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1. Introduction

A Weyl structure on a manifold M with conformal class [g] is a torsion-free connec-
tion ∇[g] such that parallel translation induces conformal transformations. Hence, corre-
sponding to every g ∈ [g] there exists a unique 1-form θ on M such that the given Weyl
structure ∇[g] satisfies the following conformally invariant equation: ∇[g]g = −2θ ⊗ g.
We shall call a manifold M endowed with such a structure a Weyl manifold, denoting it
by (M, [g],∇[g]). In what follows, unless stated otherwise, θ is always associated to the
metric g and B denotes its g-dual vector field: g(B, X) = θ(X) for every X ∈ X (M).

The Ricci tensor of a Weyl connection is usually non-symmetric. So, to define Einstein-
like structures in conformal geometry one has to refer to the symmetrized Ricci tensor
of the Weyl connection ∇[g]. If this is proportional to the metrics in [g], the structure is
called Einstein–Weyl. In particular, a Weyl structure is said to be closed when dθ = 0
for every g ∈ [g]. Closed (respectively, exact) Weyl structures are locally (respectively,
globally) the Levi-Civita connections of compatible metrics. Hence, a closed Einstein–
Weyl structure admits locally (but not necessarily globally) compatible Einstein metrics.

A careful study of closed Einstein–Weyl structures on compact manifolds has been
made by Gauduchon [7], who found that these have very special properties.

Closed Weyl structures naturally arise in complex and quaternionic geometry, where
Weyl and Einstein–Weyl conditions are rather well understood [15,16].
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Conversely, for an almost-contact metric structure, the conformal changes of the metric
are not so natural, since they give rise to a metric which is no more compatible with the
almost-contact structure. The problem of the compatibility between Weyl and almost-
contact geometries has been studied in [11], where it was proved that locally conformal
cosymplectic manifolds admit a naturally defined conformally invariant Weyl structure.
Moreover, in [5,8,10,12,13] several examples of Einstein–Weyl structures on almost-
contact manifolds have been constructed together with some existence conditions. In
particular, in [8] it has been proved that every complete K-contact manifold admitting
two different Einstein–Weyl structures with θ and −θ as associated 1-forms is Sasakian.
We also remark that the results cited showed that often the existence of Einstein–Weyl
structures is equivalent to affirming that the almost-contact manifolds are η-Einstein.

However, in spite of their incompatibility, it is clear that Einstein–Weyl structures on
almost-contact manifolds imply strong relations between the two structures.

Here we study closed Einstein–Weyl structures on the main classes of almost-contact
metric manifolds as K-contact, Sasakian and cosymplectic structures, again finding strict
connections between Weyl and η-Einstein geometry. The outline of the paper is as follows.
In the next section, having described the objects we work with, we prove a characteri-
zation for closed Weyl structures on almost-contact manifolds. In § 3 we reach our main
achievements. More precisely, in Theorem 3.5 we determine the Ricci curvature tensor
of a compact K-contact manifold endowed with a closed Einstein–Weyl structure. In
Theorem 3.6 we prove an integrability result: a compact K-contact manifold whose met-
ric belongs to a closed Einstein–Weyl structure is Sasakian if and only if it is η-Einstein.
So, in the light of results of [5] on η-Einstein Sasakian manifolds, we can affirm that
there exist compact Sasakian manifolds that do not admit closed Einstein–Weyl struc-
tures. Finally, in Theorem 4.2 we obtain an analogous result to that of Theorem 3.6 for
compact cosymplectic manifolds with closed Einstein–Weyl structures.

2. Preliminaries

Let M be a differentiable manifold of odd dimension 2n+1. An almost-contact structure
on M consists in a field of endomorphisms of the tangent bundle ϕ, a vector field ξ and
a 1-form η satisfying the following relations [1]:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

ϕ(ξ) = 0, η ◦ ϕ = 0, rankϕ = 2n.

}
(2.1)

A Riemannian metric g on M is called compatible with the almost-contact structure if

g(X, ξ) = η(X), g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y )

for every X, Y ∈ X(M). An almost-contact structure together with a compatible metric
is called an almost-contact metric structure and (M, ϕ, ξ, η, g) is called an almost-contact
metric manifold.

