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Abstract. A self-consistent system of the Boltzmann equation and the
Poisson equation is used to study the dynamical evolution of Saturn’s
main A, B, and C rings. The theory, as applied to the Saturnian ring
system, predicts for several features, such as numerous irregular density
wakes, with size and spacing between them of the order 47p =~ 27h, where
p is the mean epicycle radius of the particle and h is the typical thickness

of the system under study. In Saturn’s rings, p ~ 10 m. Computer
N-body experiments are desribed which test the validities of the theory.
Use of the 112-processor SGI Origin 2000 supercomputer is enabled us to
make long runs using a large number of particles in the direct simulation
code and thus simulate phenomena not previously studied numerically.
We predict that forthcoming in 2004 Cassini spacecraft high-resolution
images will reveal this recurrent fine-scale ~ 100 m or so structure in low
and moderately high optical depth regions of the rings.

1. Introduction

Saturn’s rings disk of mutually gravitating particles is highly dynamic and is
subject to various instabilities of gravity disturbances. This is because the evo-
lution of the system is primarily driven by angular momentum redistribution.
This might take place through global mechanisms like nonaxisymmetric instabil-
ities caused by self-gravity, which develop in the equatorial plane of the system.!
See Goldreich & Tremaine (1982) as a review of the problem.

In the current research, the theory of small-amplitude collective oscillations
(of the Lin—-Shu type invoked to explain the spiral structure of disk galaxies;
Lin & Shu 1966, Lin et al. 1969, and Shu 1970) and their stability of Saturn’s
rings disk is developed. We use the method of gas-kinetic theory by employ-
ing the kinetic formalism of magnetized plasma theory which deals with similar
problems. We test the validity of the theory by N-body calculations. The re-
sults of the analysis are applied to Saturn’s rings, composed of rock and ice: we

'In addition, bending waves, external, and embedded Saturn’s moons also play a role in sculpting
its elaborate ring system (Goldreich & Tremaine 1982).
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predict the recurrent structure of order of 100 m (or even less) to be observed
in the low and moderately high optical depth regions of the rings A, B, and
C. In fact, it should be made clear right from the start that the suggestion of

fine-scale <~ 100 m structure in Saturn’s rings due to the effect of self-gravity is
not an entirely new idea. Apparently, the microstructure in Saturn’s rings has
already been predicted by local simulations (Salo 1992; Osterbart & Willerding
1995; Richardson 1994; Griv 1998; Daisaka & Ida 1999). Earlier, the so-called
quadrupole asymmetry observed in the A ring has been explained in terms of nu-
merous unresolved spiral density “wakes” by Colombo et al. (1976) and Franklin
et al. (1978). The presence of wakes causes the effective area covered by parti-
cles, hence brightness, of the ring to vary at different longitudes. Our significant
contribution is just a kinetic theory derivation and a direct simulation of results
obtained before in local simulations.

2. Kinetic Theory of Small-Amplitude Gravity Perturbations

In Saturn’s rings, the local distribution function f(r,v,t) of particles must sat-
isfy the familiar Boltzmann kinetic equation (e.g., Griv et al. 2000):
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(1)
In Eq. (1), ®(r, t) is the total gravitational potential determined self-consistently
from the Poisson equation V2® = 47G [ fdv. Also, (0f/0t)s; is the so-called
collision integral which takes into account effects due to the discrete-point nature
of the gravitational charges. We use the simple kinetic model when the exact,
but complicated, Boltzmann integral (0f/dt)s; is replaced by an approximate,
phenomenological term in the form of the Krook model (Shu & Stewart 1985;
Griv & Chiueh 1997; Griv et al. 2000): (8f/0t)st = —vc(f — fo), where fg is
the steady-state Maxwellian-like equilibrium distribution function and v, plays
the role of the velocity-independent collision frequency.

