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Abstract

Most metrics between finite point measures currently used in the literature have the flaw
that they do not treat differing total masses in an adequate manner for applications. This
paper introduces a new metric d̄1 that combines positional differences of points under a
closest match with the relative difference in total mass in a way that fixes this flaw. A
comprehensive collection of theoretical results about d̄1 and its induced Wasserstein
metric d̄2 for point process distributions are given, including examples of useful
d̄1-Lipschitz continuous functions, d̄2 upper bounds for the Poisson process approx-
imation, and d̄2 upper and lower bounds between distributions of point processes of
independent and identically distributed points. Furthermore, we present a statistical test
for multiple point pattern data that demonstrates the potential of d̄1 in applications.
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1. Introduction

The two metrics most widely used on the space N of finite point measures on a compact
metric space (X, d0) are the Prohorov metric � and the metric d1 that was introduced in [3]. We
use δx to stand for the Dirac measure at x. For ξ = ∑m

i=1 δxi
, η = ∑n

i=1 δyi
∈ N, and d0 ≤ 1,

the metric d1 is given by

d1(ξ, η) = min
π∈�n

1

n

n∑
i=1

d0(xi, yπ(i)) (1.1)

if m = n ≥ 1 and d1(ξ, η) = 1 if m �= n, where �n denotes the set of permutations of
{1, 2, . . . , n}. The gap between d1 = d

(1)
1 and � ∧ 1 = d

(∞)
1 can be bridged by metrics d

(p)
1 ,

where the average in (1.1) is replaced by a general pth order average (see [23]).
All of these metrics are good choices from a theoretical point of view, because they metrize

the natural vague topology on N. Furthermore, d1 has especially been highly successful as
an underlying metric for defining a Wasserstein metric d2 between point process distributions:
letting F2 = {f : N → [0, 1]; |f (ξ) − f (η)| ≤ d1(ξ, η) for all ξ, η ∈ N}, we set

d2(P, Q) = sup
f ∈F2

∣∣∣∣
∫

f dP −
∫

f dQ

∣∣∣∣
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Figure 1: The left is a realization of 99 independent and uniformly distributed points and the right is the
same as the left except that an additional point is added. Intuitively, we would say both point patterns are
very similar. However, the d1-distance between the two is maximal, whereas the d̄1-distance is only 0.01

(out of a possible range of [0, 1]).

for any two probability measures P and Q on N. Numerous useful upper bounds in this metric
have been obtained, including the results of [3], [6], [9], [11], [12], [22], and [23], which for
the most part assume that one of the probability measures involved is a Poisson (or compound
Poisson) process distribution. Such estimates can be used to compare the distributions of
point pattern statistics S(�), where S ∈ F2, for different underlying point process models,
since the Wasserstein distance dW(L(S(�)), L(S(�′))) (see [8, pp. 254–255]) is easily seen to
be bounded by d2(L(�), L(�′)). For a concrete example where this was exploited, see [21,
Section 3.2].

However, there are certain limitations with respect to the practical applications of the
metric d1 (as well as of the other metrics between point measures that were mentioned), which
are mainly due to the fact that d1(ξ, η) is always set to the maximal distance 1 if the total
numbers of points of the point patterns ξ and η disagree. Such crude treatment results in a
metric that does not usually reflect very well our intuitive idea of two-point patterns being ‘far
apart’ from one another if the cardinalities of the point patterns are different, as can be seen
from the extreme case illustrated in Figure 1. This flaw is, in our opinion, the main reason
why such metrics have not been taken up in more application-oriented fields, such as spatial
statistics.

In the present paper we introduce a new metric d̄1, which refines the metric d1 in the sense
that d̄1(ξ, η) = d1(ξ, η) if the cardinalities of the two-point patterns ξ and η agree, but d̄1(ξ, η)

can take general values in (0, 1] if the cardinalities disagree. In particular, d̄1 assigns a large
distance if the difference in the numbers of points is large compared to the total number of
points in the point pattern with more points, and it takes the quality of point matchings into
account even if the total numbers are not the same.

While d̄1 is a slightly weaker metric than d1, it still metrizes the same topology as d1, and
its induced Wasserstein metric d̄2 still metrizes convergence in distribution of point processes
and provides an upper bound for the Wasserstein distance dW(L(S(�)), L(S(�′))) for many
of the useful point-pattern statistics S that d2 does. As far as Poisson process approximation is
concerned, we are able to obtain better bounds in the d̄2-metric than in the stronger d2-metric
for a wide range of situations. Furthermore, we present a simulation study that assesses the
powers of certain tests based on d̄1 and demonstrates its usefulness in spatial statistics.
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2. Definition and elementary properties

Let (X, d0) be a compact metric space with d0 ≤ 1, on which we always consider the Borel
σ -algebra B. Denote the space of all finite point measures on X by N and equip it as usual
with the vague topology and the σ -algebra N generated by this topology, which is the smallest
σ -algebra that renders the point counts on measurable sets measurable (see [15, Section 1.1,
Lemma 4.1, and Section 15.7]). Recall that a point process is just a random element of N.

Definition. Let d̄1 be the symmetric map N2 → R+ that is given by

d̄1(ξ, η) = 1

n

(
min
π∈�n

m∑
i=1

d0(xi, yπ(i)) + (n − m)

)

for ξ = ∑m
i=1 δxi

, η = ∑n
j=1 δyj

∈ N with n ≥ max(m, 1), and d̄1(0, 0) = 0.

In essence, we arrange for ξ and η to have the same number of points by introducing extra
points located at distance 1 from X, and then take the average distance between the points
under a closest match (which is the d1-distance).

Proposition 2.1. The map d̄1 is a metric that is bounded by 1.

The proof of this proposition, as well as further proofs that are of a more technical nature
and would otherwise disrupt the flow of the main text can be found in Appendix A. It is
convenient to introduce the ‘relative difference metric’dR on Z+, which is given by dR(m, n) =
|m − n|/ max(m, n) for max(m, n) > 0. The triangle inequality for dR follows immediately
from the triangle inequality for d̄1, because we have dR(m, n) = d̄1(mδx, nδx).

Proposition 2.2. The following statements about d̄1 hold.

(i) dR(|ξ |, |η|) ≤ d̄1(ξ, η) ≤ d1(ξ, η) for all ξ, η ∈ N.

(ii) d̄1 metrizes the vague (weak) topology on N.

(iii) The metric space (N, d̄1) is locally compact, complete, and separable.

Next we define the metric d̄2 on the space P(N) of probability distributions on (N, N ) just
as the Wasserstein metric with respect to d̄1.

Definition. Let F̄2 = {f : N → [0, 1]; |f (ξ) − f (η)| ≤ d̄1(ξ, η) for all ξ, η ∈ N}. Then set

d̄2(P, Q) = sup
f ∈F̄2

∣∣∣∣
∫

N
f dP −

∫
N

f dQ

∣∣∣∣
for P, Q ∈ P(N).

