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THE EXPONENT OF CERTAIN FINITE p-GROUPS

by I. O. YORK
(Received 15th January 1990)

In this paper, for R a commutative ring, with identity, of characteristic p, we look at the group G(R) of formal
power series with coefficients in R, of the form

hd .
a;x', ag=0,a,=1
<

and the group operation being substitution. The results obtained give the exponent of the quotient groups
G,(R) of this group, neN.

1980 Mathematics subject classification (1985 Revision): 20D15.

Introduction

In this paper we will deal with the group G(R) of formal power series
f(xX)=x+a,x*+ax>+...

where the coefficients are elements of a commutative ring R, with identity, and the
group operation is substitution. A study of this group is carried out in [3] and also of
the groups G,(R) whose elements can be considered as elements of G(R) truncated to n
terms. Such objects were studied from other points of view in [1]. The groups when R is
a commutative ring, with identity, of characteristic p are studied by the author as due to
their large class they can often achieve, or at least approach, bounds on such properties
as derived length of classes of p-groups studied by other authors. Often the power
structure of the groups G,(R), R a commutative ring, with identity, of characteristic
p.needs to be known in order to show that they satisfy the conditions on the p-groups
to which the bounds refer. Hence the purpose of this paper is to find the exponent of
the groups G,(R) for all neN and for R a commutative ring, with identity, of
characteristic p.

1. The exponent of the groups G,(R), where R is a commutative ring, with identity, of
characteristic p, p=3

We start with some definitions and notation. If e G(R), a#x and a=)2, a;x’,
a,=1, a;=0 (for 2<i<n) and a,#0 we say deg(«)=n. Also define the subset K, of G(R)
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by K,={ae G(R): deg(a)>r}, then K, is a normal subgroup of G(R), the proof of which
is in [1], and we define G,(R) as the quotient group G(R)/K,.

The following notation will be used in this paper: If e G(R) then o™ is the mth
iterate of o, while a™ is the mth power of «. Furthermore we shall denote by R[[x]] the

algebra over R of all formal power series with indeterminant x and coefficients in R, a
commutative ring with identity.

Lemma 1. ([2, Theorem 2.5]) If R has characteristic p, then KP c K, ,.

The question now asked is: what more can we say when R is a commutative ring, with
identity?

Observation 2. Let R be a commutative ring, with identity and o€ G(R). Then the map
n:R[[x]] = R([x]] given by g(x)+—gl(a), is an R-algebra automorphism. Further n
preserves the ideal (x).

The proof of Observation 2 is standard and hence is omitted.
Notation. Let z, be defined as z,=p"+p" '+ - +p+2.

Lemma 3. Let ae G(R) and n be as defined in Observation 2. Then on the basis
x,x2,...,x™,... of (x), the action of n is given by:

where M=(m; ;) is the matrix such that m; ;= coefficient of x’ in &'.

Proof. As by Observation 2 5 preserves (x), we know the action of 5 on the given
basis elements of (x) is in the form of the lemma for some M. By the definition of
1, n(x’) =o’. Thus we need to prove that the jth row of the vector

Now by the definition of M the jth row in this vector is
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Y. (coefficient of x' in af) x'=0o.
i=1

Lemma 4. If o,,a,eG(R), and the maps n;:R[[x]] = R[[x]] are given by g(x)+s
gla;)(i=1,2), and if M, is the matrix of Lemma 3 corresponding to a; (i=1,2) then
MM, is the matrix corresponding to o(,) € G,(R).

Proof. Now we have that if n:R[[x]] - R[[x]] is given by g(x)+— g(«,(«,)) then
n(x') = (a(x;))’

=ai(a,)

a

Y (coefficient of x* in of)(coefficient of x/ in a}) x/
1 k=1

i

™8

=ith row in the vector M;M,

because using the definition of M; and M,
bl : N
(MM,); ;= Y (oefficient of x* in a}) (coefficient of x/ in of%).

k=1

Lemma 5. Let M be defined as in Lemma 3, define A by M=I1+A where I is the
identity matrix, then

(Apm)l,d=zAl.j| Ajl.jz"'Ajl.d (1)
}

where l=p™—1 and j={(jy,...,J;):25j, <j,<'-<jSd—1}.