Boltzmann equation (1) and the Poisson equation give a complete descrip-
tion of the problem for disk modes of collective oscillations. We simplify this
system of equations by considering the epicyclic, local WKB, and asymptotic
Lin-Shu approximations (see Griv et al. 1999 and Griv et al. 2000 for details).
As a result, the generalized dispersion relation may be obtained:
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where k = v/k? + m2/r? is the wavenumber, ¢, is the radial dispersion of random
velocities, o is the equilibrium surface mass density,  is the eplcychc frequency,
I)(z) is the modified Bessel function of the order I, z = k2c?/k? ~ k2p?, k, is
the effective wavenumber, p ~ ¢,/k is the epicyclic radius, w, = w — mQ is
the Doppler-shifted (in a rotating frame) wavefrequency, m is the number of
spiral arms, () is the angular velocity (in Saturn’s rings k ~ ), and L is the
radial scale of a spatial inhomogeneity. In Eq. (2), the second term on the
right-hand side is the small correction, p?/r|L| < 1. The dispersion relation (2)
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Figure 1. The time evolution of a narrow ring of identical particles
with rare interparticle collisions. The direction of the disk rotation was
taken to be counterclockwise, and time ¢t = 1 corresponds to a single
revolution of the disk. The system is violently Jeans-unstable.

describes the ordered behavior of a medium near its metaequilibrium state and
generalizes the ordinary Lin—-Shu dispersion relation (Lin & Shu 1966; Lin et al.
1969; Shu 1970) for nonaxisymmetric Jeans perturbations, m # 0, to the case
where physical collisions occur in an inhomogeneous disk.2

The dispersion relation (2) is complicated: the basic dispersion relation
above is highly nonlinear in the frequency w,. To see the physical meaning of
solutions of Eq. (2), one does not need the exact solutions. Rather, in order to
deal with the most interesting oscillation types, let us consider various limiting

2Generally, the term “Jeans instabilities” identifies nonresonant instabilities associated with
aperiodically growing accumulations of mass (cf. electrostatic bunching instabilities or a fire-
hose instability in a plasma). In plasma physics an instability of the Jeans-type is known as the
negative-mass instability of a relativistic charged particle ring or the diocotron instability of a
nonrelativistic ring that caused rapid azimuthal clumping of beams in synchrotrons, betatrons,
and mirror machines.
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cases of perturbations described by some simplified variations of Eq. (2). For
instance, similar to the plasma physics method, it is sufficient to only consider
the principal part of the disk between the inner and outer Lindblad resonances,
|I]| <1 (Lin & Shu 1966; Lin et al. 1969; Shu 1970; Griv et al. 2000). As a
result, Eq. (2) can be represented in the simplest form

(e + i)® — (s + W )w? + wgrk? = 0, 3)

where the square of the Jeans frequency is w3 = &? — 2rGoolk|F(z), F(z)
exp(—«) is the so-called “reduction factor,” which takes into account the fact
that the wave field affects only weakly the particles with high random velocities,
and wgy = 2Qe~%Io(z)(2mGoo|k|/k%c?)(mp?/r L) is the frequency of the so-called
gradient oscillations. Equation (3) describes two ordinary Jeans branches of
oscillations — the most important long-wavelength branch, z = k2c?/xk? ~ k2p? <
1, and the short-wavelength one, z > 1 — and a gradient branch of oscillations
modified by collisions (Griv et al. 2000).

From relation (3) in the frequency range |w3| ~ |w3| > |wg| 2 the disper-
sion law for the Jeans branch of oscillations is

2
K .
Wy1,2 & iprJl — Wer 22 — W, (4)
J

where p = 1 for Jeans-stable perturbations with wf > 0 and p = ¢ for Jeans-
unstable perturbations with w? < 0. In Eq. (4), the terms involving wg, and iv,
are the small corrections, and in general |wy 2| = |wj| ~ &. From Eq. (4) one
concludes that both Jeans-stable and Jeans-unstable perturbations will weakly
decay as a result of rare collisions. Accordingly, a spatial inhomogeneity will
not influence the stability condition of Jeans modes. It follows that the Jeans-
unstable perturbations grow almost aperiodically, |Rwy12/Swi12] < 1. The
gradient of macroscopic parameters and azimuthal mode number m determine
the small real part of such hydrodynamically (Jeans-) unstable modes.