Since this is exactly the Wasserstein construction (the fact that we restrict the functions in
F̄2 to be [0, 1]-valued has no influence on the supremum, because the underlying d̄1-metric is
bounded by 1), it is clear that d̄2 is a metric that is obviously bounded by 1, and we can easily
derive basic properties. For two probability distributions µ and ν on Z+, write dRW(µ, ν) =
minM∼µ, N∼ν E[dR(M, N)], which is the Wasserstein distance with respect to dR (compare
Proposition 2.3(i), below). The minimum exists because (Z+, dR) is complete (compare the
proof of Proposition 2.3(i) in Appendix A).

https://doi.org/10.1239/aap/1222868180 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1222868180


654 • SGSA D. SCHUHMACHER AND A. XIA

Proposition 2.3. The metric d̄2 satisfies

(i) d̄2(P, Q) = min�∼P, H∼Q E[d̄1(�, H)] for all P, Q ∈ P(N);

(ii) dRW(L(|�|), L(|H|)) ≤ d̄2(L(�), L(H)) ≤ d2(L(�), L(H)) for any point processes �

and H;

(iii) d̄2 metrizes the weak topology onP(N), so that�n
d−→� if and only if d̄2(L(�n), L(�)) →

0 as n → ∞, where ‘
d−→’ denotes convergence in distribution.

3. Lipschitz continuous functions

By the definition of d̄2, upper bounds for a distance d̄2(L(�), L(H)) also bound the difference
| E[f (�)] − E[f (H)]| for any f ∈ F̄2. It is thus of considerable interest for the application
of estimates such as those obtained in Section 4 to have a certain supply of ‘meaningful’
d̄1-Lipschitz continuous statistics of point patterns (where we do not worry too much about the
Lipschitz constant, as it will only appear as an additional factor in the upper bound).

For the case of the d1-metric, a selection of such statistics was given in Section 10.2 of [8]
and in Subsection 3.3.1 of [20]. Since d̄1 is in general strictly smaller than d1, we cannot
reasonably expect all of these functions to lie in F̄2. However, we are able to recover many
of the most important examples, which is illustrated by the two propositions below. This is
mainly due to the fact that these functions take all the points in the pattern into account without
fundamentally distinguishing how many there are, which is a situation where a d1-Lipschitz
condition typically provides too much room in the upper bound.

Our first proposition concerns certain U -statistics with Lipschitz continuous kernels (the
former are usually considered for a fixed number of points, but the extension is obvious). See
[16] for detailed results about such statistics.

Proposition 3.1. Suppose that Y ⊃ X, and extend the metric d0 to Y in such a way that it
is still bounded by 1. Fix l ∈ N = {1, 2, . . . }, and write Nl+ = {ξ ∈ N; |ξ | ≥ l}. Let
K : Yl → [0, 1] be a symmetric function that satisfies

(i)

|K(u1, . . . , ul) − K(v1, . . . , vl)| ≤ 1

l

l∑
i=1

d0(ui, vi)

for u1, . . . , ul, v1, . . . , vl ∈ Y;

(ii) for every N ∈ N, there exist ū1, . . . , ūN ∈ Y such that, for any k ∈ {1, . . . , l} and any
selection 1 ≤ i1 < · · · < ik ≤ N of k indices,

K(ūi1 , ūi2 , . . . , ūik , uk+1, uk+2, . . . , ul) ≥ K(u1, u2, . . . , uk, uk+1, uk+2, . . . , ul)

for all u1, u2, . . . , ul ∈ X;

(iii) for every k ∈ {1, . . . , l}, we have

K(u1, u1, . . . , u1, uk+1, uk+2, . . . , ul) ≤ K(u1, u2, . . . , uk, uk+1, uk+2, . . . , ul)

for all u1, u2, . . . , ul ∈ X.
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Define f : Nl+ → [0, 1] by

f (ξ) =
(

m

l

)−1 ∑
1≤i1<i2<···<il≤m

K(xi1 , xi2 , . . . , xil )

for ξ = ∑m
i=1 δxi

∈ N with m ≥ l. Then there exists an extension F of f to the whole of N
such that F ∈ F̄2.

One possible choice for the function K in the above result is half the interpoint distance,
i.e. K(u1, u2) = 1

2d0(u1, u2) for all u1, u2 ∈ X. If X ⊂ R
D = Y for some D ∈ N and

d0(x, y) = |x − y| ∧ 1 for all x, y ∈ R
D , we can consider more generally the diameter of the

minimal bounding ball, defining

K(u1, . . . , ul) = 1

l
min{diam0(B); B ⊂ R

D closed Euclidean ball with u1, . . . , ul ∈ B}

for l ≥ 2 and u1, . . . , ul ∈ R
D , where diam0(B) = sup{d0(x, y); x, y ∈ B}. It can be shown

that this again yields a function K that satisfies (i)–(iii) of Proposition 3.1.
The second proposition looks at the average nearest-neighbor distance in a finite point pattern

on R
D . This statistic gives important information about the amount of clustering in the pattern.

Proposition 3.2. Let X ⊂ R
D , and let d0(x, y) = |x − y| ∧ 1 for all x, y ∈ R

D . Define the
function f : N2+ → [0, 1] by

f (ξ) = 1

m

m∑
i=1

min
j∈{1,...,m}

j �=i

d0(xi, xj )

for ξ = ∑m
i=1 δxi

∈ N with m ≥ 2. Then there exists an extension F of f to the whole of N
that is d̄1-Lipschitz continuous with constant τD + 1, where τD denotes the kissing number in
D dimensions (i.e. the maximal number of unit balls that can touch a unit ball in R

D without
producing any overlaps of the interiors; see [13, Section 1.2] for details).

Proof of Proposition 3.1. Fix a point x0 ∈ X, and define

F(ξ ′) = f (ξ ′ + (l − |ξ ′|)+δx0)

for every ξ ′ ∈ N. It suffices to show that |f (ξ)−f (η)| ≤ d̄1(ξ, η) for ξ, η ∈ N with |ξ |, |η| ≥ l,
because this implies that

|F(ξ ′) − F(η′)| = |f (ξ ′ + (l − |ξ ′|)+δx0) − f (η′ + (l − |η′|)+δx0)|
≤ d̄1(ξ

′ + (l − |ξ ′|)+δx0 , η
′ + (l − |η′|)+δx0)

≤ d̄1(ξ
′, η′)

for every ξ ′, η′ ∈ N. Then let ξ = ∑m
i=1 δxi

and η = ∑n
i=1 δyi

, where m, n ≥ l and, without
loss of generality, m ≤ n (because of the symmetry of the inequality that we would like to
show). We add n − m points xm+1, . . . , xn to ξ in one of the following two ways depending
on whether f (ξ) ≥ f (η) or f (ξ) < f (η), and call the result ξ̄ = ∑n

i=1 δxi
.
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If f (ξ) ≥ f (η), let xm+r = ūr , 1 ≤ r ≤ n − m, for points ū1, . . . , ūn−m chosen as in
assumption (ii) with N = n − m. It follows that

f (ξ̄ ) =
(

n

l

)−1 ∑
1≤i1<···<il≤n

K(xi1 , . . . , xil )

=
( l∑

j=0

(
m

j

)(
n − m

l − j

))−1 l∑
j=0

∑
1≤i1<···<ij ≤m

m+1≤ij+1<···<il≤n

K(xi1 , . . . , xil )

≥
(

m

l

)−1 ∑
1≤i1<···<il≤m

K(xi1 , . . . , xil )

= f (ξ).