In the following, we shall call horizontal any vector field on (M, ϕ, ξ, η, g) orthogonal
to ξ. Furthermore, we will denote by Ẋ the horizontal part of a vector field X ∈ X(M),
recalling that we can always write X = Ẋ + η(X)ξ.
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We also remark that an almost-contact structure (ϕ, ξ, η) satisfying the equation Nϕ +
dη ⊗ ξ = 0, where Nϕ denotes the Nijenhuis tensor of ϕ, is said to be normal. For
properties, geometric interpretations and examples (which include the odd Euclidean
spheres, some odd tori, the total spaces of some circle bundles over compact symplectic
manifolds), we refer the reader to [1].

Suppose now that the almost-contact metric manifold (M, ϕ, ξ, η, g) also carries a Weyl
structure ∇[g]. In this case we shall say that the metric g represents the Weyl structure.
The connection ∇[g] and the Levi-Civita connection Dg of g are then connected by the
well-known formula [9]

∇[g]
X Y = Dg

XY + θ(X)Y + θ(Y )X − g(X, Y )B (2.2)

for every X, Y ∈ X(M). Equation (2.2) together with the relation ∇[g]g = −2θ ⊗ g (see
§ 1) are invariant for Weyl transformations

g′ = e2fg, θ′ = θ − df (2.3)

with f ∈ C∞(M). Moreover, (2.2) implies the following relation between the curvature
tensor field R[g] of the Weyl connection ∇[g] and the Riemannian curvature tensor field
Rg of Dg [9]:

R[g](X, Y )Z = Rg(X, Y )Z + Σg(X, Y )Z − Σg(Y, X)Z, (2.4)

where

Σg(X, Y )Z = (Dg
Xθ)(Y )Z + (Dg

Xθ)(Z)Y − g(Y, Z)Dg
XB

− g(Y, Z)|θ|2X − g(X, Z)θ(Y )B + θ(Y )θ(Z)X. (2.5)

Consequently, the relation between the Ricci curvatures ρ(R[g]) and ρ(Rg) is given by

ρ(R[g])(Y, Z) = ρ(Rg)(Y, Z) − 2n(Dg
Zθ)(Y ) + (Dg

Y θ)(Z)

+ (2n − 1)θ(Z)θ(Y ) + (δθ − (2n − 1)|θ|2)g(Y, Z), (2.6)

where X, Y, Z ∈ X(M) and δθ denotes the codifferential of θ with respect to g.
In [7] Gauduchon proved that, when M is compact, the conformal class [g] contains a

unique (up to homothety) metric g0 such that the corresponding form θ0 is g0-coclosed.
We shall refer to this metric as the Gauduchon metric. Moreover, he also showed that
the 1-form θ0 of the metric g0 of closed, non-exact, Einstein–Weyl structures defined
on compact manifolds of dimension at least 3 is parallel with respect to the Levi-Civita
connection Dg0 of g0: Dg0θ0 = 0. In particular, θ0 is closed and coclosed, and hence it
is g0-harmonic and the curvature tensor, and then the Ricci tensor, of such a structure
vanish identically. Finally, the parallelism of the 1-form θ0 with respect to Dg0 also
implies that its pointwise norm |θ0| with respect to g0 is constant, while (2.6) gives the
simple relation

ρ(Rg0) + (2n − 1)θ ⊗ θ = (2n − 1)g0, (2.7)
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where ρ(Rg0) denotes the Ricci tensor field of the Gauduchon metric g0. It is important
to remark now that because, for an almost-contact metric manifold, conformal changes
of the metric give rise to metrics which are no longer compatible with the almost-contact
structure, in general it is not possible to consider in these manifolds the Gauduchon
metric as the contact metric (see, for example, [8, Corollary 2 and Theorem 2]).

