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Abstract

Candidates arrive sequentially for an interview process which results in them being
ranked relative to their predecessors. Based on the ranks available at each time, a deci-
sion mechanism must be developed that selects or dismisses the current candidate in
an effort to maximize the chance of selecting the best. This classical version of the
‘secretary problem’ has been studied in depth, mostly using combinatorial approaches,
along with numerous other variants. We consider a particular new version where, during
reviewing, it is possible to query an external expert to improve the probability of mak-
ing the correct decision. Unlike existing formulations, we consider experts that are not
necessarily infallible and may provide suggestions that can be faulty. For the solution
of our problem we adopt a probabilistic methodology and view the querying times as
consecutive stopping times which we optimize with the help of optimal stopping theory.
For each querying time we must also design a mechanism to decide whether or not we
should terminate the search at the querying time. This decision is straightforward under
the usual assumption of infallible experts, but when experts are faulty it has a far more
intricate structure.
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1. Introduction

The secretary problem, also known as the game of Googol, the beauty contest problem, and
the dowry problem, was formally introduced in [8], while the first solution was obtained in
[12]. A widely used version of the secretary problem can be stated as follows: n individuals
are ordered without ties according to their qualifications. They apply for a ‘secretary’ position,
and are interviewed one by one, in a uniformly random order. When the tth candidate appears,
she or he can only be ranked (again without ties) with respect to the t − 1 already interviewed
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individuals. At the time of the tth interview, the employer must make the decision to hire
the person present or continue with the interview process by rejecting the candidate; rejected
candidates cannot be revisited at a later time. The employer succeeds only if the best candidate
is hired. If only one selection is to be made, the question of interest is to determine a strategy
(i.e. final rule) that maximizes the probability of selecting the best candidate.

In [12] the problem was solved using algebraic methods with backward recursions, while
[5] considered the process as a Markov chain. An extension of the secretary problem, known as
the dowry problem with multiple choices (for simplicity, we refer to it as the dowry problem),
was studied in [9]. In the dowry problem, s > 1 candidates can be selected during the interview
process, and the condition for success is that the selected group includes the best candidate.
This review process can be motivated in many different ways: for example, the s-selection may
represent candidates invited for a second round of interviews. In [9] we find a heuristic solution
to the dowry problem, while [19] solved the problem using a functional-equation approach of
the dynamic programming method.

In [9] the authors also offer various extensions to the secretary problem in many different
directions. For example, they examine the secretary problem (single choice) when the objec-
tive is to maximize the probability of selecting the best or the second-best candidate, while
the more generalized version of selecting one of the top � candidates was considered in [10].
Additionally in [9] the authors studied the full information game where the interviewer is
allowed to observe the actual values of the candidates, which are chosen independently from
a known distribution. Several other extensions have been considered in the literature, includ-
ing the postdoc problem, for which the objective is to find the second-best candidate [9, 18],
and the problem of selecting all or one of the top � candidates when � choices are allowed
[16, 21, 22]. More recently, the problem has been considered under a model where inter-
views are performed according to a nonuniform distribution such as the Mallows or Ewens
[3, 11, 13, 14]. For more details regarding the history of the secretary problem, the interested
reader may refer to [6, 7].

The secretary problem with expert queries, an extension of the secretary problem with mul-
tiple choices, was introduced in [14] and solved using combinatorial methods for a generalized
collection of distributions that includes the Mallows distribution. In this extended version it is
assumed that the decision-making entity has access to a limited number of infallible experts.
When faced with a candidate in the interviewing process an expert, if queried, provides a
binary answer of the form ‘the best’ or ‘not the best’. Queries to experts are frequently used
in interviews as an additional source of information, and the feedback is usually valuable but
is not necessarily accurate. This motivates the investigation of the secretary problem when the
response of the expert is not deterministic (infallible) but may also be false. This can be mod-
eled by assuming that the response of the expert is random. Actually, the response does not
even have to be binary as in the random query model employed in [2, 15] for the completely
different problem of clustering. In our analysis we consider more than two possibilities which
could reflect the level of confidence of the expert in their knowledge of the current candidate
being the best or not. For example a four-level response could be of the form ‘the best with
high confidence’, ‘the best with low confidence’, ‘not the best with low confidence’, or ‘not
the best with high confidence’. As we will see, the analysis of the problem under a randomized
expert model requires stochastic optimization techniques, and in particular results we are going
to borrow from optimal stopping theory [17, 20].

The idea of augmenting the classical information of relative ranks with auxiliary random
information (e.g. coming from a fallible expert) has also been addressed in [4]. In this work
the authors consider various stochastic models for the auxiliary information, which is assumed
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to become available to the decision maker with every new candidate. The goal is the same as
in the classical secretary problem, namely to optimize the final termination time. This must be
compared to the problem we are considering in our current work where auxiliary information
becomes available only at querying times, which constitute a sequence of stopping times that
must be selected optimally. Furthermore, at each querying time, using the extra information
provided by the expert, we also need to decide, optimally, whether we should terminate the
selection process at the querying time or continue to the next querying. Our problem formula-
tion involves three different stochastic optimizations (i.e. sequence of querying times, decision
whether to stop or continue at each querying time, final termination time), while the formu-
lation in [4] requires only the single optimization of the final termination time. We would
like to emphasize that the optimization of the sequence of querying times and the optimization
of the corresponding decision to stop or continue at each querying time is by no means a simple
task. It necessitates careful analysis with an original mathematical methodology, constituting
the main contribution of our work.

Finally, in [1] classical information is augmented with machine-learned advice. The goal
is to assure an asymptotic performance guarantee of the value maximization version of the
secretary problem (where we are interested in the actual value of the selection and not the
order). As in the previous reference, there are no queries to an expert present and, as we pointed
out, the analysis is asymptotic with no exact (non-asymptotic) optimality results as in our work.

2. Background

We begin by formally introducing the problem of interest along with our notation. Suppose
the set {ξ1, . . . , ξn} contains objects that are random uniform draws without replacement from
the set of integers {1, . . . , n}. The sequence {ξt}n

t=1 becomes available sequentially and we are
interested in identifying the object with value equal to 1, which is regarded as ‘the best’. The
difficulty of the problem stems from the fact that the value ξt is not observable. Instead, at each
time t, we observe the relative rank zt of the object ξt after it is compared to all the previous
objects {ξ1, . . . , ξt−1}. If zt = m (where 1 ≤ m ≤ t) this signifies that in the set {ξ1, . . . , ξt−1}
there are m − 1 objects with values strictly smaller than ξt. As mentioned, at each time t we are
interested in deciding between {ξt = 1} and {ξt > 1} based on the information provided by the
relative ranks {z1, . . . , zt}.