The Jeans perturbations can be stabilized by the random velocity spread.
Indeed, if one recalls that such unstable perturbations are possible only when
wfu = wf < 0, then by using the condition wfu > 0 for all possible k, a
stability criterion against arbitrary Jeans perturbations can be written in the
form (Griv et al. 2000)

¢ >or {1 + [(20/»9)2 - l] sin21/z}l/2 ~ or [1 + 3sin? 1/1] 1/2, (5)
where tany = m/k,r and cr = 3.4Gog/k is the well-known Toomre’s (1964)
critical velocity dispersion to suppress the instability of only axisymmetric (ra-
dial) gravity perturbations. The stability criterion thus obtained represents
generalization of Toomre’s (1964) criterion to the case when additionally non-
axisymmetric (spiral) gravity perturbations are taken into account. The pa-
rameter {1 + [(20/x)% — 1]sin?4}'/2 is an additional stability parameter that
depends on both the pitch angle 1 and the amount of differential rotation in
the disk d?/dr (cf. the parameter J introduced by Lin & Lau 1979 and Bertin
1980). As one can see from Eq. (5), the modified critical velocity dispersion
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Cerit grows with 9. Consequently, in order to suppress the most “dangerous,”
in the sense of the loss of gravitational stability, very open nonaxisymmetric
perturbations with ¢ > 45°, c.it should obey the following modified stability
criterion: ¢, > cerit = (2Q/k)er = 2¢r. Collective motion connected with the
Jeans-unstable mode is excited in the plane of a disk when the random veloc-
ity dispersion is not sufficiently large, ¢, < 2cr, in other words, if the effective
Toomre’s Q-value is @ < 2Q/k =~ 2.

It follows from Eq. (3), the wavelength of maximum Jeans instability At =
27 [Kerit is given by (Griv et al. 2000)

Aait = (2Q/K)27p = 47ey /K. (6)

For the parameters of Saturn’s rings Ag it ~ 100 m, and such scales of a few
hundred meters correspond to the predicted fine-scale structure of Saturn’s rings.

3. Direct N-body Simulations of Saturn’s Rings

The generalized dispersion relation (2), the stability criterion (5), and the crit-
ical wavelength (6) obtained in the framework of the linear kinetic theory do
not reveal precisely what kind of structure can emerge due to the gravitational
instability. Computer simulations should be able to identify these structures.
Different methods may be employed to simulate the evolution of the particulate
disk of the Saturnian ring system by N-body experiments. For instance, follow-
ing Salo (1992) one can study some aspects of disk dynamics by applying the
numerical approach of local N-body simulations. The most serious criticism of
such model calculations is that too much of the relevant physics has been left out
for such a relatively simple method (Griv et al. 1999). In this work, we develop
an algorithm for a direct simulation code. The difficulty is that the speed of
most individual computers is still too limited for the number of model particles
in a direct simulation. That is, owing to the circumstance that the computing
time increases as the square of the number of attracting points, there is definite
practical upper limit to this number N ~ 1000. There is now a broad consensus
that major discoveries in dynamics of planetary rings would be within grasp if
computers at least 100 times faster than today’s conventional workstations were
available, assuming equal progress in algorithms and software. Thus, the most
serious criticism of direct calculations is that a small number of particles might
not permit revelation of the fine-scale structure (see Griv & Chiueh 1998 for a
discussion). The problem is solved by using the modern parallel supercomput-
ers: with the multiple processors in supercomputers it is possible to reduce the
running time by processing more than one group of particles at a time. The use
of, say, 100 parallel computers would make such calculations practical. In the
present study, we explore the 112-processor SGI Origin 2000 system of the Inter
University Computational Center in Israel. We are able to use up to 200, 000
particles in long-term direct runs.

