$  into  $\mathbb{C}R_n$ . In [18, Section 4], when m < n, we defined a quasi-idempotent

$$Y_{m+1} = \sum_{\sigma \in \mathfrak{S}_{m+1}} (-1)^{\ell(\sigma)} \sigma - \sum_{(d_1, d_2, \sigma) \in \Omega_1} (-1)^{\ell(d_1) + \ell(\sigma) + \ell(d_2)} d_1 p_1 \sigma d_2^{-1} \in \mathbb{C}R_{m+1}.$$

**PROPOSITION 2.4** [18, Theorem 1.2]. If m < n, then  $\operatorname{Ann}_{\mathbb{C}R_n}(U_1^{\otimes n}) = \langle Y_{m+1} \rangle$ .

**2.3. Specialisations.** We now relate the quantised case to the classical (q = 1) case and then find a way to construct the generators of  $\text{Ker}(\varphi)$  at an integral level. Let  $\mathcal{R}_q$  be the subring of  $\mathbb{C}(q)$  consisting of the rational functions with no pole at q = 1. The evaluation map  $\psi_1 : \mathcal{R}_q \to \mathbb{C}$  taking q to 1 is a  $\mathbb{C}$ -algebra homomorphism.

Let  $R_n(\mathcal{A}_q)$  be the  $\mathcal{A}_q$ -span of the set  $\{T_{d_1}P_rT_\sigma T_{d_2}^* \mid (d_1, d_2, \sigma) \in \Omega\}$ . Then  $R_n(\mathcal{A}_q)$  is an  $\mathcal{A}_q$ -subalgebra of  $R_n(q)$  and  $R_n(q) = \mathbb{C}(q) \otimes_{\iota} R_n(\mathcal{A}_q)$ , where  $\iota$  is the inclusion of  $\mathcal{A}_q$ into  $\mathbb{C}(q)$  (see the cellular structure of a q-rook monoid algebra in [13]). On the other hand, since  $U = L(0) \oplus L(\varepsilon_1)$  is the direct sum of the trivial and natural module for  $U_q(\mathfrak{gl}_m)$ , both  $U_q(\mathfrak{gl}_m)$  and  $U^{\otimes n}$  have  $\mathcal{A}_q$ -forms  $U_{\mathcal{A}_q}(\mathfrak{gl}_m)$  and  $U_{\mathcal{A}_q}^{\otimes n}$ , such that  $U_{\mathcal{A}_q}(\mathfrak{gl}_m)$ acts on  $U_{\mathcal{A}_q}^{\otimes n}$ . We can therefore take the specialisation  $\lim_{q\to 1} U = \mathbb{C} \otimes_{\psi_1} -$ , for all the  $\mathcal{A}_q$ modules just mentioned. It is well known that  $\lim_{q\to 1} U_{\mathcal{A}_q}(\mathfrak{gl}_m) = U(\mathfrak{gl}_m)$ , the universal enveloping algebra of  $\mathfrak{gl}_m$  over  $\mathbb{C}$ . Clearly  $\lim_{q\to 1} R_n(\mathcal{A}_q) = \mathbb{C}R_n$ . We refer to [9] for more details of the specialisation of quantum groups. The following proposition indicates a way to construct the generators of  $\text{Ker}(\varphi)$ . The proof is similar to that in [11, Theorem 8.2].

**PROPOSITION 2.5.** With the above notation, let  $\Phi$  be an idempotent in  $\mathbb{C}R_n$  such that the ideal  $\langle \Phi \rangle = \text{Ker}(\varphi_1)$ . Assume that  $\Phi_q \in R_n(\mathcal{A}_q)$  is such that:

- $(1) \quad \Phi_q^2=f(q)\Phi_q, \, where \, f(q)\in \mathcal{A}_q;$
- (2)  $\lim_{q \to 1} \Phi_q = c\Phi$ , where  $c \neq 0$ .

*Then*  $\Phi_q$  *generates the ideal* Ker( $\varphi$ ).