Consider now the existence of an expert we may query. The purpose of querying at any time
t is to obtain from the expert information about the current object being the best or not. Unlike
all the articles in the literature that treat the case of deterministic expert responses, here, as
mentioned in the introduction, we adopt a random response model. In the deterministic case
the expert provides the exact answer to the question of interest and we obviously terminate
the search if the answer is ‘{ξt = 1}’. In our approach the corresponding response is assumed
to be a random number ζt that can take M different values. The reason we allow more than
two values is to model the possibility of different levels of confidence in the expert response.
Without loss of generality we may assume that ζt ∈ {1, . . . , M}, and the probabilistic model
we adopt is

P(ζt = m | ξt = 1) = p(m), P(ζt = m | ξt > 1) = q(m), m = 1, . . . , M, (1)

where
∑M

m=1 p(m) =∑M
m=1 q(m) = 1, to ensure that the expert responds with probability 1.

These probabilities are considered prior information known to us and will aid us in making
optimal use of the expert responses. As we can see, the probability of the expert generating
a specific response depends on whether the true object value is 1 or not. Additionally, we
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assume that ζt is statistically independent of any other past or future responses, relative ranks,
and object values and, as we can see from our model, only depends on ξt being equal to or
greater than 1. It is clear that the random model is more general than its deterministic counter-
part. Indeed, we can emulate the deterministic case by simply selecting M = 2 and p(1) = 1,
p(2) = 0, q(1) = 0, q(2) = 1, with ζt = 1 corresponding to ‘{ξt = 1}’ and ζt = 2 to ‘{ξt > 1}’
with probability 1.

In the case of deterministic responses it is evident that we gain no extra information by
querying the expert more than once per object (the expert simply repeats the same response).
Motivated by this observation we adopt the same principle for the random response model as
well, namely, we allow at most one query per object. Of course, we must point out that under
the random response model, querying multiple times for the same object makes perfect sense
since the corresponding responses may be different. However, as mentioned, we do not allow
this possibility in our current analysis. We discuss this point further in Remark 5 at the end of
Section 3.

We study the case where we have available a maximal number K of queries. This means that
for the selection process we need to define the querying times T1, . . . , TK with TK > TK−1 >

· · · > T1 (the inequalities are strict since we are allowed to query at most once per object)
and a final time Tf where we necessarily terminate the search. It is understood that when Tf
occurs, if there are any remaining queries, we simply discard them. As we pointed out, in the
classical case of an infallible expert, when the expert informs that the current object is the best
we terminate the search, while in the opposite case we continue with the next object. Under the
random response model stopping at a querying time or continuing the search requires a more
sophisticated decision mechanism. For this reason, with each querying time Tk we associate
a decision function DTk ∈ {0, 1}, where DTk = 1 means that we terminate the search at Tk

while DTk = 0 that we continue the search beyond Tk. Let us now summarize our components:
The search strategy is comprised of the querying times T1, . . . , TK , the final time Tf, and the
decision functions DT1 , . . . ,DTK , which need to be properly optimized. Before starting our
analysis let us make the following important remarks.

Remark 1. It makes no sense to query or terminate the search at any time t if we do not observe
zt = 1. Indeed, since our goal is to capture the object ξt = 1, if this object occurs at t then it
forces the corresponding relative rank zt to become 1.

Remark 2. If we have queried at times tk > · · · > t1 and there are still queries available (i.e.
k < K), then we have the following possibilities: (i) terminate the search at tk; (ii) make another
query after tk; and (iii) terminate the search after tk without making any additional queries.
Regarding case (iii) we can immediately dismiss it from the possible choices. Indeed, if we
decide to terminate at some point t > tk, then it is understandable that our overall performance
will not change if at t we first make a query, ignore the expert response, and then terminate our
search. Of course, if we decide to use the expert response optimally then we cannot perform
worse than terminating at t without querying. Hence, if we make the kth query at tk it is prefer-
able to obtain the expert response ζtk and use it to decide whether we should terminate at tk
or make another query after tk. Of course, if k = K, i.e. if we have exhausted all queries, then
we decide between terminating at tK and employing the final time Tf to terminate after tK . We
thus conclude that Tf > TK > · · · > T1.

Remark 3. Based on the previous remarks we may now specify the information each search
component is related to. Denote by Zt = σ {z1, . . . , zt} the sigma-algebra generated by the
relative ranks available at time t, and let Z0 be the trivial sigma-algebra. We then have
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that the querying time T1 is a {Zt}n
t=0-adapted stopping time where {Zt}n

t=0 denotes the
filtration generated by the sequence of the corresponding sigma-algebras. Essentially, this
means that the events {T1 = t}, {T1 > t}, {T1 ≤ t} belong to Zt. More generally, suppose we
fix Tk = tk, . . . , T1 = t1, T0 = t0 = 0, and for t > tk we define Zk

t = σ {z1, . . . , zt, ζt1 , . . . , ζtk}
with Z0

t = Zt, then the querying time Tk+1 is a {Zk
t }n

t=tk+1-adapted stopping time where

{Zk
t }n

t=tk+1 denotes the corresponding filtration. Indeed, we can see that the event {Tk+1 = t}
depends on the relative ranks Zt but also on the expert responses {ζt1, . . . , ζtk} available at
time t. If we apply this definition for k = K then TK+1 simply denotes the final time Tf. With
the first k querying times fixed as before, we can also see that the decision function Dtk is
measurable with respect to Zk

tk (and, therefore, also with respect to Zk
t for any t ≥ tk). This is

true because at tk, in order to decide whether to stop or continue the search we use all of the
information available at time tk, which consists of the relative ranks and the existing expert
responses (including, as pointed out, ζtk ).

We begin our analysis by presenting certain basic probabilities. They are listed in the
following lemma.

Lemma 1. For n ≥ t ≥ t1 > 0 we have

P(ξt, . . . , ξ1) = (n − t)!
n! , P(Zt) = 1

t! , P(zt | Zt−1) = 1

t
, (2)

P(ξt1 = 1, Zt) = 1

(t − 1)!n1{zt1=1}1t
t1+1, (3)

P(ξt = 1, Zt) = 1

(t − 1)!n1{zt=1}, (4)

where 1A denotes the indicator function of the event A, and where, for b ≥ a, we define 1b
a =∏b

�=a 1{z�>1}, while for b < a we let 1b
a = 1.