The inequality is a consequence of the fact that (
∑l

j=0 aj )/(
∑l

j=0 bj ) ≥ al/bl if aj /bj ≥ al/bl

for every j ; and the latter condition holds because, for max(0, l − n + m) ≤ j ≤ l − 1 (since
aj = bj = 0 if j < l − n + m, these pairs can be ignored altogether),

(
m

j

)−1(
n − m

l − j

)−1 ∑
1≤i1<···<ij ≤m

m+1≤ij+1<···<il≤n

K(xi1 , . . . , xil )

≥
(

m

j

)−1(
n − m

l − j

)−1 ∑
1≤i1<···<ij ≤m

m+1≤ij+1<···<il≤n

(
m − j

l − j

)−1

×
∑

1≤rj+1<···<rl≤m

{rj+1,...,rl}∩{i1,...,ij }=∅

K(xi1 , . . . , xij , xrj+1 , . . . , xrl )

=
(

m

j

)−1(
m − j

l − j

)−1 ∑
1≤i1<···<ij ≤m

∑
1≤rj+1<···<rl≤m

{rj+1,...,rl}∩{i1,...,ij }=∅

K(xi1 , . . . , xij , xrj+1 , . . . , xrl )

=
(

l

j

)(
m

j

)−1(
m − j

l − j

)−1 ∑
1≤i1<···<il≤m

K(xi1 , . . . , xil )

=
(

m

l

)−1 ∑
1≤i1<···<il≤m

K(xi1 , . . . , xil ),

where the inequality follows by assumption (ii) and the symmetry of K .
If, on the other hand, f (ξ) < f (η), let xm+r = x1, 1 ≤ r ≤ n−m. It follows, in exactly the

same way as for the first case, only this time with ‘≥’ replaced by ‘≤’ and using assumption (iii)
instead of assumption (ii), that f (ξ̄ ) ≤ f (ξ).

In total, we thus obtain

|f (ξ) − f (η)| ≤ |f (ξ̄ ) − f (η)| ≤ d1(ξ̄ , η) = d̄1(ξ̄ , η) ≤ d̄1(ξ, η),

where the second inequality follows from the d1-Lipschitz continuity of the functions considered
in Proposition 2.A of [23].
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Proof of Proposition 3.2. Fix arbitrary α0, α1 ∈ [0, 1], and define F(ξ) = αi if |ξ | = i ∈
{0, 1} and F(ξ) = f (ξ) otherwise. Let ξ = ∑m

i=1 δxi
and η = ∑n

i=1 δyi
, where, without loss of

generality, we assume that m ≤ n. Since |F(ξ) − F(η)| ≤ 1 ≤ (τD + 1) 1
2 ≤ (τD + 1)d̄1(ξ, η)

if m ∈ {0, 1} and n > m, the Lipschitz inequality remains to be shown for n ≥ m ≥ 2 only.
As before, we bring the cardinalities to the same level. Let ξ̄ = ∑n

i=1 δxi
, where the points

xm+1, . . . , xn are chosen in the following way. If f (ξ) ≥ f (η), let xm+1, . . . , xn be arbitrary
pairwise distinct points in R

D that are at d0-distance 1 from each other and from X. Hence,
f (ξ̄ ) ≥ f (ξ) because, for each of the added points, the distance to its nearest neighbor is 1,
which is maximal. If, on the other hand, f (ξ) < f (η), let xm+1 = · · · = xn = x1, whence it
is immediately clear that f (ξ̄ ) ≤ f (ξ) because, for each of the added points, the distance to its
nearest neighbor is 0.

In total, we obtain

|f (ξ) − f (η)| ≤ |f (ξ̄ ) − f (η)| ≤ (τD + 1)d1(ξ̄ , η) = (τD + 1)d̄1(ξ̄ , η) ≤ (τD + 1)d̄1(ξ, η),

where the second inequality follows from the d1-Lipschitz continuity of the average nearest-
neighbor distance considered in Proposition 2.C of [23].

4. Distance estimates in d̄2

In this section we present upper bounds for some essential d̄2-distances, which all clearly
improve on the bounds that are available for the corresponding d2-distances. However, the
improvement in general results of this type is not always as much as we would hope it to be,
and it seems that considerably better bounds can be obtained by a more specialized treatment
(see, for example, Subsection 4.2).

4.1. Poisson process approximation of a general point process

Using the fact that

Ah(ξ) =
∫

X
(h(ξ + δα) − h(ξ))λ̂(dα) +

∫
X

(h(ξ − δα) − h(ξ))ξ(dα), ξ ∈ N, (4.1)

is the generator of the spatial immigration-death process whose steady state distribution is
the Poisson process with expectation measure λ̂, Barbour and Brown [3] established the Stein
identity for the Poisson process approximation as

Ah(ξ) = f (ξ) − Po(λ̂)(f ) (4.2)

for suitable test functions f on N. The solution of (4.2) is given by

hf (ξ) = −
∫ ∞

0
(E[f (Zξ (t))] − Po(λ̂)(f )) dt, (4.3)

where Zξ is an immigration-death process with generator A and initial point pattern Zξ (0) = ξ .
Using (4.2) and different characteristics of point processes, we can establish various versions

of Poisson process approximation error bounds (see [3], [4], [7], and [12]). To keep our text
concise, we present here a slightly simplified version of the main result in [12] only; it is an
obvious exercise to apply our estimates (4.4) and (4.5), below, to get parallel results in the other
papers mentioned above.
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We assume that, for each α ∈ X, there is a Borel set Aα ⊂ X such that α ∈ Aα and the
mapping

X × N → X × N : (α, ξ) �→ (α, ξ |Ac
α
)

is product measurable, where ξ |Ac
α

stands for the point pattern of ξ restricted to Ac
α (see [15,

Section 1.1]). Such a requirement can be ensured by A = {(x, y); y ∈ Ax, x ∈ X} measurable
in X2 (see [12]). We define, for any function h on N,


h(ξ) = sup
α∈X

|h(ξ + δα) − h(ξ)|,


2h(ξ) = sup
η−ξ∈N, α,β∈X

|h(η + δα + δβ) − h(η + δα) − h(η + δβ) + h(η)|, ξ ∈ N.

Theorem 4.1. (Chen and Xia [12].) For each bounded measurable function f : N → R+, let
hf be solution (4.3) of (4.2). If � is a point process on X with expectation measure λ̂ then

| E[f (�)] − Po(λ̂)(f )|
≤ E

∫
X


2hf (�|Ac
α
)(�(Aα) − 1)�(dα)

+ E
∫

X
|(hf (�|Ac

α
) − hf (�|Ac

α
+ δα)) − (hf (�α|Ac

α
) − hf (�α|Ac

α
+ δα))|λ̂(dα)

+ E
∫

X

2hf (�|Ac

α
)�(Aα)λ̂(dα),

where �α is the Palm process of � at location α ∈ X (see [15, Chapter 10]).

Error bounds for the Poisson process approximation as in Theorem 4.1 (see [3], [4], [7],
and [12] for full details) pivot on the estimates of 
hf and 
2hf . The following proposition
summarizes these estimates for d̄2.