**PROOF.** It follows from  $\lim_{q\to 1} \langle \Phi_q \rangle = \langle \Phi \rangle$  that  $\dim_{\mathbb{C}(q)} \langle \Phi_q \rangle \ge \dim_{\mathbb{C}} \langle \Phi \rangle$ . Here  $\langle \Phi_q \rangle$  is the ideal in  $R_n(q)$  generated by  $\Phi_q$ . Hence, if  $\Phi_q \in \text{Ker}(\varphi)$ ,

$$\dim_{\mathbb{C}} \mathbb{C}R_n / \langle \Phi \rangle \ge \dim_{\mathbb{C}(q)} R_n(q) / \langle \Phi_q \rangle$$
  
$$\ge \dim_{\mathbb{C}(q)} R_n(q) / \operatorname{Ker}(\varphi)$$
  
$$= \dim_{\mathbb{C}(q)} \operatorname{End}_{U_q(\mathfrak{gl}_m)}(U^{\otimes n}) = \dim_{\mathbb{C}} \mathbb{C}R_n / \langle \Phi \rangle.$$

We now prove  $\Phi_q \in \operatorname{Ker}(\varphi)$ , that is,  $\Phi_q U^{\otimes n} = 0$ . In fact, we only need to prove  $\Phi_q U_{\mathcal{A}_q}^{\otimes n} = 0$ . Note that  $\lim_{q \to 1} \Phi_q U_{\mathcal{A}_q}^{\otimes n} = c \Phi U_1^{\otimes n} = 0$  and hence  $\Phi_q U_{\mathcal{A}_q}^{\otimes n} \subseteq (q-1)U_{\mathcal{A}_q}^{\otimes n}$ . We use a recursive procedure to show that  $\Phi_q U_{\mathcal{A}_q}^{\otimes n} \subseteq (q-1)^i U_{\mathcal{A}_q}^{\otimes n}$  for each positive integer *i*, which in turn implies that  $\Phi_q U_{\mathcal{A}_q}^{\otimes n} = 0$ . Assume that  $\Phi_q U_{\mathcal{A}_q}^{\otimes n} \subseteq (q-1)^i U_{\mathcal{A}_q}^{\otimes n}$  for some positive integer *i*. Then  $f(q)\Phi_q U_{\mathcal{A}_q}^{\otimes n} = \Phi_q^2 U_{\mathcal{A}_q}^{\otimes n} \subseteq (q-1)^{i+1} U_{\mathcal{A}_q}^{\otimes n}$  by the inductive hypothesis. But f(q) is not divisible by q-1 in  $\mathcal{A}_q$ , since  $\lim_{q \to 1} \Phi_q^2 = c^2 \Phi = f(1)\Phi \neq 0$ . In other words, f(q) is invertible in  $\mathcal{A}_q$ . Therefore  $\Phi_q U_{\mathcal{A}_q}^{\otimes n} \subseteq (q-1)^{i+1} U_{\mathcal{A}_q}^{\otimes n}$  and this completes the proof of the proposition.

### 3. Proof of Theorem 1.2

By Propositions 2.5 and 2.4, to construct the generators of  $\text{Ker}(\varphi)$ , we only need to construct a *q*-analogue of  $Y_{m+1}$ . In other words, we need to construct an element  $\Phi_{m+1} \in R_{m+1}(q)$  having the one-dimensional sign representation of  $R_{m+1}(q)$  (see [18, Section 3]), that is,

$$T_i \Phi_{m+1} = \Phi_{m+1} T_i = (-q)^{-1} \Phi_{m+1}$$
 and  $P_j \Phi_{m+1} = \Phi_{m+1} P_j = 0$ 

for all  $1 \le i \le m$  and  $1 \le j \le m + 1$ .

Since we work on the field  $\mathbb{C}(q)$ , the *q*-rook monoid algebra  $R_n(q)$  is semisimple [17]. By the representation theory of  $R_n(q)$  [5, 13], there exists an element  $\Phi_n \in R_n(q)$  for  $n \ge 2$  such that  $T_i \Phi_n = \Phi_n T_i = (-q)^{-1} \Phi_n$  and  $P_j \Phi_n = \Phi_n P_j = 0$  for all  $1 \le i \le n - 1$  and  $1 \le j \le n$ .