Proof. The first equality is well known and corresponds to the probability of selecting uni-
formly t values from the set {1, . . . , n} without replacement. The second and third equalities
in (2) show that the ranks {zt} are independent and each zt is uniformly distributed in the set
{1, . . . , t}. Because the event {ξt1 = 1} forces the corresponding rank zt1 to become 1 and all
subsequent ranks to be greater than 1, this fact is captured in (3) by the product of the indicators
1{zt1=1}1t

t1+1. The equality in (4) computes the probability of the event {ξt = 1} in combina-
tion with the rank values observed up to time t. The details of the proof can be found in the
Appendix. �

In the next lemma we present a collection of more advanced equalities as compared to the
ones appeared in Lemma 1 where we also include expert responses. In these identities we will
encounter the event {Zk

t , ztk = 1} that has the following meaning: When t ≥ tk then ztk is part
of Zt which in turn is part of Zk

t . By including explicitly the event {ztk = 1} we simply state
that we fix ztk to 1, while the remaining variables comprising Zt or Zk

t are free to assume any
value consistent with the constraints imposed on the relative ranks.

Lemma 2. For n ≥ t > tk > · · · > t1 > 0 we have

P(ξt = 1 | Zk
t ) = t

n
1{zt=1}, (5)
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P(ξtk = 1 | Zk
tk ) = p(ζtk )tk

p(ζtk )tk + q(ζtk )(n − tk)
1{ztk =1}, (6)

P(ζtk | Zk−1
tk , ztk = 1) = p(ζtk )

tk
n

+ q(ζtk )

(
1 − tk

n

)
, (7)

P(zt = 1 | Zk
t−1, ztk = 1) = 1

t

{
1 −

(
p(ζtk ) − q(ζtk )

)
(t − 1)

p(ζtk )(t − 1) + (n − t + 1)q(ζtk )
1t−1

tk+1

}
. (8)

Proof. Equality (5) expresses the fact that the probability of interest depends only on the
current rank while it is independent of previous ranks and expert responses. Equalities (6),
(7), and (8) suggest that the corresponding probabilities are functions of only the most recent
expert response and do not depend on the previous responses. In particular, in (8) we note
the dependency structure that exists between zt and past information which is captured by the
indicator 1t−1

tk+1. As we argue in the proof of Lemma 1, this indicator is a result of the fact that
if ξtk = 1 then the ranks for times t > tk can no longer assume the value 1. The complete proof
is presented in the Appendix. �

As we will see in the subsequent analysis, compared to the deterministic case, a more chal-
lenging decision structure will emerge under the random response model. In the deterministic
model [9, 14], deciding to stop at a querying time is straightforward. If the expert responds
with ‘{ξt = 1}’ we stop, otherwise we continue our search. This strategy is not the optimum in
the case of random responses since the expert does not necessarily provide binary responses
and, more importantly, their responses can be faulty. As we are going to show, the optimal deci-
sion functions DT1 , . . . ,DTK have a more intriguing form which depends on the values of the
expert response and their corresponding probabilities of occurrence. Identifying the optimal
search components will be our main task in the next section.

3. Optimizing the success probability

To simplify our presentation we make a final definition. For tk > tk−1 > · · · > t1 > t0 = 0,
we define the event Btk

t1 = {ztk = 1,Dtk = 0, . . . , zt1 = 1,Dt1 = 0}, with Bt0
t1 = B0

t1 denoting
the whole sample space. From the definition we conclude that

1
B

tk
t1

=
k∏

�=1

1{zt�=1}1{Dt�=0} = 1{ztk =1}1{Dtk =0}1B
tk−1
t1

. (9)

Basically, Btk
t1 captures the event of querying at tk, . . . , t1, after observing relative ranks equal

to 1 (required by Remark 1) while deciding not to terminate the search at any of these querying
instances. It is clear from Remark 3 that for t ≥ tk the indicator 1

B
tk
t1

is measurable with respect

to Zk
t , because this property applies to each individual indicator participating in the product

in (9).
Consider now a collection of querying times and a final time satisfying Tf > TK > · · · >

T2 > T1 > T0 = 0 and a corresponding collection of decision functions DT1 , . . . ,DTK all con-
forming with Remark 3. Denote by Psucc the success probability delivered by this combination,
namely the probability of selecting the best object; then

Psucc =
K∑

k=1

P
(
ξTk = 1,DTk = 1, B

Tk−1
T1

)+ P
(
ξTf = 1, BTK

T1

)
, (10)
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where, as usual, for any sequence {xn} we define
∑b

k=a xn = 0 when b < a. The general term
in the sum expresses the probability of the event where we did not terminate at the first k − 1

querying times (this is captured by B
Tk−1
T1

, which contains the event of all previous decisions
being 0) and we decided to terminate at the kth query (indicated by DTk = 1). The single
last term in (10) is the probability of the event where we did not terminate at any querying
time (captured by BTK

T1
) and we make use of the final time Tf to terminate the search. Please

note that in (10) we did not include the events {zTf = 1} or {zTk = 1}, although, as pointed
out in Remark 1, we query or final-stop only at points that must satisfy this property. This
is because these events are implied by the events {ξTk = 1} and {ξTf = 1} respectively, since
{ξTf = 1} ∩ {zTf = 1} = {ξTf = 1}, with a similar equality being true for any querying time.

Let us now focus on the last term in (10) and apply the following manipulations:

P
(
ξTf = 1, BTK

T1

)=
n∑

· · ·
n∑

t>tK>···>t1>0

P
(
ξt = 1, Tf = t, TK = tK, . . . , T1 = t1, BtK

t1

)

=
n∑

· · ·
n∑

t>tK>···>t1>0

E
[
1{ξt=1}1{Tf=t}1{TK=tk} · · · 1{T1=t1}1B

tK
t1

]

=
n∑

· · ·
n∑

t>tK>···>t1>0

E
[
E[1{ξt=1} | ZK

t ]1{Tf=t}1{TK=tk} · · · 1{T1=t1}1B
tK
t1

]

=
n∑

· · ·
n∑

t>tK>···>t1>0

E
[
P(ξt = 1 | ZK

t )1{Tf=t}1{TK=tk} · · · 1{T1=t1}1B
tK
t1

]

=
n∑

· · ·
n∑

t>tK>···>t1>0

E

[
t

n
1{zt=1}1{Tf=t}1{TK=tk} · · · 1{T1=t1}1B

tK
t1

]