Now we see that the almost-contact conditions (2.1) together with (2.2) imply fur-
ther relations for a Weyl structure ∇[g] defined on an almost-contact metric manifold
(M, ϕ, ξ, η, g). In fact, the conformally invariant equations

η(∇[g]
X ξ) = θ(X),

(∇[g]
X η)(Y ) = −2θ(X)η(Y ) + g(∇[g]

X ξ, Y )

⎫⎬
⎭ (2.8)

hold for all X, Y ∈ X(M). Although simple and easy to obtain, these relations are
fundamental for the Weyl structure ∇[g], which acquires some special properties from
those of the almost-contact metric structure (ϕ, ξ, η, g). In particular, (2.8) gives rise to
the following useful characterization of closed Weyl structures defined on almost-contact
metric manifolds.

Proposition 2.1. Let (M, ϕ, ξ, η, g) be a (2n + 1)-dimensional almost-contact metric
manifold. Then the Weyl structure ∇[g] on M with 1-form θ associated to the metric
g ∈ [g] is closed if and only if η(R[g](X, Y )ξ) = 0 for all vector fields X, Y ∈ X(M).

Proof. As usual, let θ be the 1-form associated to the metric g ∈ [g]. Then for all
vector fields X, Y ∈ X(M) we can write

dθ(X, Y ) = X(θ(Y )) − Y (θ(X)) − θ[X, Y ]

= X(η(∇[g]
Y ξ)) − Y (η(∇[g]

X ξ)) − η(∇[g]
[X,Y ]ξ)

= η(∇[g]
X ∇[g]

Y ξ) − η(∇[g]
Y ∇[g]

X ξ) − η(∇[g]
[X,Y ]ξ)

+ (∇[g]
X η)(∇[g]

Y ξ) − (∇[g]
X η)(∇[g]

Y ξ), (2.9)

obtaining, directly from (2.8), dθ(X, Y ) = η(R[g](X, Y )ξ) and then the claim. �

3. Closed Einstein–Weyl structures on K-contact and Sasakian manifolds

We consider in this section contact metric manifolds (M, ϕ, ξ, η, g) where the 1-form η

is a contact form: then (ϕ, ξ, η, g) is said to be a contact metric structure on M . In this
case we say that the structure (ϕ, ξ, η, g) is K-contact if ξ is a Killing vector field of g.
Any normal K-contact structure is called Sasakian. The K-contact manifolds are surely
the most important among the almost-contact ones. They have been carefully examined
by Boyer and Galicki in several papers [2,3,5]. In particular, in [5] Boyer et al . studied
the η-Einstein condition on Sasakian manifolds, constructing some obstructions to the
existence of η-Einstein structures on this kind of manifold. In addition, they discussed
some relations between Einstein–Weyl and η-Einstein K-contact or Sasakian structures.
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We will present here only the main results and theorems proved in [5], referring the
reader to the cited paper for more explanations and proofs.

Let (M, ϕ, ξ, η, g) be a Sasakian manifold and let D be the sub-bundle defined by the
equation η = 0. Thus, D is just the normal bundle to the foliation Fξ generated on M by ξ

and inherits in a natural way from the Sasakian structure of M both a complex structure
J = ϕ|D and a symplectic structure dη. In this way, (D, J, dη) gives M a transverse
Kähler structure with Kähler form dη and metric gD defined by gD(X, Y ) = dη(X, JY ),
related to the Sasakian metric g by g = gD ⊕ η ⊗ η. We also remark that the 2-form dη

is a basic form on M , since it satisfies the relations ξ�dη = 0 and Lξdη = 0 (see, for
example, [18]). In the case when the transverse Kähler structure of the Sasakian manifold
M is also Einstein, then M has an η-Einstein metric, i.e. its Ricci curvature tensor is
given by ρ(Rg) = λg + νη ⊗ η for some functions λ, ν. In [14] it has been proved that in
the case of Sasakian, and more generally of K-contact, η-Einstein manifolds of dimension
5 or higher, the functions λ, ν are actually constant and satisfy the relation λ + ν = 2n:
they are called the Einstein constants of M . Then, η-Einstein Sasakian geometry is
strictly connected with Einstein–Kähler geometry and provides a generalization of the
more familiar Sasakian–Einstein condition (obviously obtained when ν = 0) which is not
significant for these structures: in fact, Sasakian–Einstein metrics are necessarily positive
with Einstein constant equal to dim(M) − 1.