**LEMMA** 3.1. *The element*  $\Phi_n$  *can be taken of the form* 

$$\Phi_n = \sum_{\sigma \in \mathfrak{S}_n} (-q)^{-\ell(\sigma)} T_{\sigma} + \sum_{r=1}^n \sum_{(d_1, d_2, \sigma) \in \Omega_r} C_{(d_1, d_2, \sigma)} (-q)^{-\ell(d_1) - \ell(\sigma) - \ell(d_2)} T_{d_1} P_r T_{\sigma} T_{d_2}^*,$$

where  $C_{(d_1,d_2,\sigma)} \in \mathbb{C}(q)$ .

**PROOF.** For  $0 \le r \le n$ , let  $R_n^{(r)}$  be the two-sided ideal of  $R_n(q)$  generated by  $P_r$ . This gives a filtration

$$R_n(q) = R_n^{(0)} \supset R_n^{(1)} \supset R_n^{(2)} \supset \cdots \supset R_n^{(n)} \supset 0$$

of two-sided ideals. It is clear that there is an algebra epimorphism

$$\theta: R_n(q) \twoheadrightarrow R_n(q)/R_n^{(1)} \cong H_n(q),$$

where  $H_n(q)$ , generated by  $T_1, T_2, \ldots, T_{n-1}$ , is isomorphic to an Iwahori–Hecke algebra of type A. Since the algebras  $R_n(q)$  and  $H_n(q)$  are both semisimple, the image  $\theta(\Phi_n)$ must correspond to the Young anti-symmetriser of  $H_n(q)$ . Then the lemma follows from Lemma 2.2 and the well-known representation theory of the Iwahori–Hecke algebra  $H_n(q)$ .

Since  $R_n(q)$  generally cannot be realised as a diagram algebra except in the case q = 1 (see [5, Remark 4.4]), we find another way to describe  $\Phi_n$  different from the methods in [8, 11, 18]. Note that the Iwahori–Hecke algebra  $H_n(q)$  is a subalgebra of  $R_n(q)$  by [5, Corollary 3.4]. Hence  $R_n(q)$  can be viewed as a left  $H_n(q)$ -module in the natural manner. Define

$$R_n^{[r]} := \mathbb{C}(q) - \operatorname{Span}\{T_{d_1} P_r T_{\sigma} T_{d_2}^* \mid (d_1, d_2, \sigma) \in \Omega_r\}$$

for  $0 \le r \le n$ . The following technical lemma aims to give some explicit structure constants.

LEMMA 3.2. The space  $R_n^{[r]}$  is an  $H_n(q)$ -submodule of  $R_n(q)$  for each r with  $0 \le r \le n$ .

**PROOF.** For any  $(d_1, d_2, \sigma) \in \Omega_r$ , we only need to prove  $T_i T_{d_1} P_r T_\sigma T_{d_2}^* \in R_n^{[r]}$  for each  $1 \le i \le n-1$ . Since  $\mathcal{D}_r$  is the set of distinguished left coset representatives of  $\mathfrak{S}_{(r,n-r)}$  in  $\mathfrak{S}_n$ , there exists a sequence of positive integers  $1 \le a_1 < a_2 < \cdots < a_r \le n$  such that

$$T_{d_1} = (T_{a_1-1} \cdots T_2 T_1)(T_{a_2-1} \cdots T_3 T_2) \cdots (T_{a_r-1} \cdots T_{r+1} T_r).$$

Then four cases arise.

*Case 1.*  $i, i + 1 \notin \{a_1, a_2, ..., a_r\}$ . Then  $d_1(j) = i$  with j > r. Moreover,

$$\begin{split} T_{i}T_{d_{1}}P_{r}T_{\sigma}T_{d_{2}}^{*} &= T_{d_{1}}T_{j}P_{r}T_{\sigma}T_{d_{2}}^{*} \\ &= T_{d_{1}}P_{r}(T_{j}T_{\sigma})T_{d_{2}}^{*} \qquad \text{(by relation (R3))} \\ &= \begin{cases} T_{d_{1}}P_{r}T_{s_{j}\sigma}T_{d_{2}}^{*} & \text{if } \ell(s_{j}\sigma) = \ell(\sigma) + 1, \\ (q - q^{-1})T_{d_{1}}P_{r}T_{\sigma}T_{d_{2}}^{*} + T_{d_{1}}P_{r}T_{s_{j}\sigma}T_{d_{2}}^{*} & \text{if } \ell(s_{j}\sigma) = \ell(\sigma) - 1. \end{cases} \end{split}$$