=E

[
Tf

n
1{zTf=1}1B

TK
T1

]
, (11)

where for the third equality we used the fact that the indicators 1B
tK
t1

, 1{Tf=t}, and 1{Tk=tk},
k = 1, . . . , K, are measurable with respect to ZK

t and can therefore be placed outside the inner
expectation, while for the second-last equality we used (5). If we substitute (11) into (10) we
can rewrite the success probability as

Psucc =
K∑

k=1

P
(
ξTk = 1,DTk = 1, B

Tk−1
T1

)+E

[
Tf

n
1{zTf=1}1B

TK
T1

]
. (12)

We can now continue with the task of optimizing (12) over all querying times T1, . . . , TK ,
the final time Tf, and the decision functions DT1 , . . . ,DTK . We will achieve this goal step by
step. We start by conditioning on {TK = tK, . . . , T1 = t1, BtK

t1 } and first optimize over Tf > tK ,
followed by a second optimization over DTK . This will result in an expression that depends
on T1, . . . , TK and DT1 , . . . ,DTK−1 with a form which will turn out to be similar to (12) but
with the sum reduced by one term. Continuing this idea of first conditioning on the previous
querying times and the corresponding event B, we are going to optimize successively over

https://doi.org/10.1017/jpr.2023.61 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.61


The secretary problem with random queries 585

the pairs (Tf,DTK ), (TK,DTK−1 ), . . . , (T2,DT1 ), and then, finally, over T1. The outcome of
this sequence of dependent optimizations is presented in the next theorem, which constitutes
our main result. As expected, in this theorem we will identify the optimal version of all search
components and also specify the overall optimal success probability.

Theorem 1. For t = n, n − 1, . . . , 1 and k = K, K − 1, . . . , 0, define recursively in t and k the
deterministic sequences {Ak

t } and {Uk
t } by

Ak
t−1 =Ak

t

(
1 − 1

t

)
+ max

{
Uk+1

t ,Ak
t

}1

t
, (13)

Uk
t =

M∑
m=1

max

{
p(m)

t

n
, q(m)Ak

t

}
, (14)

initializing with Ak
n = 0 and UK+1

t = t
n . Then, for any collection of querying times and final

time T1 < · · · < TK < Tf and any collection of decision functions DT1 , . . . ,DTK that conform
with Remark 3, if we define for k = K, K − 1, . . . , 0 the sequence {Pk} by

Pk =
k∑

�=1

P(ξT�
= 1,DT�

= 1, B
T�−1
T1

) +E
[
Uk+1
Tk+1

1{zTk+1=1}1B
Tk
T1

]
, (15)

we have
Psucc =PK ≤PK−1 ≤ · · · ≤P0 ≤A0

0. (16)

The upper bound A0
0 in (16) is independent of any search strategy and constitutes the maxi-

mal achievable success probability. This optimal performance can be attained if we select the
querying times according to

Tk = min
{
t > Tk−1 : Uk

t 1{zt=1} ≥Ak−1
t

}
, (17)

and the decision functions to satisfy

DTk =
⎧⎨
⎩

1 if p(ζTk )(Tk/n) ≥ q(ζTk )Ak
Tk

,

0 if p(ζTk )(Tk/n) < q(ζTk )Ak
Tk

,
(18)

where ζTk is the response of the expert at querying time Tk.

Proof. As mentioned, Theorem 1 constitutes our main result because we identify the optimal
version of all the search components and the corresponding maximal success probability. In
particular, we have (17) for the optimal querying times T1, . . . , TK and final time Tf (we recall
that Tf = TK+1), while the optimal version of the decision functions is depicted in (18). The
complete proof is presented in the Appendix. �

4. Simplified form of the optimal components

Theorem 1 offers explicit formulas for the optimal version of all search components. We
recall that in the existing literature, querying and final stopping are defined in terms of very
simple rules involving thresholds. For this reason in this section our goal is to develop similar
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rules for our search strategy. The next lemma identifies certain key monotonicity properties of
the sequences introduced in Theorem 1 that will help us achieve this goal.

Lemma 3. For fixed t the two sequences {Ak
t } and {Uk

t } are decreasing in k, while for fixed k
we have {Ak

t } decreasing and {Uk
t } increasing in t. Finally, at the two end points we observe

that Ak
n ≤Uk+1

n and Ak
0 ≥Uk+1

0 .

Proof. With the help of this lemma we will be able to produce simpler versions of the
optimal components. The complete proof can be found in the Appendix. �

Let us use the results of Lemma 3 to examine (17) and (18). We note that (17) can be
true only if zt = 1. Under this assumption, and because of the increase of {Uk

t } and decrease
of {Ak−1

t } with respect to t, combined with their corresponding values at the two end points
t = 0, n, we understand that there exists a time threshold rk such that Uk

t ≥Ak−1
t for t ≥ rk

while the inequality is reversed for t < rk. The threshold rk can be identified beforehand by
comparing the terms of the two deterministic sequences {Uk

t } and {Ak−1
t }. With the help of

rk we can then equivalently write Tk as Tk = min{t ≥ max{Tk−1 + 1, rk} : zt = 1}, namely, we
make the kth query the first time after the previous querying time Tk−1, but no sooner than the
time threshold rk, that we encounter zt = 1. A similar conclusion applies to the final time Tf
where the corresponding threshold is rf = rK+1.

Regarding (18), namely the decision whether to stop at the kth querying time or not, again
because of the decrease of {Ak

t } (from Lemma 3) and the increase of {t/n} with respect to t,
and also the fact that Ak

n = 0 and Ak
0 > 0, we can conclude that there exist thresholds sk(m),

m = 1, . . . , M, that depend on the expert response ζTk = m so that p(m)(t/n) ≥ q(m)Ak
t for

t ≥ sk(m), while the inequality is reversed when t < sk(m). The precise definition of sk(m) is
sk(m) = min{t > 0: p(m)(t/n) ≥ q(m)Ak

t }. With the help of the thresholds sk(m), which can be
computed beforehand, we can equivalently write the optimal decision as

DTk =
⎧⎨
⎩

1 if Tk ≥ sk(ζTk ),

0 if Tk < sk(ζTk ),

where ζTk is the expert response at querying time Tk. In other words, if we make the kth query
at time Tk and the expert responds with ζTk , then if Tk is no smaller than the time threshold
sk(ζTk ) we terminate the search. If Tk is strictly smaller than sk(ζTk ) then we continue to the
next query (or final-stop if k = K).

At this point we have identified the optimal versions of all components of the search
strategy. In Table 1 we summarize the formulas we need to apply in order to compute the corre-
sponding thresholds and also present the way these thresholds must be employed to implement
the optimal search strategy.