We simulate the evolution of a model for Saturn’s rings by direct integration
of the equations of motion of particles. The force on a particle i due to all other

https://doi.org/10.1017/50074180900207006 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900207006

50 E. Griv, M. Gedalin, E. Liverts, & C. Yuan

1 07
06
0.8
05
§0.6 304
E E
<o4 =03
0.2
0.2
0.1
0
-15 15 15 -10 -5 o0 5 10 15
p
0.06 0.25
0.05 m=3 0.2 m=4
t=4
0.04
-’Z: 3:015 t=4
£0.03 1=2 E
= =< o1
0.02 t=2
0.01 0.05
0 0
5 10 -5 0 5 10 15 15 -10 -5 0 5 10 15
p p

Figure 2.  The time evolution of the Fourier spectrum of the particle
distribution shown in Figure 1 for different azimuthal mode numbes m.

particles is given by

d2
_= lm]Z — 213/2? (7)
dt? J7éz[r r)]/

where G is the constant of gravitation, m;, m;, r; and r; are the mass, position
and velocity of the i-th and of the j-th particle, respectively. The model with rare
interparticle collisions is considered: v, < . Our integration algorithm is based
on Griv & Chiueh (1998) N-body integrator, which uses the standard Runge-
Kutta method and individual time-step schema in the integration of particle
orbits. Some modifications, taking advantage of the ring-shaped geometry and
inelastic particle-particle impacts have been made.

The particles were initially placed on nearly circular orbits with an aniso-
tropic Schwarzschild distribution of small radial, azimuthal, and vertical random
velocities components: ¢, = 2¢,, ¢; = 0.1¢,, and ¢, = 0.1ceriy (or @ = 0.1, re-
spectively). According to §2, the latter means that initially the disk is unstable
with respect to both radial and spiral gravity perturbations. The initial distribu-
tion of particles (z;, yi, 2;) was generated by means of random-number generator
placing particles uniformly in the ring with rings’ width AR < R (where R is the
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initial radius of the system). Thus, equilibrium is governed mainly by the bal-
ance between the centrifugal and gravitational forces. It is this metaequilibrium
that is to be examined for stability by simulations.

Below we describe the results of simulations of a computer model containing
a sufficiently large number of particles N = 75,000. We performed a few runs
for systems containing N = 100,000 model particles and for smaller systems
containing N = 25,000 ones. It was found that the results obtained for those
systems are qualitatively indistinguishable: we did not detect in our experiments
any dependence of the type ® o« N~1/2) where X is the amplitude of the density
variations. The last is clearly inconsistent with Toomre’s (1990) hypothesis
that the spirals observed in simulations can be explained by the swing-amplified
particle noise (“kaleidoscope of chaotic arm features” which are responses to the
random density irregularities orbiting within the particulate disk). We advocate
a way to describe the rapidly evolving structures, such as those reported in
our simulations, in terms of true instabilities of Jeans perturbations (see §2
above). Also we did not find any difference between the results of simulations
with or without applying the so-called quiet starts procedure to select the initial
coordinates of particles. Such techniques have proven useful in obtaining realistic
noise levels without the use of a large number of particles (e.g., Griv et al. 1999).
Moreover, tests indicated that the results were insensitive to changes in other
parameters. A test gives a good check on the numerical stability of the code as
well as the accuracy of the program; the code conserves energy to within 2%
during the first 5 rotations of the collisionless system.

Figure 1 shows an example of the development of spiral structures in Sat-
urn’s rings from a run. The structures grow rapidly on a dynamical time scale
~ Q7! At a time t = 4 a filamentary spiral structure forms with a few short,
tightly wound trailing arms. A typical distance between the spiral filaments
is ~ Acrit, indicating that perturbations with the critical wavelength have the
fastest growth rate. Such a wavelength is in agreement with the theory.