Proposition 4.1. Let


h(ξ ; α) = h(ξ + δα) − h(ξ),


2h(ξ ; α, β) = h(ξ + δα + δβ) − h(ξ + δα) − h(ξ + δβ) + h(ξ), ξ ∈ N, α, β ∈ X.

Then, for each d̄1-Lipschitz function f , we have

|
hf (ξ ; α)| ≤ min

{
1,

0.95 + ln+ λ

λ
,

1 − e−|ξ |∧λ

|ξ | ∧ λ

}
, (4.4)

|
2hf (ξ ; α, β)| ≤ min

{
0.75,

1

|ξ | ∧ λ
,

1.09

|ξ | + 1
+ 1

λ
,

2 ln λ

λ
1{λ≥1.76} +0.75 1{λ<1.76}

}
,

(4.5)

where (1 − e0)/0 = 1 and λ = λ̂(X).

Proof. For convenience, we write |ξ | = n and |Zξ (t)| = Zξ (t). Let τ1 and τ2 be independent
exponential random variables with mean 1 which are also independent of Zξ ; then we can write

Zξ+δα (t) = Zξ (t) + δα 1{τ1>t}, Zξ+δβ (t) = Zξ (t) + δβ 1{τ2>t},
and Zξ+δα+δβ (t) = Zξ (t) + δα 1{τ1>t} +δβ 1{τ2>t} .
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Hence, it follows, from (4.3) and the d̄1-Lipschitz property of f , that

|
hf (ξ ; α)| =
∣∣∣∣
∫ ∞

0
e−t E[f (Zξ (t) + δα) − f (Zξ (t))] dt

∣∣∣∣ (4.6)

≤
∫ ∞

0
e−t E

[
1

Zξ (t) + 1

]
dt (4.7)

≤
∫ ∞

0
e−t dt

= 1.

Also,

|
2hf (ξ ; α, β)| =
∣∣∣∣
∫ ∞

0
e−2t E

[
f (Zξ (t) + δα + δβ) − f (Zξ (t) + δα)

− f (Zξ (t) + δβ) + f (Zξ (t))

]
dt

∣∣∣∣ (4.8)

≤
∫ ∞

0
e−2t E

[
1

Zξ (t) + 2
+ 1

Zξ (t) + 1

]
dt (4.9)

≤ 1.5
∫ ∞

0
e−2t dt

= 0.75. (4.10)

However, since Zξ has constant immigration rate λ̂ and unit per capita death rate, it is possible
to write

Zξ (t) = Z∅(t) + Dξ (t),

where Dξ is a pure-death process with unit per capita death rate independent of Z∅. Direct
verification shows that Z∅(t) follows the Poisson distribution with mean λt = λ(1 − e−t ),
while |Dξ (t)| follows Bi(|ξ |, e−t ). Hence,

E

[
1

Zξ (t) + 1

]
≤ E

[
1

Z∅(t) + 1

]
= 1 − exp(−λt )

λt

, (4.11)

E

[
1

Zξ (t) + 1

]
=

∫ 1

0
E[xZξ (t)] dx

=
∫ 1

0
(1 − e−t (1 − x))n exp(−λt (1 − x)) dx

≤
∫ 1

0
exp(−(ne−t + λt )(1 − x)) dx

≤
∫ 1

0
e−(n∧λ)(1−x) dx

= 1 − e−n∧λ

n ∧ λ
, (4.12)
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and, similarly,

E

[
1

Zξ (t) + 2

]
=

∫ 1

0
E[xZξ (t)+1] dx

=
∫ 1

0
x(1 − e−t (1 − x))n exp(−λt (1 − x)) dx

≤
∫ 1

0
xe−(n∧λ)(1−x) dx

= 1

n ∧ λ
− 1

(n ∧ λ)2 (1 − e−n∧λ). (4.13)

The claim

|
hf (ξ ; α)| ≤ 0.95 + ln+ λ

λ
(4.14)

is obvious for λ < 0.95 as the right-hand side is already greater than 1, so it remains to show
(4.14) for λ ≥ 0.95. Combining (4.7) and (4.11), with s = 1 − e−t , we obtain

|
hf (ξ ; α)| ≤
∫ ∞

0
e−t 1 − exp(−λt )

λt

dt =
∫ 1

0

1 − e−λs

λs
ds ≤ 1

λ

(
e−λ

λ
+ ln λ + γ

)
,

where γ is the Euler constant and the last inequality is due to items 5.1.39 and 5.1.19 of [1].
For 0.95 ≤ λ ≤ 1, e−λ/λ + ln λ + γ ≤ e−1 + γ < 0.95, since e−λ/λ + ln λ + γ is increasing
for λ ≥ 0.95, and, for λ > 1, e−λ/λ + γ < e−1 + γ < 0.95, because the function e−λ/λ + γ

is decreasing, completing the proof of (4.14). The last claim in (4.4) is easily obtained from
(4.7) and (4.12).

We then apply (4.12) and (4.13) in (4.9) to obtain

|
2hf (ξ ; α, β)| ≤ 0.5

n ∧ λ

(
2 − e−n∧λ − 1

n ∧ λ
(1 − e−n∧λ)

)
(4.15)

≤ 1

n ∧ λ
. (4.16)

Now, we show that

|
2hf (ξ ; α, β)| ≤ 1.09

n + 1
+ 1

λ
. (4.17)

As a matter of fact, by (4.10) and (4.16), (4.17) clearly holds for n = 0 and n ≥ λ; hence, it
remains to show (4.17) for 1 ≤ n < λ. Using (4.15), it suffices to prove that

0.5(n + 1)

n

(
2 − e−n − 1

n
(1 − e−n)

)
≤ 1.09. (4.18)

However, for n ≥ 12,

0.5(n + 1)

n

(
2 − e−n − 1

n
(1 − e−n)

)
<

n + 1

n
≤ 13

12
< 1.09,

while, for 1 ≤ n ≤ 11, we can verify (4.18) for each value of n.
Finally, we prove that

|
2hf (ξ ; α, β)| ≤ 2 ln λ

λ
1{λ≥1.76} +0.75 1{λ<1.76} . (4.19)
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Claim (4.19) is evident for λ < 1.76, so we assume that λ ≥ 1.76. On the other hand, if Y

follows Po(ν) then

E

[
1

Y + 2

]
= E

[
1

Y + 1
− 1

(Y + 1)(Y + 2)

]
= ν − 1 + e−ν

ν2 .