Remark 4. Even though it is not immediately evident from the previous analysis, the proba-
bilistic descriptions of the querying times, final time, and decision functions enjoy a notable
stationarity characteristic (also pointed out in [13] for the infallible expert case). In particular,
the form of the final time Tf is independent of the maximal number K of queries. This means
that the threshold rf does not depend on K, and it is in fact the same as the unique threshold
of the classical secretary problem. The same observation applies to any querying time TK−k

and decision function DTK−k . Their corresponding thresholds rK−k and sK−k(m) do not depend
on K but only on k. This observation basically suggests that if we have identified the optimal
components for some maximal value K and we are interested in decreasing K then we do not
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TABLE 1. Optimal search strategy.

Let Ak
n = 0 and UK+1

t = t/n. For t = n, n − 1, . . . , 1, and k = K, . . . , 1, 0, compute:
Ak

t−1 =Ak
t (1 − (1/t)) + max{Uk+1

t ,Ak
t }(1/t), Uk

t =∑M
m=1 max{p(m)t/n, q(m)Ak

t };
then A0

0 is the maximal success probability.

For k = 1, . . . , K, find the thresholds for the querying times and the final time:
rk = min{t > 0: Uk

t ≥Ak−1
t }, rf = min{t > 0: (t/n) ≥AK

t }.
With T0 = 0, the optimal querying times and the final time are defined by:
Tk = min{t ≥ max{Tk−1 + 1, rk} : zt = 1} if we have not terminated at Tk−1;
Tf = min{t ≥ max{TK + 1, rf} : zt = 1} if we have not terminated at TK .

For k = 1, . . . , K and m = 1, . . . , M, find the decision thresholds:
sk(m) = min{t > 0: p(m)t/n ≥ q(m)Ak

t }.
The optimal decision whether to terminate at Tk or not is defined by: for an expert
response ζTk ∈ {1, . . . , M} stop at Tk if Tk ≥ sk(ζTk ), otherwise proceed to the next query
(or final time if k = K).

need to recompute the components. We simply start from the thresholds of the last querying
time and decision function and go towards the first, and we stop when we have collected the
desired number of components. Similarly, if we increase K then we keep the optimal com-
ponents computed for the original smaller K and add more components in the beginning by
applying the formulas of Table 1.

Remark 5. Once more, we would like to emphasize that the search strategy presented in
Table 1 is the optimum under the assumption that we allow at most one query per object.
We should, however, point out that when the expert provides faulty answers it clearly makes
sense to query more than once per object in order to improve our trust in the expert responses.
Unfortunately, the corresponding analysis turns out to be significantly more involved compared
to our current results, as we can easily confirm by considering the simple example of K = 2
queries. For this reason, we believe, this more general setting requires separate consideration.

Remark 6. Being able to query does not necessarily guarantee a success probability that
approaches 1. This limit is attainable only in the case of an infallible expert. Unfortunately,
when responses may be wrong, we can improve the success probability but we can only reach
a maximal value which is strictly smaller than 1 even if we query with every object (i.e. K = n).
To see this, consider the extreme case where the expert outputs M = 2 values with uniform
probabilities p(1) = p(2) = q(1) = q(2) = 0.5. It is clear that responses under this probabilistic
model are completely useless for any number of queries. Hence, we expect the resulting opti-
mal scheme to be equivalent to the classical secretary problem (with no queries) which (see
[9]) enjoys a success probability that approximates the value e−1 ≈ 0.3679 for large n. Under
the probabilistic response model, in order to experience success probabilities that approach
1, we conjecture that we must allow multiple queries per object and a maximal number K
of queries which exceeds the number of objects, that is, K > n. Of course, again, we need to
exclude the uniform probability model because it continues to be equivalent to the classical
secretary problem with no queries even when multiple queries per object are permitted.
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Remark 7. One of our reviewers suggested a very interesting alternative to optimally decide
whether to stop or continue after each query. Without loss of generality we may assume that
the likelihood ratios satisfy p(1)/q(1) ≥ p(2)/q(2) ≥ · · · ≥ p(M)/q(M). Indeed, this is always
possible by numbering the expert responses according to the rank of their corresponding like-
lihood ratios. Clearly, a larger ratio implies a higher likelihood for the object to be the best. For
combinations of t and k let us define the threshold sequence {mk

t } by

mk
t =

{
arg maxm{p(m)/q(m) ≥Ak

t (n/t)} when the inequality can be satisfied for some m,

0 when the inequality cannot be satisfied for any m.

Suppose now that we have followed the optimal strategy and we are at the kth querying time Tk

with the expert responding with ζTk . We can then propose the following alternative termination
rule: Stop when ζTk ≤ mk

Tk
and continue to the next query if ζTk > mk

Tk
. Under the assumption

of monotonicity of the likelihood ratios we can show that the two termination rules, namely
the one presented here and the optimal one depicted in Table 1, produce exactly the same
decisions regarding stopping after querying. With the help of the monotonicity properties of
{Ak

t } established in Lemma 3, we can also demonstrate that the threshold sequence {mk
t } is

non-decreasing in t and k.

5. Numerical example

Let us now apply the formulas of Table 1 to a particular example. We consider the case of
n = 100 objects where the expert outputs M = 2 values. This means that the random response
model contains the probabilities p(m), q(m), m = 1, 2. We focus on the symmetric case p(1) =
q(2), meaning that p(1) = 1 − p(2) = 1 − q(1) = q(2), which can be parametrized with the help
of a single parameter p = p(1) = q(2). We assign to p the values p = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,
0.98, and 1, and allow a maximum of K = 10 queries in order to observe the effectiveness of
the optimal scheme. As mentioned, the case p = 1 corresponds to the infallible expert, and
consequently we expect to match the existing results in the literature. We also note that p = 0.5
corresponds to the uniform model and therefore expert responses contain no useful information
so we expect our scheme to be equivalent to the optimal scheme of the classical secretary
problem.

Using the formulas of Table 1 we compute the thresholds rf, rk, k = 1, . . . , K, and the
decision thresholds sk(m), m = 1, 2, k = 1, . . . , K. We can see the corresponding values in
Table 2 accompanied by the optimal performance delivered by the optimal scheme for K = 10
queries. In Figure 1 we depict the evolution of the optimal performance for values of K ranging
from K = 0 to K = 10, where K = 0 corresponds to the classical secretary problem. Indeed,
as we can see from Figure 1, all the curves start from the same point which is equal to
Psucc = 0.371 04, namely the maximal success probability in the classical case for n = 100
(see [9, Table 2]).