Starting from the Sasakian structure (ϕ, ξ, η, g) of M , it is possible to construct
infinitely many Sasakian metrics considering special deformations of (ϕ, ξ, η, g). We now
focus our attention on deformations of (ϕ, ξ, η, g) which fix Fξ but deform D (called
type II deformations in [5]). More explicitly, we wish to deform (ϕ, ξ, η, g) through Sasak-
ian structures that have the same fundamental basic cohomology class up to a scale. In
fact, we first consider a deformation of the structure (ϕ, ξ, η, g) obtained by adding to η

a continuous one-parameter family of 1-forms ζt, basic with respect to the foliation Fξ

and such that the 1-form ηt = η + ζt satisfies for all t ∈ [0, 1] the conditions

η0 = η, ζ0 = 0, ηt ∧ (dηt)n �= 0. (3.1)

Then, if we define
ϕt = ϕ − ξ ⊗ ζt ◦ ϕ,

gt = dηt ◦ (ϕ ⊗ It) + ηt ⊗ ηt

}
(3.2)

for every t ∈ [0, 1] and every basic 1-form ζt for which dζt is of type (1, 1) and if (3.1)
holds, then (ϕt, ξ, ηt, gt) gives a continuous one-parameter family of Sasakian structures
on M belonging to the same underlying contact structure as η [4]. We remark that,
if (ϕ, ξ, η, g) and (ϕ′, ξ′, η′, g′) are two Sasakian structures related by a deformation of
type II, they are homologous in the sense that [dη]B = [dη′]B [6]. In what follows, we
denote by F the set of all the Sasakian structures on M with the same foliation Fξ.
Considering now the first Chern class c1(D) ∈ H2(M, Z) of the contact complex sub-
bundle D, we say that c1(D) is a torsion class if and only if there exists a real number a

such that c1(D) = a[dη]B . In particular, the following claim has been proved.
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Proposition 3.1. Let (ϕ, ξ, η, g) be a Sasakian structure on a given (2n + 1)-dimen-
sional manifold M with underlying contact bundle D. If F admits a Sasakian η-Einstein
structure, then c1(D) is a torsion class [5].

Hence, a non-torsion c1(D) is the obstruction to the existence of a Sasakian η-Einstein
structure. Moreover, since c1(D) is related to the second Stiefel–Whitney class w2(M),
Proposition 3.1 also implies the following.

Theorem 3.2. Let M be a non-spin manifold (i.e. w2(M) �= 0) with H1(M, Z) torsion
free. Then M does not admit a Sasakian η-Einstein structure.

Finally, starting from these results, an example of a Sasakian manifold that does not
admit a Sasakian η-Einstein metric has been constructed in [5].

On the other hand, several results have been obtained in [5] concerning the existence
of Einstein–Weyl structure on K-contact and Sasakian manifolds too. We recall the
following.

Theorem 3.3. Let (M, ϕ, ξ, η, g) be a Sasakian manifold of dimension 2n+1 � 5 and
let θ be a 1-form on M . Then M admits two Einstein–Weyl structures with θ and −θ

as associated 1-forms to g ∈ [g] if and only if this is η-Einstein with Einstein constants
(λ, ν) such that ν < 0 and θ = ±µη, where µ is a constant given by µ2 = −ν/(2n − 1).

Finally, in a recent paper [8], it was proved that Theorem 3.3 can be extended to the
class of all K-contact manifolds (see also [5]) and, in particular, the following.

Theorem 3.4 (Ghosh [8]). Let (M, ϕ, ξ, η, g) be a complete K-contact manifold
of dimension 2n + 1 � 5 and let θ be a 1-form on M . Suppose that g represents two
Einstein–Weyl structures on M with associated 1-forms θ and −θ. Then (M, ϕ, ξ, η, g) is
Sasakian.