Therefore,

E

[
1

Zξ (t) + 1
+ 1

Zξ (t) + 2

]
≤ E

[
1

Z∅(t) + 1
+ 1

Z∅(t) + 2

]

= 2λt − 1 + (1 − λt ) exp(−λt )

λ2
t

,

which, together with (4.9), ensures that

|
2hf (ξ ; α, β)| ≤
∫ ∞

0
e−2t 2λt − 1 + (1 − λt ) exp(−λt )

λ2
t

dt

=
∫ 1

0
(1 − s)

2λs − 1 + (1 − λs)e−λs

λ2s2 ds

= −3

λ
+ 2(1 − e−λ)

λ2 +
(

2

λ
+ 1

λ2

) ∫ λ

0

1 − e−t

t
dt

≤ −3

λ
+ 2(1 − e−λ)

λ2 +
(

2

λ
+ 1

λ2

)(
e−λ

λ
+ ln λ + γ

)

= −3

λ
+ 2

λ2 + e−λ

λ3 +
(

2

λ
+ 1

λ2

)
(ln λ + γ )

= a(λ),

where the first equality is obtained by the change of variable s = 1− e−t and the last inequality
is obtained from items 5.1.39 and 5.1.19 of [1]. Now, b(λ) = a(λ)λ − 2 ln λ is decreasing in
λ for λ > 1 and b(1.76) < 0, which implies that a(λ) ≤ 2 ln λ/λ for λ ≥ 1.76, completing the
proof of (4.19).

The following counterexample, adapted from [10], shows that the logarithmic factors in (4.4)
and (4.5) cannot be removed.

Example. Let X = {0, 1} with metric d0(x, y) = |x − y|, let λ̂ satisfy λ̂{1} = 1 and
λ̂{0} = λ − 1 > 0, and define a d̄1-Lipschitz function on N as

f (ξ) =
⎧⎨
⎩

1

|ξ | + 1
if ξ{1} = 0,

0 if ξ{1} > 0.

Using the facts that Z∅(t){0} follows Po((λ−1)(1−e−t )) and that Z∅(t){1} follows Po(1−e−t ),
we have, from (4.6) and (4.8), as λ → ∞,

|
hf (∅; 1)| =
∫ ∞

0
e−t E

[
1

Z∅(t){0} + 1

]
P[Z∅(t){1} = 0] dt

=
∫ ∞

0
e−t 1 − exp(−(λ − 1)(1 − e−t ))

(λ − 1)(1 − e−t )
exp(−(1 − e−t )) dt
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=
∫ 1

0

1 − e−(λ−1)s

(λ − 1)s
e−s ds (where s = 1 − e−t )

≥ e−1

λ − 1

∫ λ−1

0

1 − e−u

u
du

� ln λ

λ

and

|
2h(∅; 1, 1)| =
∫ ∞

0
e−2t E

[
1

Z∅(t){0} + 1

]
P[Z∅(t){1} = 0] dt

=
∫ ∞

0
e−2t 1 − exp(−(λ − 1)(1 − e−t ))

(λ − 1)(1 − e−t )
exp(−(1 − e−t )) dt

=
∫ 1

0
(1 − s)

1 − e−(λ−1)s

(λ − 1)s
e−s ds (where s = 1 − e−t )

≥ e−1

λ − 1

∫ λ−1

0

(
1 − u

λ − 1

)
1 − e−u

u
du

� ln λ

λ
.

In both inequalities notation of the form a(λ) � b(λ) means that there are constants k1, k2 > 0
and λ0 > 0 so that k1b(λ) ≤ a(λ) ≤ k2b(λ) for every λ ≥ λ0.

Remark. Comparing the Stein factors for d2 (see [26, p. 146]) with (4.4) and (4.5), we can
easily see that there is a substantial improvement for the Stein factor in (4.4), while the Stein
factor in (4.5) is essentially of the same order as the counterpart for d2. To capitalize on the
improvement in (4.4), it is advisable to use the ‘first difference approach’ (see [25]) in bounding
Poisson process approximation errors (see Remark 4.1, below, for more discussion).

As noted before, d̄1 is the same as d1 when the point patterns have the same number of
points, while it is smoother than d1 when the point patterns do not have the same number of
points. On the other hand, for any two-point processes � and H on X, we have

E[d1(�, H)] = E[d1(�, H) | |�| = |H|] P[|�| = |H|] + P[|�| �= |H|]. (4.20)

When we consider P[|�| �= |H|], which corresponds to the total variation distance between the
distributions of the total number of points of the two-point processes (see [4]), there is no such
logarithmic component in Stein’s factor, which means that the logarithmic component in d1
was brought in only by the discrepancies in the locations of points when the point patterns have
the same number of points. However, this problem is shared by d̄1, that is, the Stein factors for
d̄1 will inevitably have the logarithmic component as well.

It is also worthwhile to note that, since E[d̄1(�, H)] replaces the term P[|�| �= |H|]
in (4.20) with a smaller E[dR(|�|, |H|)], we would expect a bigger improvement on bounding
d̄2(L(�), L(H)) when P[|�| �= |H|] is ‘dominant’ at the right-hand side of (4.20) under the
best coupling. Such an improvement is obtained in the next two subsections.

4.2. Poisson process approximation of a Bernoulli process

Let X = [0, 1] with d0(x, y) = |x − y|, and let X1, . . . , Xn be independent and identically
distributed (i.i.d.) Bernoulli random variables with P[X1 = 1] = p. Then � = ∑n

i=1 Xiδi/n
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defines a Bernoulli process on X. If we let T0, T1, . . . , Tn be i.i.d. uniform random variables
on X which are also independent of {X1, . . . , Xn}, then

Y =
n∑

i=1

XiδTi

defines a binomial process on X (see [19, p. 29]). By [27],

d2(L(�), L(Y )) ≤
(

1

2n
+ p

2

)
∧ 1√

3np
. (4.21)

To estimate d̄2(L(Y ), Po(λ̂)) with λ̂( dx) = np dx, we employ Stein’s method for the Poisson
process approximation. As a matter of fact, it follows from (4.1) that

E[Ah(Y )] = E

[∫
X

(h(Y + δα) − h(Y ))λ̂(dα) +
∫

X
(h(Y − δα) − h(Y ))Y (dα)

]

= np E[h(Y + δT0) − h(Y )] +
n∑

i=1

E[h(Y i) − h(Y i + δTi
)]p

= np E[(h(Y + δT0) − h(Y )) − (h(Y 1 + δT0) − h(Y 1))],
where Y i = Y − XiδTi

. Define

g(i) = E[h(Y + δT0) − h(Y ) | |Y | = i] = E

[
h

( i∑
j=0

δTj

)
− h

( i∑
j=1

δTj

)]
.

Then
| E[Ah(Y )]| = np| E[g(|Y |) − g(|Y 1|)]|

= np2| E[g(|Y 1| + 1) − g(|Y 1|)]|
≤ 2np2‖g‖dTV(L(|Y 1|), L(|Y 1| + 1)), (4.22)

where ‖·‖ denotes the supremum norm and, for any two nonnegative integer-valued random
variables U1 and U2,

dTV(L(U1), L(U2)) = 1
2 sup

g̃ : Z+→[−1,1]
| E[g̃(U1)] − E[g̃(U2)]|.

On the other hand, by Lemma 1 of [5],

dTV(L(|Y 1|), L(|Y 1| + 1)) ≤ max
0≤i≤n−1

P[|Y 1| = i] ≤ 1 ∧ 1

2
√

(n − 1)p(1 − p)
,

and using (4.4), we have, for f ∈ F̄2,

| E[Ahf (Y )]| ≤ (0.95 + ln+(np))p

1/2 ∨ √
(n − 1)p(1 − p)

,

which implies from (4.2) that

d̄2(L(Y ), Po(λ̂)) = sup
f ∈F̄2

| E[Ahf (Y )]| ≤ (0.95 + ln+(np))p

1/2 ∨ √
(n − 1)p(1 − p)

. (4.23)

Now, collecting (4.21) and (4.23) gives the following theorem.
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Theorem 4.2. With the above setup, we have

d̄2(L(�), Po(λ̂)) ≤
(

1

2n
+ p

2

)
∧ 1√

3np
+ (0.95 + ln+(np))p

1/2 ∨ √
(n − 1)p(1 − p)

.