Further if d#0 (mod p) and the set (j,,...,J,) gives a non-zero term in the right hand
side of (1) then j;#£0 (modp)(1 LiZ).

Proof. Equation (1) follows directly from the definitions. We prove by contradiction
that if d#£0 (mod p) then for a term in the right hand side of (1) to be non-zero it is
necessary that,

Jji#0 (modp)(1Zigp™—1).

Thus we assume that in a non-zero term in the right hand side of (1), j;=0 (modp)

https://doi.org/10.1017/50013091500004880 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500004880

486 1. 0. YORK
for some i, 1 £i<p™—1, and show by an inductive argument that this implies that d=0
(mod p) which is the required contradiction.

Examination of (1) gives that to complete the inductive argument and obtain the
required contradiction we only need prove that

r=0(mod p), s#0(mod p) = A, ,=0(mod p).

Now we know,
a0
pr_ j
o= 2 My, jX7
i=1

It is clear that 8:a+— o” is a endomorphism of the ring of formal power series. So we
obtain,

8]
o =()’= Y (m, ;x)
j=1

X "
=Y mf x?.
ist
Thus we conclude that,

m = m!, if j=pk
P20 if j#0(mod p).

Therefore as,
A,  =coefficient of x° in o’
we have the contradiction.

Theorem 6. Let R be a commutative ring, with identity of characteristic p=3 and z,
as defined above. Then for n<z,, the exponent of G,(R) is at most p™.

Proof. (In fact the proof of the following equivalent statement: If R is a commutative
ring, with identity, of characteristic p=3 and z, is as defined above. Then for all
aeG(R), a®"MeK, _,.)

Let ae G(R)

The map 7:R[[x]] = R[[x]], given by

8(x) — g(a)
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is an R-algebra automorphism, by Observation 2.
By Lemma 3 the action of n on the basis x, x2,...,x",... of (x) is given by:

where M=(m,;) is the matrix such that m;;=coefficient of x’ in «'.
By Lemma 4 the action of the R-algebra automorphism of R[[x]], given by
g(x)— g(a’) on the basis x,...,x",... is given by:

x x
M ) 3

Put M=1I+A, where I is the identity matrix, so that M” =]+ A (mod p). Now (3)
gives us that:

(M?), ;=coefficient of x' in a” 4
Hence in order to prove the theorem we require that,
(AP"), ;=0(modp) forall 1ZiLz,—1.

We now proceed to prove this by induction on m. For m=0: (A), ;=0(mod p) for all
1<igz,—1=1 as A has 0 on and below the main diagonal. Now we assume for j<m
that

(A”),;=0(modp) forall 15i<z;—1.
Thus using the inductive hypothesis and (4) we have that
" ek, . _,

and thus by Lemma 1 that

™
P ek, -1

Hence by again using (4), in order to complete the inductive step it is only now
necessary to prove that:
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(A""),.;,,-1=0(mod p).
By Lemma 5,

(Apm)l.zm—l=ZAlJ1A.il.jz"'Ajl.zm—l (5)
]

where I=p™—1 and

j={(j1’j2"",jp"'—l):2§jl <j2<'”<jp"‘—1§zm—2}'

Now the number of integers in the range 2 to z,,—2 divisible by p is p" ! +p™~ 2+
-+ 1, hence the number of integers in this range not divisible by p is p™—2. By
definition, z,,—1=1%£0(mod p) so we know by Lemma 5 that for a non-zero term in
the right hand side of (5) we are required to choose an ordered set of integers
(1>-++>Jpm—1) such that

22j1<jp<' " <jpm-122,—2 and j#0(modp)(1=s=p™—-1),

which is not possible as there are only p™—2 integers in the range 2 to z,—2 not
divisible by p. Hence (A*™), , _,=0(mod p), which completes the inductive step.
We thus have the required result that,

(A""), ;=0(modp) forall 1<i<z,—1.