In Figure 2 the time evolution of the Fourier spectrum of the pattern shown
in Figure 1 is plotted. Only the azimuthal m = 1 — 4 components are shown.
The complex Fourier coefficients, A, are determined from the summation

N
Ap,m) = 5 > explifme; +pIn(ry)l),
j=1

where (y;,7;) are the polar coordinates of the j-th particle. The pitch angle
of an m-armed logarithmic spiral ¥ is given by @ = arctan(p/m), and positive
p corresponds to trailing spirals and negative p to leading ones. Amplitudes
|A(p, m)| are greatly in excess of an expectation from the level of particle noise
V/T/4N; true instabilities develop in the model. The result suggests that a
flattened disk can be unstable to spiral gravity perturbations. The calculated
spectrum is dominated by the m = 1 harmonic. This one-armed mode may
explain the global asymmetry observed in the Saturnian ring system. This
logarithmic Fourier analysis shows that the peaks of the signals move to positive
p with increasing time, and reach maxima at ¢ = 4. An interesting feature is
that all these modes have roughly the same pitch angle. The amplitudes of the
signals grow aperiodically, supporting the assumption that we have deal with
the Jeans instability.
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4. Conclusions

It is found that in the limiting case of rare collisions between particles the Sat-
urnian ring disk may be unstable with respect to the Jeans perturbations. This
instability of small-amplitude gravity disturbances (e.g., those produced by a
spontaneous perturbation and/or a companion system) does not depend on the
behavior of the particle distribution function in the neighborhood of a partic-
ular speed, but the determining factors of the instabilities are the macroscopic
parameters of a self-gravitating system — the mean surface mass density, the
angular velocity of regular rotation, and the dispersion of random velocities of
particles. The growth rate of the almost aperiodically developing Jeans instabil-
ity is large, Sw. ~ €. Thus, such perturbations develop rapidly on the time scale
of only a few revolutions of the system under study, leading to tightly wound
spiral patterns. The typical wavelength of the most unstable perturbations is
Acrit & 47p =~ 2wh. In Saturn’s rings, Acrit <100 m. We argued that in general
computer simulations confirm the predictions of the stability theory.

Acknowledgments. We thank Sverre Aarseth and David Eichler for valu-
able discussions. This work was supported by the Israel Science Foundation, the
Israeli Ministry of Immigrant Absorption, and the Academia Sinica.

References

Bertin, G. 1980, Phys. Rep., 61, 1

Colombo, G., Goldreich, P., & Harris, A. 1976, Nature, 264, 344
Daisaka, H., & Ida, S. 1999, Earth Planets Space, 51, 1195
Esposito, L. W. 1993, Annu. Rev. Earth Planet. Sci., 21, 487
Franklin, F. A., & Colombo, G. 1978, Icarus, 33, 279

Goldreich, P., & Tremaine, S. 1982, ARA&A, 20, 249

Griv, E. 1998, PI&SS, 46, 615

Griv, E., & Chiueh, T. 1997, A&A, 311, 1033

Griv, E., & Chiueh, T. 1998, ApJ, 503, 186

Griv, E., Gedalin, M., Eichler, D., & Yuan, C. 2000, P1&SS, 48, 679
Griv, E., Rosenstein, B., Gedalin, M., & Eichler, D. 1999, A&A, 347, 821
Lin, C. C., & Lau, Y. Y. 1979, Stud. Appl. Math., 60, 97

Lin, C. C., & Shu, F. H. 1966, Proc. Natl Acad. Sci., 55, 229

Lin, C. C,, Yuan, C., & Shu, F. H. 1969, ApJ, 155, 721

Osterbart, R., & Willerding, E. 1995, P1&SS, 43, 289

Richardson, D. C. 1994, MNRAS, 269, 493

Salo, H. 1992, Nature, 359, 619

Shu, F. H. 1970, ApJ, 160, 99

Shu, F. H., & Stewart, G. R. 1985, Icarus, 62, 360.

Toomre, A. 1964, ApJ, 139, 1217

Toomre, A. 1990, in Dynamics and Interactions of Galaxies, ed. R. Wielen
(Springer: Berlin), 292

https://doi.org/10.1017/50074180900207006 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900207006