Remark 4.1. The main idea for getting the sharp bound in Theorem 4.2 is to use the ‘first
difference (of h) approach’ to obtain (4.22). If we use (4.5) in Theorem 4.1 then the bound
obtained will be much the same as that for the d2-distance except with a smaller constant.

Remark. An immediate consequence of Theorem 4.2 is that, if n is large, it is almost impossible
to distinguish between the distributions of the two processes. It is quite a contrast to the
conclusion under d2, where it is essential to have a very small p as well as a large n to ensure a
valid Poisson process approximation (see [24]). In practice, statisticians would use a Poisson
process rather than a Bernoulli process when n is large, confirming our conclusion under d̄2.

Remark. It is a tantalizing problem to remove the ln+ λ term in the upper bound. We conjecture
that, at the cost of more complexity, the actual bound should be of order (1/n+p)/(1 ∨√

np).

4.3. Point processes of i.i.d. points

In this subsection we pursue a more direct approach for computing bounds of d̄2-distances.
While Stein’s method, which was used in the previous two subsections, excels by its versatility,
the direct approach performs well in the special case where both point processes have i.i.d.
points and yields an upper as well as a lower bound.

Let � = ∑M
i=1 δXi

and H = ∑N
i=1 δYi

, where M and N are integer-valued random variables,
(Xi)i∈N is a sequence of i.i.d. X-valued random elements that is independent of M , and (Yi)i∈N

is a sequence of i.i.d. X-valued random elements that is independent of N . Denote by dW the
Wasserstein metric between random elements of X with respect to d0.

Proposition 4.2. We have

max(dRW(L(M), L(N)), c1dW(L(X1), L(Y1)))

≤ d̄2(L(�), L(H))

≤ dRW(L(M), L(N)) + c2dW(L(X1), L(Y1)),

where
c1 = c1(L(M), L(N)) = max(P[M > 0], P[N > 0])

and

c2 = c2(L(M), L(N)) = E

[
M̃ ∧ Ñ

M̃ ∨ Ñ
1{M̃∨Ñ>0}

]
≤ min(P[M > 0], P[N > 0])

for random variables M̃ and Ñ that are coupled in such a way that

E[dR(M̃, Ñ)] = dRW(L(M), L(N)).

Remark 4.2. An interesting special case is given if � and H are Poisson processes. For finite
measures µ̂ and ν̂ on X, we obtain, from Proposition 4.2,

d̄2(Po(µ̂), Po(ν̂)) ≤ |µ − ν|
µ ∨ ν

+ (1 − e−(µ∧ν))dW

(
µ̂

µ
,
ν̂

ν

)
,
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which is an improvement by a factor of order 1/
√

µ ∨ ν for µ, ν → ∞ in the first summand
when compared to a corresponding d2-bound (see, for example, [9, Equation (2.8)]). Estimation
of the dRW-term was achieved by considering a Poisson process Z on R+ with intensity 1 and
defining a coupling pair by M̃ = Z((0, µ]) and Ñ = Z((0, ν]).

Proof of Proposition 4.2. Upper bound. Let M̃
d= M and Ñ

d= N (where ‘
d=’denotes equal-

ity in distribution) be coupled according to a dRW-coupling, so that

E

[ |M̃ − Ñ |
M̃ ∨ Ñ

1{M̃∨Ñ>0}
]

= dRW(L(M), L(N)),

and let X̃i
d= Xi and Ỹi

d= Yi with E[d0(X̃i , Ỹi)] = dW(L(X1), L(Y1)) for every i ∈ N in such
a way that the pairs (M̃, Ñ), (X̃1, Ỹ1), (X̃2, Ỹ2), . . . are independent. We then obtain

d̄2(L(�), L(H)) ≤ E

[
d̄1

( M̃∑
i=1

δ
X̃i

,

Ñ∑
j=1

δ
Ỹj

)]

≤ E

[ |M̃ − Ñ |
M̃ ∨ Ñ

1{M̃∨Ñ>0}
]

+ E

[1{M̃∨Ñ>0}
M̃ ∨ Ñ

M̃∧Ñ∑
i=1

d0(X̃i , Ỹi)

]
,

which, by the independence between (M̃, Ñ) and {(X̃i , Ỹi), i ≥ 1}, and the assumptions on the
distributions of those pairs, yields the upper bound claimed.

The bound for the factor c2 follows from

E

[
M̃ ∧ Ñ

M̃ ∨ Ñ
1{M̃∨Ñ>0}

]
≤ P[M̃ > 0, Ñ > 0]

and P[M̃ = Ñ = 0] = min(P[M = 0], P[N = 0]), the proof of which is straightforward.
Lower bound. Let F ∗

W = {g : X → [0, 1]; |g(x) − g(y)| ≤ d0(x, y) for all x, y ∈ X},
and let g̃ ∈ F ∗

W be a mapping with | E[g̃(X1)] − E[g̃(Y1)]| = dW(L(X1), L(Y1)). Such a
mapping exists by dW(L(X1), L(Y1)) = supg∈F ∗

W
| E[g(X1)]−E[g(Y1)]|, where the supremum

is attained because F ∗
W is a compact subset of C(X, R) by the Arzelà–Ascoli theorem, and the

mapping [g �→ | E[g(X1)] − E[g(Y1)]|] is continuous (both statements are with respect to the
topology of uniform convergence).

Define f̃ : N → [0, 1] by

f̃ (ξ) = 1

|ξ |
∫

X
g̃(x)ξ( dx)

for ξ ∈ N \ {0} and f̃ (0) = E[g̃(X1)]. Next we check that f̃ ∈ F̄2. It is immediately clear that
|f̃ (ξ) − f̃ (0)| ≤ 1 = d̄1(ξ, 0) if ξ ∈ N\{0}. Then let ξ = ∑m

i=1 δxi
and η = ∑n

j=1 δyj
both be

in N\{0}, where we assume, without loss of generality, that m ≤ n and f̃ (ξ) ≥ f̃ (η) (otherwise
interchange ξ and η and/or replace g̃ by 1 − g̃ ∈ F ∗

W ) and that the points are numbered according
to a d̄1-pairing such that

1

n

( m∑
i=1

d0(xi, yi) + (n − m)

)
= d̄1(ξ, η).
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Let k ∈ arg max1≤i≤m g̃(xi) and xi = xk for m + 1 ≤ i ≤ n, which implies that

|f̃ (ξ) − f̃ (η)| = 1

m

m∑
i=1

g̃(xi) − 1

n

n∑
i=1

g̃(yi)

≤ 1

n

n∑
i=1

g̃(xi) − 1

n

n∑
i=1

g̃(yi)

≤ 1

n

n∑
i=1

d0(xi, yi)

≤ d̄1(ξ, η),

and, therefore, f̃ ∈ F̄2.