*Case 2.*  $i \in \{a_1, a_2, ..., a_r\}$  and  $i + 1 \notin \{a_1, a_2, ..., a_r\}$ . Then  $s_i d_1 \in \mathcal{D}_r$  and  $\ell(s_i d_1) = \ell(d_1) + 1$ . Hence

$$T_i T_{d_1} P_r T_\sigma T_{d_2}^* = T_{s_i d_1} P_r T_\sigma T_{d_2}^*.$$

*Case 3.*  $i \notin \{a_1, a_2, ..., a_r\}$  and  $i + 1 \in \{a_1, a_2, ..., a_r\}$ . Then  $s_i d_1 \in \mathcal{D}_r$  and  $\ell(s_i d_1) = \ell(d_1) - 1$ . Hence

$$T_i T_{d_1} P_r T_{\sigma} T_{d_2}^* = (q - q^{-1}) T_{d_1} P_r T_{\sigma} T_{d_2}^* + T_{s_i d_1} P_r T_{\sigma} T_{d_2}^*$$

*Case 4.*  $i, i + 1 \in \{a_1, a_2, ..., a_r\}$ . Then  $d_1(j) = i$  with j < r. From relation (R4),

$$T_{i}T_{d_{1}}P_{r}T_{\sigma}T_{d_{2}}^{*} = T_{d_{1}}T_{j}P_{r}T_{\sigma}T_{d_{2}}^{*} = qT_{d_{1}}P_{r}T_{\sigma}T_{d_{2}}^{*}.$$

In each case,  $T_i T_{d_1} P_r T_{\sigma} T_{d_2}^*$  is a linear combination of the basis elements belonging to the space  $R_n^{[r]}$ , and hence this completes the proof of the lemma.

Let us now calculate the coefficients  $C_{(d_1,d_2,\sigma)}$  in Lemma 3.1. The following lemma is well known for symmetric groups.

**LEMMA** 3.3. Let r be an integer with  $0 \le r \le n$ . There exists a unique element  $w_0 \in \mathcal{D}_r$ of maximal length r(n - r). If  $s_{i_{r(n-r)}} \cdots s_{i_2} s_{i_1}$  is a reduced expression of  $w_0$ , then for any integer j with  $0 \le j \le r(n - r)$ , there is  $s_{i_j} \cdots s_{i_2} s_{i_1} \in \mathcal{D}_r$ . Conversely, for any  $d \in \mathcal{D}_r$ , there exists a reduced expression  $s_{i_{r(n-r)}} \cdots s_{i_2} s_{i_1}$  of  $w_0$  such that  $d = s_{i_j} \cdots s_{i_2} s_{i_1}$  for some j with  $0 \le j \le r(n - r)$ .

For an arbitrary element  $a \in R_n(q)$ , we say that  $T_{d_1}P_rT_{\sigma}T_{d_2}^*$  is involved in *a*, if  $T_{d_1}P_rT_{\sigma}T_{d_2}^*$  appears with nonzero coefficient when writing *a* as a linear combination of the basis in Lemma 2.2.

**LEMMA** 3.4. For any r with  $1 \le r \le n$  and any  $(d_1, d_2, \sigma_1), (d_3, d_4, \sigma_2) \in \Omega_r$ , we have  $C_{(d_1, d_2, \sigma_1)} = C_{(d_3, d_4, \sigma_2)}$ . In particular, the element  $\Phi_n$  can be taken of the form

$$\Phi_n = \sum_{\sigma \in \mathfrak{S}_n} (-q)^{-\ell(\sigma)} T_{\sigma} + \sum_{r=1}^n c_r \sum_{(d_1, d_2, \sigma) \in \Omega_r} (-q)^{-\ell(d_1) - \ell(\sigma) - \ell(d_2)} T_{d_1} P_r T_{\sigma} T_{d_2}^*$$

where  $c_r \in \mathbb{C}(q)$ .