Having obtained a bound for the exponent we now consider the powers of a specific
element in order to show that the bound is achieved.

Theorem 7. Let z, be as defined above, R be any commutative ring, with identity, of
characteristic p, p=3. Then for all ke N, the p*th iterate of x+ x? over R is x4 x%+---.

Proof. We consider the map #n defined in Observation 2 in the special case of
a=x+x2. Then as before putting M=1I+A, where I is the identity matrix, so that
M? =1+ AP (mod p), where M is the matrix defined in Lemma 3 in the special case
a=x+x2

By Theorem 6 we have that (x +x2)*7eK,, _, and thus by the definition of M and A,

(47),,,=0(mod p) (2 g =<z, —1).

(.’ > if 1<j<2i
j—1

0 otherwise.

1t is clear by definition that
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In this case it is thus obvious that all non-zero terms in the right hand side of (1) with
d=z, have j,=2. So

(A%) =382 ;- Ay (6)

where j' ={(j,,...,j1): 3Sj,<j3< ' <jiLz—1} and I=p*—1.
As z,=2%#0(mod p), by Lemma 5 we obtain that for a non-zero term in the right
hand side of (6) we must have,

js#0(modp) forall 2<s<p‘—1.

As we are required to choose an ordered set (j,,...,jx-;) of integers such that
35jy<j3<  <jx-15z—1, and there are p*—2 integers in the range 3 to z,—1 not
divisible by p, there can only be one non-zero term; which is

Case (a): p>3
(Apk)l.zk =

OO0 )0 ) -7 )

zy=dp+2,deN,

Now we know that for feN that,

(fp1+2><fpl+3>...(fP+11"2>=(fp+2)...(fp+P—2)

=23...(p—2)(modp)
=1 (mod p) (By Wilson’s Theorem)

Further (fp— 1)<fp+ 1>5 1(mod p) for all feN.

2 1
Case (b): p=3
o~ _(A\[(S\[T\(8\. [3d—1\[3d+1
()R (50
where
z,=3d+2, deN.

Now we know that for feN that,
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(3f1+ 1> =1 (mod p)
and
(3f2+ 2) =1 (mod p).

Hence the result follows in both cases.
Combining Theorems 6 and 7 we readily obtain the following theorem.

Theorem 8. Let R be a commutative ring, with identity, of characteristic p23 and z,,
be as defined as above. Then for z,,_, <n<z,, the exponent of G,(R) is p™.

2. The exponent of the groups G, (R), where R is an integral domain of characteristic 2

This case differs substantially from the case of odd p. For example the exponent is the
order of x+x? rather than x+x? for R=2Z, and is the order of x+x2+ax® (where
aeR, a#0, a#1) when R#7Z,. As this case is of less interest from the point of view of
the applications indicated in the introduction we merely summarize.

Theorem 9. The exponent of G,(Z,) is 2™, where 2"+ 1<n<2™*'+1 for n=5.

Theorem 10. The exponent of G,(R), where R is an integral domain of characteristic-
two and R#7Z, is 2™, where 2"<n<2™*!, ie. m=[log, n].

Acknowledgements. I wish to express my gratitude to R. W. K. Odoni who by
proving Theorem 7 in the special case of k=1 provided the underlying method used in
this paper. I would also like to thank the referee for his comments which gave a simpler
and shorter proof of Lemma 5, as well as pointing out that the working in Section 1
applied not only to fields of characteristic p but to all the rings studied in the section.

REFERENCES

1. I. N. Baker, Permutable power series and regular iteration, J. Austral. Math. Soc. 2
(1961-62), 265-294.

2. S. A. Jennings, Substitution groups of formal power series, Canad. J. Math. 6 (1954),
325-340.

3. D. L. Johnson, The group of formal power series under substitution, J. Austral. Math. Soc.
45 (1988), 296-302.

UNIVERSITY OF NOTTINGHAM
UNIversiTY PARK
NOTTINGHAM

NG7 2RP

https://doi.org/10.1017/50013091500004880 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500004880