To now study closed Einstein–Weyl structures on compact K-contact and Sasakian
manifolds (M, ϕ, ξ, η, g), we recall some special properties of these spaces. First, the
relation Dg

Xξ = ϕX is always satisfied from all vector fields X, while the equality
ρ(Rg)(ξ, ξ) = 2n concerning the Ricci curvature tensor of M also holds on (2n + 1)-
dimensional K-contact manifolds. In addition, if the structure is Sasakian, the Ricci
tensor obeys the further equation ρ(Rg)(X, ξ) = 2nη(X) for every X ∈ X(M). Finally,
since, as we have already noted, the Weyl curvature tensor R[g] and the Weyl Ricci tensor
ρ(R[g]) of closed Einstein–Weyl structures defined on compact manifolds vanish identi-
cally, from (2.4) and (2.6) we obtain that, in this case, the curvature tensor and the Ricci
tensor of (M, ϕ, ξ, η, g) satisfy the equalities

Rg(X, Y )Z = Σg(Y, X)Z − Σg(X, Y )Z, (3.3)

ρ(Rg)(X, Y ) = (2n − 1)(Dg
Xθ)(Y ) − (2n − 1)θ(X)θ(Y )

− (δθ − (2n − 1)|θ|2)g(X, Y ) (3.4)

for all X, Y, Z ∈ X(M). We can then state the following.
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Theorem 3.5. Let (M, ϕ, ξ, η, g) be a compact (2n+1)-dimensional K-contact mani-
fold, with 2n+1 � 3. If g represents a closed Einstein–Weyl structure ∇[g] with associated
1-form θ, then the Ricci curvature tensor of M is given by

ρ(Rg)(X, Y ) = ((2n − 1)|θ|2 − 2δθ − 1)g(X, Y ) + (2n − 1)η(Y )(Dg
Xθ)(ξ)

+ (2n − 1)η(X)(Dg
Y θ)(ξ) − (2n − 1)θ(ξ)η(Y )θ(X)

− (2n − 1)θ(ξ)η(X)θ(Y ) + (1 − 2n + (2n − 1)|θ|2)η(X)η(Y ) (3.5)

for all X, Y ∈ X(M).

Proof. First, considering (2.5) for all vector fields X, we have

Σg(X, ξ)ξ = 2(Dg
Xθ)(ξ)ξ − Dg

XB − |θ|2X − θ(ξ)η(X)B + (θ(ξ))2X,

Σg(ξ, X)ξ = (Dg
ξθ)(X)ξ + (Dg

ξθ)(ξ)X − η(X)Dg
ξB − η(X)|θ|2ξ

− θ(X)B + θ(X)θ(ξ)ξ.

⎫⎪⎬
⎪⎭ (3.6)

Then, since on a K-contact manifold the equality Rg(X, ξ)ξ = X − η(X)ξ always holds
and θ is closed, from (3.3) and (3.6) for every X ∈ X(M) we get

Dg
XB = (1 − |θ|2 + (θ(ξ))2 − (Dg

ξθ)(ξ))X + θ(X)B

+ ((Dg
Xθ)(ξ) − θ(X)θ(ξ) − η(X) + η(X)|θ|2)ξ + η(X)Dg

ξB − η(X)θ(ξ)B,

(3.7)

which, for horizontal vector fields X, Y implies

g(Dg
XB, Y ) = (Dg

Xθ)(Y ) = (1 − |θ|2 + (θ(ξ))2 − (Dg
ξθ)(ξ))g(X, Y ) + θ(X)θ(Y ). (3.8)

Now, to find the expression of the curvature Ricci tensor of M for all X, Y ∈ X(M) we
use the following decomposition:

ρ(Rg)(X, Y ) = ρ(Rg)(Ẋ, Ẏ ) + η(X)ρ(Rg)(ξ, Ẏ )

+ η(Y )ρ(Rg)(Ẋ, ξ) + η(X)η(Y )ρ(Rg)(ξ, ξ). (3.9)

Then, taking into account that ρ(Rg)(ξ, ξ) = 2n, from (3.9), (3.4) and (3.8) we get the
relations

ρ(Rg)(X, Y ) = (2n − 1)(1 − 2|θ|2 + (θ(ξ))2 − (Dg
ξθ)(ξ))g(Ẋ, Ẏ )

+ (2n − 1)η(X)(Dg

Ẏ
θ)(ξ) − (2n − 1)θ(ξ)η(X)θ(Ẏ )

− (2n − 1)θ(ξ)η(Y )θ(Ẋ) + (2n − 1)η(Y )(Dg

Ẋ
θ)(ξ) + 2nη(X)η(Y ),

(3.10)