**PROOF.** We first claim that  $C_{(d_1,d_2,\sigma)} = C_{(d_3,d_2,\sigma)}$ . By Lemma 3.3, it suffices to prove that

$$C_{(d_1,d_2,\sigma)} = C_{(s_id_1,d_2,\sigma)}$$

whenever  $s_i d_1 \in \mathcal{D}_r$  with  $\ell(s_i d_1) = \ell(d_1) + 1$ . Compare the coefficients of  $T_{d_1} P_r T_\sigma T_{d_2}^*$ on both sides of the equality  $T_i \Phi_n = (-q)^{-1} \Phi_n$ . For any  $(d_5, d_6, w) \in \Omega_s$ , if  $T_{d_1} P_r T_\sigma T_{d_2}^*$ is involved in  $T_i T_{d_5} P_s T_w T_{d_6}^*$ , then s = r by Lemma 3.2. Furthermore, if  $T_{d_1} P_r T_\sigma T_{d_2}^*$ is involved in  $T_i T_{d_5} P_r T_w T_{d_6}^*$ , it follows from the proof of Lemma 3.2 that  $d_5 = d_1$  or  $s_i d_5 = d_1$ . However, if  $d_5 = d_1$ , then  $T_i T_{d_5} P_r T_w T_{d_6}^* = T_{s_i d_1} P_r T_w T_{d_6}^*$  since  $s_i d_1 \in \mathcal{D}_r$  with  $\ell(s_i d_1) = \ell(d_1) + 1$ , a contradiction. Hence we must have  $s_i d_5 = d_1$  and then

$$T_{i}T_{d_{5}}P_{r}T_{w}T_{d_{6}}^{*} = T_{i}T_{s_{i}d_{1}}P_{r}T_{w}T_{d_{6}}^{*} = T_{i}^{2}T_{d_{1}}P_{r}T_{w}T_{d_{6}}^{*}$$
$$= (q - q^{-1})T_{s_{i}d_{1}}P_{r}T_{w}T_{d_{6}}^{*} + T_{d_{1}}P_{r}T_{w}T_{d_{6}}^{*}$$

This yields  $(d_5, d_6, w) = (s_i d_1, d_2, \sigma)$ . Now, the coefficient of  $T_{d_1} P_r T_\sigma T_{d_2}^*$  in  $T_i \Phi_n$ is  $C_{(s_i d_1, d_2, \sigma)}(-q)^{-\ell(d_1)-1-\ell(\sigma)-\ell(d_2)}$ . Comparing with the coefficient of  $T_{d_1} P_r T_\sigma T_{d_2}^*$  in  $(-q)^{-1} \Phi_n$ , we have  $C_{(d_1, d_2, \sigma)} = C_{(s_i d_1, d_2, \sigma)}$  and hence the claim is proved.

Using Lemma 3.1, we see that  $\Phi_n^* = \Phi_n$ . Combining this fact and the above claim,

$$C_{(d_1,d_2,\sigma)} = C_{(1,d_2,\sigma)} = C_{(1,1,\sigma)}$$

[7]

for all  $(d_1, d_2, \sigma) \in \Omega_r$  and  $1 \le r \le n$ . Therefore, to prove the lemma, it suffices to prove  $C_{(1,1,\sigma_1)} = C_{(1,1,\sigma_2)}$  for all  $\sigma_1, \sigma_2 \in \mathfrak{S}_{\{r+1,r+2,\dots,n\}}$ . Equivalently, it is enough to show that  $C_{(1,1,s_i\sigma)} = C_{(1,1,\sigma)}$  for any  $\sigma \in \mathfrak{S}_{\{r+1,r+2,\dots,n\}}$  and  $r+1 \le i < n$  satisfying  $\ell(s_i\sigma) = \ell(\sigma) + 1$ . Compare the coefficients of  $P_rT_\sigma$  on both sides of the equality  $T_i\Phi_n = (-q)^{-1}\Phi_n$ . For any  $(d_5, d_6, w) \in \Omega_s$ , if  $P_rT_\sigma$  is involved in  $T_iT_{d_5}P_sT_wT_{d_6}^*$ , then s = r by Lemma 3.2. Furthermore, if  $P_rT_\sigma$  is involved in  $T_iT_{d_5}P_rT_wT_{d_6}^*$ , it follows from the proof of Lemma 3.2 that  $d_5 = 1$  (the identity element of the symmetric group  $\mathfrak{S}_n$ ), that is,  $\ell(d_5) = 0$ ) or  $d_5 = s_i$ . However,  $d_5 = s_i$  with  $r + 1 \le i < n$  contradicts the condition  $d_5 \in \mathcal{D}_r$ . Hence we must have  $d_5 = 1$ . Then, by relation (R3) and calculations in  $H_n(q)$ ,