In Figure 1 we note the performance of the uniform case p = 0.5 which is constant, not
changing with the number of queries. As we discussed, this is to be expected since, under
the uniform model, expert responses contain no information. It is interesting in this case to
compare our optimal scheme to the optimal scheme of the classical version. In the classical
case with no queries we recall that the optimal search strategy consists in stopping the first
time, but no sooner than rf = 38, that we observe zt = 1. When we allow queries with p = 0.5,
as we can see, the querying thresholds r1, . . . , rK are all equal to 1. This means that the first K
times we encounter a relative rank equal to zt = 1 we must query. However, stopping at any of
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TABLE 2. Thresholds and optimal success probability for n = 100 objects and K = 10 queries.

p rf r1, . . . , r10 s1(m), . . . , s10(m); m = 1 top, m = 2 bottom Psucc

0.50 38 1 1 1 1 1 1 1 1 1 1 38 38 38 38 38 38 38 38 38 38 0.3710
38 38 38 38 38 38 38 38 38 38

0.60 38 27 27 27 27 27 27 27 27 27 29 27 27 27 27 27 27 27 27 27 27 0.3952
52 52 52 52 52 52 52 52 52 52

0.70 38 20 20 20 20 20 20 20 20 22 25 20 20 20 20 20 20 20 20 20 19 0.4568
66 66 66 66 66 66 66 66 66 66

0.80 38 14 14 14 14 14 14 15 16 18 24 14 14 14 14 14 14 14 14 14 13 0.5548
78 78 78 78 78 78 78 78 78 78

0.90 38 8 8 8 8 9 9 10 12 16 23 8 8 8 8 8 8 8 8 7 6 0.7055
90 90 90 90 90 90 90 90 90 90

0.95 38 5 5 5 5 6 7 8 11 15 23 5 5 5 5 5 5 5 4 4 3 0.8173
95 95 95 95 95 95 95 95 95 95

0.98 38 2 3 3 3 4 5 7 10 15 23 2 2 2 2 2 2 2 2 2 2 0.9095
98 98 98 98 98 98 98 98 98 98

1.00 38 1 1 2 2 3 4 6 10 15 23 1 1 1 1 1 1 1 1 1 1 0.9983
100 100 100 100 100 100 100 100 100 100
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FIGURE 1. Success probability as a function of the number of queries K when n = 100 objects and M =
2 responses with symmetric probabilities p(1) = 1 − p(2) = 1 − q(1) = q(2) = p for p = 0.5, 0.6, 0.7,

0.8, 0.9, 0.95, 0.98, 1.

the querying times happens only if the querying time is no smaller than sk(m) = rf = 38. If all
K queries are exhausted before time 38, then we use the terminal time Tf that has a threshold
equal to rf = 38 as well. Consequently, final-stopping occurs if we encounter a rank equal to
1 no sooner than rf. Combining carefully all the possibilities we conclude that we stop at the
first time after and including rf that we encounter a rank equal to 1. In other words, we match
the classical optimal scheme.

In the last row of Table 2 we have the case of an infallible expert. We know that the optimal
decision with an infallible expert requires the termination of the search if the expert responds
with ‘{ξt = 1}’ and continuation of the search if the response is ‘{ξt > 1}’. In our setup, instead,
we compare the querying time Tk to the threshold sk(m). From the table we see that sk(1) = 1,
sk(2) = n for all k = 1, . . . , K. According to our model, ζTk = 1 corresponds with certainty
(because p = 1) to ξTk = 1, and therefore if ζTk = 1 we see that we necessarily stop at Tk since
Tk ≥ sk(1) = 1. On the other hand, ζTk = 2 corresponds with certainty to ξTk > 1, and when
ζTk = 2 occurs we can stop only if Tk ≥ sk(2) = n which is impossible (unless Tk = n, where
we necessarily stop since we have exhausted all objects). Therefore, when p = 1 our optimal
scheme matches the optimal scheme of an infallible expert. This can be further corroborated
by comparing our thresholds rf = 38 and r10 = 23 with the corresponding thresholds s∗, r∗ in
[9, Table∼3] and verifying that they are the same with the same success probability (in [9],
there are tables only for K = 0, 1).
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From Figure 1 we can also observe the fact we described in Remark 6, namely that there is
an improvement in the success probability; however, the optimal value ‘saturates’ with the lim-
iting value being strictly less than 1. An additional conclusion we can draw from this example
is that the thresholds also converge to some limiting value. This means that, after some point,
increasing K results in repeating the last thresholds and experiencing the same optimal perfor-
mance. The only case which does not follow this rule and the probability of success converges
to 1 as the number of queries increases is when p = 1, which, as mentioned, corresponds to an
infallible expert.

A final observation regarding our example is the case where the value of the parameter p
satisfies p < 0.5. Using the formulas of Table 1 we can show that we obtain exactly the same
results as using, instead of p, the value 1 − p > 0.5. The only modification we need to make
is to exchange the roles of m = 1 and m = 2 in the thresholds sk(m). We can see why this
modification is necessary by considering the extreme case p = 0 corresponding to P(ζt = 1 |
ξt = 1) = 0. Then, when M = 2, it is of course true that P(ζt = 2 | ξt = 1) = 1 and, therefore, we
now have that the value ζt = 2 corresponds with certainty to {ξt = 1}. This exchange of roles
between m = 1 and m = 2 continues to apply when 0 ≤ p < 0.5.

Appendix

Proof of Lemma 1. The validity of (2) is well known for any collection of values {ξt, . . . , ξ1}
under the uniform model without replacement, since ξ� takes one of n − � + 1 values, each
with the same probability 1/(n − � + 1). Suppose now that the collection {ξt, . . . , ξ1}, when
occurring sequentially, produces the sequence of ranks {zt, . . . , z1} where 1 ≤ zt ≤ t ≤ n. If
we fix a collection {zt, . . . , z1} of t ranks, making sure that they conform with the constraint
1 ≤ z� ≤ �, and also select t integers 1 ≤ i1 < i2 < · · · < it ≤ n as possible object values, then
there is a unique way to assign these values to {ξt, . . . , ξ1} in order to produce the specified
ranks. Indeed, we start with ξt, to which we assign the ztth value from the set {i1, . . . , it}, that
is, the value izt . We remove this element from the set of values and then we proceed to ξt−1 to
which we assign the zt−1th element from the new list of values, etc. This procedure generates
the specified ranks from any subset of {1, . . . , n} of size t.