(2n − 1)(Dg
ξθ)(ξ) = 2n + (2n − 1)(θ(ξ))2 + δθ − (2n − 1)|θ|2, (3.11)

and, finally, by substituting (3.11) into (3.10), recalling that Ẋ = X − η(X)ξ, we obtain
the claim of the theorem. �
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Theorem 3.6. Let (M, ϕ, ξ, η, g) be a (2n + 1)-dimensional compact K-contact man-
ifold, with 2n + 1 � 3, admitting a closed Einstein–Weyl structure ∇[g] and let θ be the
associated 1-form. Then M is Sasakian if and only if it is η-Einstein. Moreover, in this
case, θ(ξ) �= 0 and, if 2n + 1 � 5, (2n − 1)|θ|2 − 2δθ is constant.

Proof. In fact, suppose that (M, ϕ, ξ, η, g) is a compact Sasakian manifold endowed
with a closed Einstein–Weyl structure ∇[g]. Thus, in particular, its curvature Ricci tensor
ρ(Rg) satisfies (3.5). So, comparing (3.5) with the relation ρ(Rg)(X, ξ) = 2nη(X), which
holds for every X ∈ X(M), for X horizontal vector field and Y = ξ we get

(Dg
Xθ)(ξ) = θ(X)θ(ξ). (3.12)

Now, from (3.12), we see that, when θ(ξ) = 0, we have (Dg
Xθ)(ξ) = −θ(ϕX) = 0 for

every horizontal vector field X, so that the 1-form θ vanishes identically on M . As a
consequence, if (ϕ, ξ, η, g) is Sasakian, θ(ξ) must be different from zero. Moreover, by
substituting (3.12) into (3.10) and taking account of (3.9) and (3.11), finally we obtain
the following equation:

ρ(Rg)(X, Y ) = (σ − 1)g(X, Y ) + (2n + 1 − σ)η(X)η(Y ), (3.13)

where we put σ = (2n − 1)|θ|2 − 2δθ, proving the first part of the theorem.
On the contrary, suppose now that (M, ϕ, ξ, η, g) is a compact K-contact manifold

satisfying the hypothesis of Theorem 3.5. Then its Ricci curvature tensor field is given
by (3.5) so that, in order for M to be η-Einstein, for all X, Y ∈ X(M) we must have

η(Y )(Dg
Xθ)(ξ) + η(X)(Dg

Y θ)(ξ) − θ(ξ)η(Y )θ(X) − θ(ξ)η(X)θ(Y ) = λη(X)η(Y ) (3.14)

for some function λ on M . Considering the above equation for a horizontal vector field X

and for Y = ξ again we find the relation (3.12), obtaining that also in this case we need
θ(ξ) �= 0. We will now prove that (M, ϕ, ξ, η, g) is a Sasakian manifold showing that its
curvature tensor field for all X, Y ∈ X(M) is given by Rg(X, Y )ξ = η(Y )X − η(X)Y , an
equation which characterizes the K-contact normal manifolds. We then consider (3.3) to
find the following equation for the curvature of M :

Rg(X, Y )ξ = Σg(Y, X)ξ − Σg(X, Y )ξ

= (Dg
Y θ)(ξ)X − η(X)Dg

Y B − η(X)|θ|2Y − η(Y )θ(X)B + θ(ξ)θ(X)Y

− (Dg
Xθ)(ξ)Y + η(Y )Dg

XB + η(Y )|θ|2X + η(X)θ(Y )B − θ(ξ)θ(Y )X.

(3.15)

Now, substituting the expression (3.7) into (3.15) for Dg
XB and Dg

Y B, after a long com-
putation, (3.15) reduces to

Rg(X, Y )ξ = η(Y )X − η(X)Y + (Dg

Ẋ
θ)(ξ)Ẏ − (Dg

Ẏ
θ)(ξ)Ẋ

+ θ(Ẏ )θ(ξ)Ẋ − θ(Ẏ )θ(ξ)Ẋ. (3.16)
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Finally, taking into account that (3.14) implies (3.12) and supposing that either X or Y is
horizontal, we obtain for Rg the equality we are looking for, proving that the K-contact
structure is actually Sasakian. Finally, we note that, since the Ricci curvature tensor
ρ(Rg) in this case reduces to (3.13), (2n−1)|θ|2 −2δθ must be constant when 2n+1 � 5,
which concludes the proof. �

Since Boyer et al . proved in [5] that a Sasakian manifold of dimension 3 is η-Einstein
if and only if it has constant ϕ-sectional curvature, we can state the following.