Choose pairs (M̃, Ñ), (X̃1, Ỹ1), (X̃2, Ỹ2), . . . in the same way as for the proof of the upper
bound (although the coupling of X̃i and Ỹi in each of the pairs is not important now). We obtain

d̄2(L(�), L(H)) ≥
∣∣∣∣ E

[
f̃

( M̃∑
i=1

δ
X̃i

)]
− E

[
f̃

( Ñ∑
j=1

δ
Ỹj

)]∣∣∣∣

=
∣∣∣∣ E

[(
1

M̃

M̃∑
i=1

g̃(X̃i) − 1

Ñ

Ñ∑
j=1

g̃(Ỹj )

)
1{M̃>0, Ñ>0}

]

+ E

[(
1

M̃

M̃∑
i=1

g̃(X̃i) − E g̃(X1)

)
1{M̃>0, Ñ=0}

]

+ E

[(
E[g̃(X1)] − 1

Ñ

Ñ∑
j=1

g̃(Ỹj )

)
1{M̃=0,Ñ>0}

]∣∣∣∣
= |(E[g̃(X1)] − E[g̃(Y1)]) P[M̃ > 0, Ñ > 0]|

+ (E[g̃(X1)] − E[g̃(Y1)]) P[M̃ = 0, Ñ > 0]|
= dW(L(X1), L(Y1)) P[N > 0].

Since the above argument is symmetric in � and H, we obtain the lower bound when combining
it with Proposition 2.3(ii).

5. A statistical application

In order to show the potential of d̄1 and d̄2 in statistical applications, we propose a test
procedure based on these two metrics. For the following construction, only some of the
elementary statements in Section 2 are required, but none of the results from Sections 3 and 4
are used. Suppose that our data consists of a few i.i.d. realizations of a point process �, and we
would like to test if � ∼ P for a certain probability measure P on N. Such multiple point-pattern
data may arise, among other examples, from recording degenerate cells in tissue samples or
plants in a large population that is sampled only via a few comparatively small windows.
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In what follows, we restrict our attention to a test for spatial homogeneity under the assump-
tion that � is a Poisson process on W = [0, 1]2 with unknown expectation measure λ̂. This
limits the alternative hypothesis sufficiently to keep our simulation study within the scope of
this paper. Suppose that ξ1, . . . , ξN are realizations of i.i.d. copies �1, . . . , �N of � and that
the total mass λ = λ̂([0, 1]2) of the expectation measure λ̂ is known (otherwise we just take
the canonical estimate (1/N)

∑N
i=1 |ξi |). Our null hypothesis is then � ∼ Po(λ Leb2), where

Leb2 denotes the Lebesgue measure on [0, 1]2. Write

PN = 1

N

N∑
i=1

δξi
∈ P(N)

for the empirical distribution of our data. We perform a Monte Carlo test, where the test statistic
would ideally be

T (ξ1, . . . , ξN) = d̄2(PN, Po(λ Leb2)),

but since this is computationally intractable, we replace it by the randomized test statistic

T (ξ1, . . . , ξN ; η1, . . . , ηN) = d̄2(PN, QN),

where QN = (1/N)
∑N

i=1 δηi
for realizations ηi of Po(λ Leb2)-processes Hi that are indepen-

dent amongst each other and of the �i . For the metric d0, we simply choose the
Euclidean metric cut off at 1. The null hypothesis is rejected at significance level α =
0.05 if T (ξ1, . . . , ξN ; η1, . . . , ηN) ranks among the five highest values when pooled with 99
simulations of T (η̃1, . . . , η̃N ; η1, . . . , ηN), where η̃1, . . . , η̃N , η1, . . . , ηN are all independent
Po(λ Leb2)-realizations.

We choose N = 12 and λ = 30 for the simulation study, which is both realistic for actual
data and keeps computation times at a tolerable level. One single test of two series of 12 point
patterns takes less than three seconds (given the simulated null hypothesis distribution) on an
ordinary laptop computer using the library spatstat (see [2]) that supplies tools for the analysis
of spatial point patterns within the statistical computing environment R (see [18]). Increasing
either N to 50 or λ to 110 while keeping the other parameter fixed, still keeps the computation
time well under one minute. Note that the optimal point assignments needed for computing d̄1,
and also d̄2 between empirical measures, can be found efficiently (in O((m∨n)3) steps, where
m and n are the cardinalities of the point patterns), by using the so-called Hungarian method
from linear programming (see [17, Section 11.2]).

Table 1 summarizes the results of our simulations. The second of the five columns gives the
Monte Carlo powers of our test against Po(λfκ(x, y) Leb2(d(x, y)))-alternatives, where

fκ(x, y) = κe−κx

1 − e−κ

for x, y ∈ [0, 1] and κ = 1, . . . , 4. See Figure 2 to obtain an impression of the corresponding
distributions. By Monte Carlo power we mean the fraction of the number of rejected tests in
100 independent simulations of the alternative.

While it is natural to base d0 on the Euclidean metric for our test, the choice of the cut off at 1
is very arbitrary and only yields reasonable results because it happens to be of the same order of
magnitude as typical interpoint distances in our observation window W . Often we would like
to be able to choose other cutoff values according to the size and geometry of the observation
window and possibly the expected number of points. In order to do this, we generalize our
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Table 1: Powers of the tests for two different cutoff values c against increasingly conspicuous alternatives.
The last two columns give the corresponding results when the test is based on the metric d1 instead of d̄1

and are listed for comparison only.

d̄1 d1
κ

c = 1 c = 0.3 c = 1 c = 0.3

1 0.10 0.23 0.08 0.02
2 0.41 0.97 0.12 0.06
3 0.93 1.00 0.06 0.04
4 1.00 1.00 0.10 0.10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a)

(b)

Figure 2: (a) Normalized intensity functions fκ plotted against their first coordinate; (b) six independent
realizations from Po(f2 Leb2).
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metric d̄1 somewhat by introducing an arbitrary distance bound c > 0. Furthermore, we
include an order parameter p ≥ 1, following the idea in [23] for d1, which may be useful in
some applications. Assuming that d0 ≤ c, we thus set

d̄
(p,c)
1 (ξ, η) =

(
1

n

(
min
π∈�n

m∑
i=1

d0(xi, yπ(i))
p + cp(n − m)

))1/p

for ξ = ∑m
i=1 δxi

and η = ∑n
j=1 δyj

∈ N with n ≥ max(m, 1), requiring again that d̄
(p,c)
1 is

symmetric and that d̄
(p,c)
1 (0, 0) = 0.

Remark 5.1. It is straightforward to adapt the statements and proofs of Propositions 2.1–2.3
for d̄

(p,c)
1 , using the more general results of [23] about d

(p)
1 instead of the corresponding results

about d1 where necessary. In this way, it can be seen in particular that d̄
(p,c)
1 is a metric that

is bounded by c, metrizes the vague topology, and thus induces a Wasserstein metric d̄
(p,c)
2 on

P(N) that metrizes convergence in distribution of point processes.
Regarding Sections 3 and 4, it is quite easy to accommodate the results for a general c > 0.