$$T_i P_r T_w T_{d_6}^* = P_r T_i T_w T_{d_6}^*$$
  
= 
$$\begin{cases} P_r T_{s_i w} T_{d_6}^* & \text{if } \ell(s_i w) = \ell(w) + 1, \\ (q - q^{-1}) P_r T_w T_{d_6}^* + P_r T_{s_i w} T_{d_6}^* & \text{if } \ell(s_i w) = \ell(w) - 1. \end{cases}$$

This yields  $(d_5, d_6, w) = (1, 1, \sigma)$  or  $(d_5, d_6, w) = (1, 1, s_i \sigma)$ . If  $(d_5, d_6, w) = (1, 1, \sigma)$ , then  $T_i T_{d_5} P_r T_w T_{d_6}^* = T_i P_r T_\sigma = P_r T_{s_i \sigma}$ , since  $\ell(s_i \sigma) = \ell(\sigma) + 1$ , a contradiction. Hence  $(d_5, d_6, w) = (1, 1, s_i \sigma)$  and the coefficient of  $P_r T_\sigma$  in  $T_i \Phi_n$  is  $C_{(1,1,s_i \sigma)}(-q)^{-\ell(\sigma)-1}$ . Comparing with the coefficient of  $P_r T_\sigma$  in  $(-q)^{-1} \Phi_n$ , we have  $C_{(1,1,\sigma)} = C_{(1,1,s_i \sigma)}$  and this completes the proof of the lemma.

**LEMMA** 3.5. With the above notation,  $c_2 = c_3 = \cdots = c_n = 0$ .

**PROOF.** By Lemma 3.4, the element  $\Phi_n$  can be taken of the form

$$\Phi_n = \sum_{\sigma \in \mathfrak{S}_n} (-q)^{-\ell(\sigma)} T_{\sigma} + \sum_{r=1}^n c_r \sum_{(d_1, d_2, \sigma) \in \Omega_r} (-q)^{-\ell(d_1) - \ell(\sigma) - \ell(d_2)} T_{d_1} P_r T_{\sigma} T_{d_2}^*,$$

where  $c_r \in \mathbb{C}(q)$ . To compute the coefficients  $c_r$  with  $r \ge 2$ , our strategy is to compare the coefficients of  $P_r$  on both sides of  $T_1\Phi_n = (-q)^{-1}\Phi_n$ .

Assume  $(d_1, d_2, w) \in \Omega_s$  and  $P_r$  is involved in  $T_1T_{d_1}P_sT_wT_{d_2}^*$ . Then Lemma 3.2 implies that s = r. Furthermore, if  $P_r$  is involved in  $T_1T_{d_1}P_rT_wT_{d_2}^*$ , it follows from the proof of Lemma 3.2 that  $d_1 = 1$  (the identity element of the symmetric group  $\mathfrak{S}_n$ ), that is,  $\ell(d_1) = 0$  or  $d_1 = s_1$ . But  $s_1 \notin \mathcal{D}_r$  because  $r \ge 2$ . Hence  $d_1 = 1$  and

$$T_1 T_{d_1} P_r T_w T_{d_2}^* = T_1 P_r T_w T_{d_2}^* = q P_r T_w T_{d_2}^*,$$

where the second equality follows from relation (R4). Therefore,  $P_r$  is involved in  $T_1T_{d_1}P_rT_wT_{d_2}^*$  if and only if  $(d_1, d_2, w) = (1, 1, 1)$ . In this case, the coefficient of  $P_r$  in  $T_i\Phi_n$  is  $qc_r$ . Comparing with the coefficient of  $P_r$  in  $(-q)^{-1}\Phi_n$ , we have  $qc_r = (-q)^{-1}c_r$ , which implies that  $c_r = 0$  since q is an indeterminate.