Corollary 3.7. Let (M, ϕ, ξ, η, g) be a compact three-dimensional Sasakian manifold
endowed with a closed Einstein–Weyl structure ∇[g]. Then M has constant ϕ-sectional
curvature.

As is well known, the Sasakian space forms provide examples of Sasakian η-Einstein
spaces. We also remark that in [13] Narita showed that on every Sasakian manifold
with constant ϕ-sectional curvature c � 1 there exists an Einstein–Weyl structure. More
generally, taking into account the cited results on the existence of η-Einstein structure
on a Sasakian manifold (M, ϕ, ξ, η, g), from Theorem 3.6 we get the following.

Corollary 3.8. Let (M, ϕ, ξ, η, g) be a compact Sasakian manifold satisfying the
hypotheses of Theorems 3.1 and 3.2. Then no Sasakian metric can represent a closed
Einstein–Weyl structure.

Remark 3.9. We remark that from Theorem 3.6 it is also possible to deduce that in
a compact Sasakian manifold (M, ϕ, ξ, η, g) the metric g compatible with the structure
cannot be the Gauduchon metric of a closed Einstein–Weyl structure ∇[g]. In fact, in that
case, the corresponding 1-form θ would be g-coclosed, closed and thus g-harmonic on M .
However, Tachibana proved in [17] that every harmonic 1-form on compact K-contact
manifolds must be orthogonal to η so that, as we showed in Theorem 3.6, θ vanishes
identically on M . Moreover, the properties of θ (in particular, its parallelism with respect
to Dg) and Tachibana’s result easily permit us to extend this observation on every
K-contact manifold (see also [5]).

Corollary 3.10. Let (M, ϕ, ξ, η, g) be a (2n + 1)-dimensional compact K-contact
manifold, with 2n + 1 � 3, satisfying the hypothesis of Theorem 3.5. Then its scalar
curvature is given by sg = 2n((2n − 1)|θ|2 − 2δθ). Moreover, when θ(ξ) = 0, if the scalar
curvature sg is constant, then |θ| is constant too, and θ is a harmonic form on M .

Proof. The expression for sg is obtained by substituting (3.11) into the trace of (3.5).
On the other hand, when θ(ξ) = 0, from (3.4) and the relation ρ(Rg)(ξ, ξ) = 2n we obtain
(2n − 1)|θ|2 − δθ = 2n, and the following equivalent expressions for the scalar curvature:
sg = 2n(4n − (2n − 1)|θ|2) = 2n(2n − δθ). Consequently, supposing sg is constant, both
|θ| and δθ must be constant too. In particular, since θ is closed, θ is a harmonic form
on M . �
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4. Closed Einstein–Weyl structures on cosymplectic manifolds

A normal almost-contact metric structure (ϕ, ξ, η, g) on M is called cosymplectic if the
fundamental 2-form Ω defined by Ω(X, Y ) = 2g(ϕX, Y ), X, Y ∈ X(M), and the 1-form
η are closed on M [1]. It is possible to prove that if Dg is the Levi-Civita connection of
g, the cosymplectic structure is also characterized by the relations

Dg
Xϕ = 0, Dg

Xη = 0, Dg
Xξ = 0. (4.1)

Together with (4.1), we recall that the curvature tensor field Rg and the Ricci ten-
sor field ρ(Rg) of a cosymplectic manifold satisfy the equalities Rg(X, Y )ξ = 0 and
ρ(Rg)(X, ξ) = 0 for all vector fields X, Y on M . In particular, the Ricci tensor of a cosym-
plectic η-Einstein structure is simply given by ρ(Rg) = σ(g − η ⊗ η), where σ ∈ C∞(M).
In [10] the following has been proved.