In many cases this can be done by employing the fact that

d̄
(p,c)
1 (ξ, η) = cd̄

(p,1)
1 (ξ, η)

if d̄
(p,c)
1 is based on d0 ≤ c and d̄

(p,1)
1 is based on d̃0 = (1/c)d0, although sometimes a somewhat

different strategy is necessary. In particular, we find that the Lipschitz continuous functions
for d̄1 in Section 3 are Lipschitz continuous with the same constants for d̄

(1,c)
1 if we consider

an arbitrary d0 ≤ c for Proposition 3.1 and d0(x, y) = |x − y| ∧ c for Proposition 3.2.
Furthermore, the Stein factors in Proposition 4.1 hold true for the corresponding d̄

(1,c)
2 -distances

after multiplication of these factors by c, which means that in applications the estimates of the
errors for the Poisson process approximation in terms of d̄

(1,c)
2 -distances can be derived in the

same way with only minor modifications.
It can be seen that introducing a general p in Section 3 yields the corresponding pth-order

averages as Lipschitz continuous functions, whereas in Section 4 considerably more work is
necessary to adapt the distance estimates given (both situations are similar to the introduction
of p in the metrics d1 and d2 that was considered in [23]).

For our hypothesis test, we stick to the case in which p = 1, but give in the third column of
Table 1 the corresponding Monte Carlo powers if d0 is the Euclidean metric cut off at c = 0.3
instead of 1, so that our test now puts less emphasis on cardinalities and more emphasis on
positional differences in the compared point patterns than it did before. There is no strong reason
for choosing exactly c = 0.3; the value reflects the somewhat vague idea that in an optimal
pairing of about 30 points each, the pairing distances are ‘usually’ still below 0.3. As we can
see from Table 1, the power improvement is very noticeable, and this second test especially
detects the inhomogeneity quite well, even though it is not clearly visible in the simulated data.

For comparison, we have also added the results of the corresponding tests if d̄1 is replaced by
d1. Since there is typically a wide range of values for the cardinalities of realizations of a Poisson
process with 30 expected points, and since differing cardinalities are not appropriately addressed
by d1, these tests perform very poorly (for c = 0.3, powers seem to increase substantially from
κ = 9 on).

In summary, the above procedure is rather successful for testing spatial homogeneity from
multiple point patterns. We have also obtained promising first results when testing for spatial
dependence, but a more extensive further study will be necessary in order to establish the
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possibilities and limitations of this test procedure and of tests or other statistical analyses based
on the d̄1-metric in general.

Appendix A. Proofs left out in the main text

Proof of Proposition 2.1. From the definition, it is clear that 0 ≤ d̄1(ξ, η) ≤ 1, d̄1(ξ, η) = 0
if and only if ξ = η, and that d̄1(ξ, η) = d̄1(η, ξ). To show the triangle inequality, let

ξ =
l∑

i=1

δxi
, η =

m∑
j=1

δyj
, and ζ =

n∑
k=1

δzk
∈ N,

and add two points u1 and u2 to X, extending d0 by d0(u1, u2) = d0(u1, u) = d0(u2, u) = 1
for every u ∈ X.

Note that, for l = m = n, it is immediately clear that

d̄1(ξ, η) ≤ d̄1(ξ, ζ ) + d̄1(ζ, η), (A.1)

by the triangle inequality for d1. We now prove (A.1) in general, assuming that at most one of the
point patterns is empty (otherwise it is obvious). Since this inequality is symmetric in ξ and η,
we assume, without loss of generality, that l ≤ m in what follows. We show two separate cases.

Case 1: m ≤ n. Let xi = u1 for l + 1 ≤ i ≤ n and let yj = u2 for m + 1 ≤ j ≤ n, and
write ξ̄ = ∑n

i=1 δxi
and η̄ = ∑n

j=1 δyj
. We then have

d̄1(ξ, η) ≤ d̄1(ξ, η̄) = d̄1(ξ̄ , η̄) ≤ d̄1(ξ̄ , ζ ) + d̄1(ζ, η̄) = d̄1(ξ, ζ ) + d̄1(ζ, η),

using, for the first inequality, the fact that a ≤ m implies that a/m ≤ (a+n−m)/n, and, for the
second inequality, the fact that (A.1) holds if all three point patterns have the same cardinality.

Case 2: m > n. Let xi = zk = u1 for l + 1 ≤ i ≤ m and n + 1 ≤ k ≤ m, and write

ξ̌ =
l∨n∑
i=1

δxi
, ξ̄ =

m∑
i=1

δxi
, ζ̌ =

l∨n∑
k=1

δzk
, and ζ̄ =

m∑
k=1

δzk
.

Note that xi = zi for (l ∨ n) + 1 ≤ i ≤ m, by which it can be seen that d̄1(ξ̄ , ζ̄ ) ≤ d̄1(ξ̌ , ζ̌ ).
We then have

d̄1(ξ, η) = d̄1(ξ̄ , η) ≤ d̄1(ξ̄ , ζ̄ ) + d̄1(ζ̄ , η) ≤ d̄1(ξ̌ , ζ̌ ) + d̄1(ζ̄ , η) = d̄1(ξ, ζ ) + d̄1(ζ, η),

where we used, for the first inequality, the fact that (A.1) holds if all three-point patterns have
the same cardinality.

Proof of Proposition 2.2. Statement (i) is straightforward from the definitions of dR, d̄1, and
d1.

(ii) Proposition 4.2 of [26] states that ξn → ξ vaguely if and only if d1(ξn, ξ) → 0 as n → ∞;
so all we need to show is that the latter is equivalent to d̄1(ξn, ξ) → 0.

If d̄1(ξn, ξ) → 0, by (i) we have dR(|ξn|, |ξ |) → 0, from which it is easily seen that
|ξn| → |ξ |, i.e. there is an n0 ∈ N such that |ξn| = |ξ | and, hence, d̄1(ξn, ξ) = d1(ξn, ξ) for
every n ≥ n0. Thus, d1(ξn, ξ) → 0. The converse direction follows immediately from d̄1 ≤ d1.
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(iii) The local compactness and separability properties depend only on the generated topology.
See, for example, Proposition 4.3 of [26] for the proof. Note that, by the compactness of X,
the sets Nl = {ξ ∈ N; |ξ | = l} are compact for all l ∈ Z+.

It remains to show the completeness. Let (ξn)n∈N be a d̄1-Cauchy sequence in N. It is
straightforward to see that this implies the existence of an n0 ∈ N such that |ξn| = |ξm| for
every n, m ≥ n0, which means that there exists an l ∈ Z+ such that the tail of (ξn)n∈N is a
Cauchy sequence in Nl . By the compactness of Nl , this tail converges.

Proof of Proposition 2.3. Statement (i) is a direct consequence of the Kantorovich–Rubin-
stein theorem, where the minimum is attained, because (N, d̄1) is complete. See [14, Sec-
tion 11.8] for details. Statement (ii) follows by taking expectations and minima in Proposi-
tion 2.2(i). The last statement follows from [14, Theorem 11.3.3] using Proposition 2.2(ii) and
noting that d̄2 is an instance of Dudley’s β-metric.
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