**LEMMA** 3.6. With the above notation,  $c_1 = -q^{2(n-1)}$ .

**PROOF.** To compute the coefficient  $c_1$ , our strategy is to compare the coefficients of  $P_1$  on both sides of  $P_1\Phi_n = 0$ .

We first find the  $w \in \mathfrak{S}_n$  for which  $P_1$  is involved in  $P_1 T_w^*$ . For any  $w \in \mathfrak{S}_n$ , we can write  $w = s_{i-1} \cdots s_2 s_1 \sigma$  with  $1 \le i \le n$  and  $\sigma \in \mathfrak{S}_{\{2,\dots,n\}}$ . Now

$$P_1T_w^* = P_1T_{w^{-1}} = P_1T_{\sigma^{-1}}(T_1T_2\cdots T_{i-1}),$$

which is an element in the set  $\{T_{d_1}P_rT_{\sigma}T_{d_2}^* \mid (d_1, d_2, \sigma) \in \Omega\}$ . Therefore,  $P_1$  is involved in  $P_1T_w^*$  if and only if w = 1, the identity element of the symmetric group  $\mathfrak{S}_n$ . Hence  $P_1$  is involved in  $P_1T_w = P_1T_{w^{-1}}^*$  if and only if w = 1.

Next, we find the  $(d_1, d_2, w) \in \Omega_1$  for which  $P_1$  is involved in  $P_1 T_{d_1} P_1 T_w T_{d_2}^*$ . If  $\ell(d_1) = 0$ , then  $(d_1, d_2, w) = (1, 1, 1)$ . If  $\ell(d_1) > 0$ , we have  $T_{d_1} = T_{i-1} \cdots T_2 T_1$  for some  $2 \le i \le n$ . It follows from relations (R3) and (R5) that

$$P_1 T_{d_1} P_1 T_w T_{d_2}^* = T_{i-1} \cdots T_2 (P_1 T_1 P_1) T_w T_{d_2}^*$$
  
=  $q^{-1} T_{i-1} \cdots T_2 P_2 T_w T_{d_2}^* + (q - q^{-1}) P_1 T_{i-1} \cdots T_2 T_w T_{d_2}^*.$ 

In this case,  $P_1$  is only involved in the term  $P_1T_{i-1}\cdots T_2T_wT_{d_2}^*$ . By calculations in the Iwahori–Hecke algebra  $H_n(q)$  (see, for example, [12, Proposition 1.16]),  $P_1$  is involved in  $P_1T_{i-1}\cdots T_2T_wT_{d_2}^*$  if and only if  $w = s_2s_3\cdots s_{i-1}$  and  $d_2 = 1$ . Here, for i = 2, we take w = 1. Therefore,  $P_1$  is involved in  $P_1T_{d_1}P_1T_wT_{d_2}^*$  with  $\ell(d_1) > 0$  if and only if  $(d_1, d_2, w) = (s_{i-1}\cdots s_2s_1, 1, s_2\cdots s_{i-1})$  with  $2 \le i \le n$ .

By the above argument, the coefficient of  $P_1$  in  $P_1\Phi_n$  is

$$1 + c_1 \left( 1 + \sum_{i=2}^n (-q)^{-(i-1)-(i-2)} (q - q^{-1}) \right) = 1 + c_1 \left( 1 + (1 - q^2) \sum_{i=1}^{n-1} q^{-2i} \right)$$
$$= 1 + c_1 q^{-2(n-1)}.$$

Thus  $P_1 \Phi_n = 0$  implies that  $c_1 = -q^{2(n-1)}$ .

We now turn to the proof of the main result of this paper. For any positive integer  $k \le n$ , the natural map  $T_i \mapsto T_i, P_j \mapsto P_j$  for all  $1 \le i \le k - 1$  and  $1 \le j \le k$  can be extended to an algebra embedding from  $R_k(q)$  into  $R_n(q)$ . From this point of view, when m < n (where  $m = \dim L(\varepsilon_1)$ ),

$$\Phi_{m+1} = \sum_{\sigma \in \mathfrak{S}_{m+1}} (-q)^{-\ell(\sigma)} T_{\sigma} - q^{2m} \sum_{(d_1, d_2, \sigma) \in \Omega_1} (-q)^{-\ell(d_1) - \ell(\sigma) - \ell(d_2)} T_{d_1} P_r T_{\sigma} T_{d_2}^* \in R_n(q).$$