Theorem 4.1. Every (2n + 1)-dimensional cosymplectic manifold (M, ϕ, ξ, η, g) of
constant ϕ-sectional curvature c > 0 admits two Ricci-flat Weyl structures where the
1-forms associated to the metric g ∈ [g] are ±θ = ±λη respectively, with λ2 = 2c/(2n−1).

The next result generalizes Theorem 4.1.

Theorem 4.2. Let (M, ϕ, ξ, η, g) be a compact (2n + 1)-dimensional, 2n + 1 � 3,
cosymplectic manifold. Suppose that M admits a closed Einstein–Weyl structure ∇[g].
Then M is η-Einstein.

Proof. We notice first that, since ∇[g] is flat and Ricci-flat, if θ again denotes the
1-form associated to g ∈ [g], the curvature tensor field Rg and the Ricci curvature tensor
field ρ(Rg) of M are respectively given by (3.3) and (3.4). Now, by using the equality
ρ(Rg)(X, ξ) = 0, from (3.4) we obtain

(2n − 1)(Dg
ξθ)(ξ) = (2n − 1)(θ(ξ))2 + δθ − (2n − 1)|θ|2. (4.2)

On the other hand, since we also have Rg(X, Y )ξ = 0 for all X, Y ∈ X(M), for every
horizontal vector field X formulae (2.5) and (3.3) imply

Dg
XB = ((θ(ξ))2 − (Dg

ξθ)(ξ) − |θ|2)X + θ(X)B, (4.3)

from which we obtain

g(Dg
XB, Y ) = (Dg

Xθ)(Y ) = ((θ(ξ))2 − (Dg
ξθ)(ξ) − |θ|2)g(X, Y ) + θ(X)θ(Y ), (4.4)

where we still consider Y as a horizontal vector field. Finally, substituting (4.2) and (4.4)
into (3.9), we find that the Ricci curvature tensor field of the cosymplectic structure for
X and Y such that η(X) = η(Y ) = 0 is given by

ρ(Rg)(X, Y ) = σg(X, Y ), (4.5)

where σ = (2n − 1)|θ|2 − 2δθ. As a consequence,

ρ(Rg) = σ(g − η ⊗ η) (4.6)

gives the Ricci tensor of M . This proves the theorem. �
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Remark 4.3. We notice that, in the hypothesis of the previous theorem, when
θ(ξ) = 0, from (4.4) we obtain that g(Dg

XB, B) = 1
2X(|θ|2) = 0 for all vector fields

on M orthogonal to ξ. But, θ being closed, we have in particular that dθ(ξ, B) = 0 and
(Dg

ξθ)(B) = (Dg
Bθ)(ξ) = 0. Then, since (Dg

ξθ)(B) = ξ(θ(B)) − θ(Dg
ξB) = 1

2ξ(|θ|2) = 0,
we get that |θ| is constant on M .

Corollary 4.4. Let (M, ϕ, ξ, η, g) be a compact cosymplectic manifold and let ∇[g]

be a closed Einstein–Weyl structure on M . Then the almost-contact metric g is the
Gauduchon metric of ∇[g] if and only if the 1-form associated to the metric g ∈ [g] is
given by θ = λη for some constant λ.

Proof. In fact, if g is the Gauduchon metric, the 1-form θ is g-coclosed, closed and
thus g-harmonic on M . In particular, θ is parallel and (4.2) implies that ((θ)(ξ))2 = |θ|2,
so that θ(X) = 0 for every horizontal vector field X. Then θ = λη for some constant λ

because of the parallelism of θ. �

Corollary 4.5. Let (M, ϕ, ξ, η, g) be a (2n + 1)-dimensional η-Einstein cosymplectic
manifold, where 2n+1 � 3. Suppose ρ(Rg) = λ(g−η⊗η) for some constant λ > 0. Then
M admits two closed Einstein–Weyl structures, ∇[g]

1 and ∇[g]
2 , with associated 1-forms

respectively given by θ1 =
√

(2n − 1)λη and θ2 = −
√

(2n − 1)λη.

Proof. We directly obtain the claim by comparing (3.4) with the expression ρ(Rg) =
λ(g − η ⊗ η). �
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