As we just mentioned, for fixed ranks {zt, . . . , z1}, any subset of t integers from the
set {1, . . . , n} can be uniquely rearranged and assigned to {ξt, . . . , ξ1} in order to gen-
erate the specified rank sequence. There are

(n
t

)
such possible combinations with each

combination having a probability of occurrence equal to (n − t)!/n!. Multiplying the two quan-
tities yields the second equality in (2), from which we can then deduce that P(zt | Zt−1) =
P(zt, . . . , z1)/P(zt−1, . . . , z1) = 1/t and prove the third equality in (2).

Consider now (3). If ξt1 = 1 this forces zt1 = 1 and all ranks for times larger than t1
to be necessarily larger than 1. This is expressed through the indicator 1{zt1=1}1t

t1+1 =
1{zt1=1}

(∏t
�=t1+1 1{z�>1}

)
. With ξt1 = 1 and zt1 = 1 let us fix the remaining ranks in Zt, assur-

ing they are consistent with the constraint imposed for times larger than t1 and also recalling
that z� must take values in the set {1, . . . , �}. We can now see that we are allowed to select
the values of t − 1 objects from a pool of n − 1 integers (since the value 1 is already assigned
to ξt1 ). This generates

(n−1
t−1

)
combinations, and each combination, including also the fact that

ξt1 = 1, has a probability of occurrence equal to (n − t)!/n!. If we multiply the two quantities
then we obtain (3). Applying (3) for t1 = t (possible since t ≥ t1) and using the fact that by
definition 1t

t+1 = 1, we obtain (4). This concludes the proof of the lemma. �
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Proof of Lemma 2. We begin with (5), and we note that

P(ξt = 1 | Zk
t ) = P(ξt = 1, Zk

t )

P(Zk
t )

= P(ξt = 1, Zk
t )

P(Zk
t )

1{zt=1}, (19)

where the last equality is due to the fact that ξt = 1 forces zt to become 1 as well, and therefore
the numerator is 0 if zt 	= 1. This property is captured with the indicator 1{zt=1}. We can now
write

P(ξt = 1, Zk
t ) = P(ξt = 1, Zk

t , ξtk = 1) + P(ξt = 1, Zk
t , ξtk > 1)

= P(ξt = 1, Zk
t , ξtk > 1)

= P(ξt = 1, ζtk , Zk−1
t , ξtk > 1)

= P(ξt = 1, ζtk , Zk−1
t | ξtk > 1)P(ξtk > 1)

= P(ζtk | ξtk > 1)P(ξt = 1, Zk−1
t | ξtk > 1)P(ξtk > 1)

= q(ζtk )P(ξt = 1, Zk−1
t , ξtk > 1)

= q(ζtk ){P(ξt = 1, Zk−1
t ) − P(ξt = 1, Zk−1

t , ξtk = 1)}
= q(ζtk )P(ξt = 1, Zk−1

t ),

where q(ζtk ), following the model in (1), denotes the probability of the expert responding with
the value ζtk given that ξtk > 1. We also observe that the second and last equalities are true
due to the fact that the fourth is impossible for two objects at different time instances to have
the same value, while the fourth equality is true because, according to our model, when we
condition on {ξtk > 1} then ζtk is independent of all ranks, other responses, and other object
values.

In order to modify the denominator in (19), due to the indicator 1{zt=1} in the numerator it
is sufficient to analyze the denominator by fixing zt = 1. Specifically,

P(Zk
t , zt = 1) = P(Zk

t , zt = 1, ξtk = 1) + P(Zk
t , zt = 1, ξtk > 1)

= P(Zk
t , zt = 1, ξtk > 1)

= P(ζtk , Zk−1
t , zt = 1, ξtk > 1)

= P(ζtk | ξtk > 1)P(Zk−1
t , zt = 1, ξtk > 1)

= q(ζtk ){P(Zk−1
t , zt = 1) − P(Zk−1

t , zt = 1, ξtk = 1)}
= q(ζtk )P(zt = 1, Zk−1

t ),

where in the third and the last equalities we used the fact that for t > tk we cannot have zt = 1
when ξtk = 1 because this requires ξt < ξtk which is impossible since ξtk = 1. Dividing the
numerator by the denominator proves that

P(ξt = 1 | Zk
t ) = P(ξt = 1, Zk−1

t )

P(zt = 1, Zk−1
t )

1{zt=1} = P(ξt = 1, Zk−1
t )

P(Zk−1
t )

1{zt=1} = P(ξt = 1 | Zk−1
t )1{zt=1}.
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In other words, given that a new relatively best object appears, the probability that it is the best
of all the objects is conditionally independent of the previous expert response. Applying this
equality repeatedly, we conclude that

P(ξt = 1 | Zk
t ) = P(ξt = 1 | Z0

t )1{zt=1} = P(ξt = 1 | Zt)1{zt=1}, (20)

namely, the conditional probability is independent of all past expert responses. Combining the
second equality in (2) with (4), we can now show that

P(ξt = 1 | Zt) = P(ξt = 1, Zt)

P(Zt)
= (1/((t − 1)!n))1{zt=1}

1/t! = t

n
1{zt=1},

which, if substituted into (20), proves (5) and suggests that the desired conditional probabil-
ity P(ξt = 1 | Zk

t ) depends only on t and zt and not on Zk
t−1, namely the previous ranks and

previous expert responses.
To show (6) we observe that

P(ξtk = 1 | Zk
tk ) = P(ξtk = 1, Zk

tk )

P(Zk
tk )

.

For the numerator, using similar steps to before, we can write

P(ξtk = 1, Zk
tk ) = P(ξtk = 1, ζtk , Zk−1

tk )

= p(ζtk )P(ξtk = 1, Zk−1
tk )

= p(ζtk )P(ξtk = 1 | Zk−1
tk )P(Zk−1

tk )

= p(ζtk )
tk
n

1{ztk =1}P(Zk−1
tk ),

where for the second equality we first conditioned on {ξtk = 1} and used the fact that ζtk is
independent of any other information, while for the last equality we applied (5).