**PROOF OF THEOREM 1.2.** By Proposition 2.4, the element  $\Phi := Y_{m+1}/(m+1)!$  is an idempotent such that  $\langle \Phi \rangle = \text{Ker}(\varphi_1)$ . Assume  $\Phi_q = \Phi_{m+1}$ , which belongs to the lattice  $\mathbb{Z}[q, q^{-1}]$ -Span $\{T_{d_1}P_rT_{\sigma}T_{d_2}^* \mid (d_1, d_2, \sigma) \in \Omega\}$ . Note that  $\Phi_q^2 = \sum_{\sigma \in \mathfrak{S}_{m+1}} q^{-2\ell(\sigma)}\Phi_q$  and  $\lim_{q\to 1} \Phi_q = (m+1)!\Phi$ . Thus Proposition 2.5 completes the proof of the theorem.  $\Box$ 

### Acknowledgements

The author expresses sincere gratitude to the anonymous referees for their substantial and insightful comments which significantly helped to improve the final presentation of this article.

### References

- M. Dieng, T. Halverson and V. Poladian, 'Character formulas for *q*-rook monoid algebras', J. Algebraic Combin. 17 (2003), 99–123.
- [2] J. East, 'Cellular algebras and inverse semigroups', J. Algebra 296 (2006), 505–519.
- [3] J. J. Graham and G. I. Lehrer, 'Cellular algebras', Invent. Math. 123 (1996), 1-34.
- [4] C. Grood, 'A Specht module analog for the rook monoid', *Electron. J. Combin.* **9** (2002), Article ID #R2, 10 pages.
- [5] T. Halverson, 'Representations of the q-rook monoid', J. Algebra 273 (2004), 227–251.
- [6] T. Halverson and A. Ram, 'q-rook monoid algebras, Hecke algebras, and Schur–Weyl duality', J. Math. Sci. 121 (2004), 2419–2436; translated from Zap. Nauch. Sem. POMI 283 (2001), 224–250.
- [7] J. Hu, 'Schur–Weyl reciprocity between quantum groups and Hecke algebras of type G(r, 1, n)', *Math. Z.* **238** (2001), 505–521.
- [8] J. Hu and Z.-K. Xiao, 'On tensor spaces for Birman–Murakami–Wenzl algebras', J. Algebra 324 (2010), 2893–2922.
- [9] G. I. Lehrer and R. B. Zhang, 'Strongly multiplicity free modules for Lie algebras and quantized groups', J. Algebra 306 (2006), 138–174.
- [10] G. I. Lehrer and R. B. Zhang, 'The second fundamental theorem of invariant theory for the orthogonal group', Ann. of Math. (2) 176 (2012), 2031–2054.
- [11] G. I. Lehrer and R. B. Zhang, 'The Brauer category and invariant theory', J. Eur. Math. Soc. (JEMS) 17 (2015), 2311–2351.
- [12] A. Mathas, Iwahori–Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, 15 (Amreican Mathematical Society, Providence, RI, 1999).
- [13] R. Paget, 'Representation theory of *q*-rook monoid algebras', *J. Algebraic Combin.* **24** (2006), 239–252.
- [14] S. Sakamoto and T. Shoji, 'Schur–Weyl reciprocity for Ariki–Koike algebras', J. Algebra 221 (1999), 293–314.
- [15] L. Solomon, 'The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field', *Geom. Dedicata* 36 (1990), 15–49.
- [16] L. Solomon, 'Representations of the rook monoid', J. Algebra 256 (2002), 309–342.
- [17] L. Solomon, 'The Iwahori algebra of  $\mathbf{M}_n(\mathbf{F}_q)$ , a presentation and a representation on tensor space', *J. Algebra* **273** (2004), 206–226.
- [18] Z.-K. Xiao, 'On tensor spaces for rook monoid algebras', Acta Math. Sinica, English Series 32 (2016), 607–620.

ZHANKUI XIAO, School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian, 362021, P. R. China e-mail: zhkxiao@hqu.edu.cn [10]