Similarly, for the denominator we have

P(Zk
tk ) = P(ζtk , Zk−1

tk )

= P(ξtk = 1, ζtk , Zk−1
tk ) + P(ξtk > 1, ζtk , Zk−1

tk )

= p(ζtk )P(ξtk = 1, Zk−1
tk ) + q(ζtk )P(ξtk > 1, Zk−1

tk )

= {p(ζtk )P(ξtk = 1 | Zk−1
tk ) + q(ζtk )P(ξtk > 1 | Zk−1

tk )}P(Zk−1
tk )

=
{

p(ζtk )
tk
n

1{ztk =1} + q(ζtk )

(
1 − tk

n
1{ztk =1}

)}
P(Zk−1

tk ), (21)

where for the last equality we applied the same idea we used in the last equality of the numer-
ator. Dividing the numerator by the denominator and using the fact that in the numerator we
have the indicator 1{ztk =1}, it is easy to verify that we obtain the expression appearing in (6).
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To prove (7), we have

P(ζtk | Zk−1
tk , ztk = 1) = P(ζtk , Zk−1

tk , ztk = 1)

P(Zk−1
tk , ztk = 1)

= P(Zk
tk , ztk = 1)

P(Zk−1
tk , ztk = 1)

= p(ζtk )
tk
n

+ q(ζtk )

(
1 − tk

n

)
,

where for the last equality we used (21) and applied it for ztk = 1.
Let us now demonstrate (8), which is the relationship that distinguishes our random model

from the classical infallible expert case. We observe that

P(zt = 1 | Zk
t−1, ztk = 1) = P(zt = 1, Zt−1, ztk = 1, ζtk , . . . , ζt1 )

P(Zt−1, ztk = 1, ζtk , . . . , ζt1 )
.

As before, for the numerator we can write

P(zt = 1, Zt−1, ztk = 1, ζtk , . . . , ζt1 ) = P(zt = 1, Zt−1, ztk = 1, ζtk , . . . , ζt1 , ξt1 > 1)

= P(zt = 1, Zt−1, ztk = 1, ζtk , . . . , ζt2 , ξt1 > 1)q(ζt1 )

= P(zt = 1, Zt−1, ztk = 1, ζtk , . . . , ζt2 )q(ζt1 ).

For the denominator, due to the constraint ztk = 1, we can follow similar steps to the numerator
and show that

P(Zt−1, ztk = 1, ζtk , . . . , ζt1 ) = P(Zt−1, ztk = 1, ζtk , . . . , ζt2 )q(ζt1 ).

Dividing the numerator by the denominator yields

P(zt = 1, Zt−1, ztk = 1, ζtk , . . . , ζt1 )

P(Zt−1, ztk = 1, ζtk , . . . , ζt1 )
= P(zt = 1, Zt−1, ztk = 1, ζtk , . . . , ζt2 )

P(Zt−1, ztk = 1, ζtk , . . . , ζt2 )
,

which suggests that the first ratio does not depend on ζt1 . Following similar steps we can
remove all previous expert responses one by one, and prove that

P(zt = 1 | Zk
t−1, ztk = 1) = P(zt = 1, Zt−1, ztk = 1, ζtk )

P(Zt−1, ztk = 1, ζtk )
,

namely, the conditional probability depends only on the most recent expert response. It is
possible now to obtain more suitable expressions for the numerator and the denominator. We
start with the numerator and apply steps similar to above. Specifically,

P(zt = 1, Zt−1, ztk = 1, ζtk ) = P(zt = 1, Zt−1, ztk = 1, ζtk , ξtk > 1)

= P(zt = 1, Zt−1, ztk = 1)q(ζtk ) = 1

t!q(ζtk ),

where for the last expression we used the second equality in (2) after observing that {zt =
1, Zt−1, ztk = 1} is simply Zt with two of its elements fixed to 1.
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For the denominator, we can similarly write

P(Zt−1, ztk = 1, ζtk ) = P(Zt−1, ztk = 1, ζtk , ξtk = 1) + P(Zt−1, ztk = 1, ζtk , ξtk > 1)

= P(Zt−1, ztk = 1, ξtk = 1)p(ζtk ) + P(Zt−1, ztk = 1, ξtk > 1)q(ζtk )

= P(Zt−1, ztk = 1, ξtk = 1)p(ζtk )

+ {P(Zt−1, ztk = 1) − P(Zt−1, ztk = 1, ξtk = 1)}q(ζtk )

=
{

1

(t − 2)!n1
t−1
tk+1

}
p(ζtk ) +

{
1

(t − 1)! − 1

(t − 2)!n1
t−1
tk+1

}
q(ζtk ),

where to obtain the last expression we applied the second equality of (2) combined with (3)
after observing that by fixing ztk = 1 the product 1{ztk =1}1t−1

tk+1 produced by (3) becomes 1t−1
tk+1.

Dividing the numerator by the denominator we can verify that the resulting ratio matches the
right-hand side of (8) for the two possible values of 1t−1

tk+1, namely 0 or 1. This completes the
proof of Lemma 2. �

Proof of Theorem 1. We first note that Psucc =PK , where PK satisfies (15) for k = K and
UK+1

t = t/n. Consider now the general form of Pk defined in (15). We focus on the last term,
which we intend to optimize with respect to Tk+1. Observe that

E

[
Uk+1
Tk+1

1{zTk+1 =1}1B
Tk
T1

]

=
n∑

· · ·
n∑

tk>···>t1>0

E

[
Uk+1
Tk+1

1{zTk+1=1}1{Tk+1>tk}1{Tk=tk} · · · 1{T1=t1}1B
tk
t1

]

=
n∑

· · ·
n∑

tk>···>t1>0

E

[
E
[
Uk+1
Tk+1

1{zTk+1 =1} | Zk
tk

]
1{Tk+1>tk}1{Tk=tk} · · · 1{T1=t1}1B

tk
t1

]
, (22)

where, in the last equality, as we point out in Remark 3, the indicators 1{Tk+1>tk}, 1{Tk=tk}, . . . ,
1{T1=t1}, 1

B
tk
t1

are measurable with respect to Zk
tk and, consequently, can be placed outside the

inner expectation.
We could isolate the inner expectation and optimize it by solving the optimal stopping

problem

max
Tk+1>tk

E
[
Uk+1
Tk+1

1{zTk+1 =1}|Zk
tk

]
(23)

with respect to Tk+1. Unfortunately, the proposed optimization turns out to be unnecessarily
involved, resulting in an optimal reward which is a complicated expression of the information
Zk

tk . After careful examination, and recalling from (9) that 1
B

tk
t1

contains the indicator 1{ztk =1},
it is sufficient to consider the case where ztk is fixed to the value 1. This constraint considerably
simplifies our analysis and is the main reason we have developed the equalities (7) and (8) in
Lemma 2. We also recall that ztk = 1, according to Remark 1, is a prerequisite for querying
at tk.
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After this observation, we replace (22) with the alternative relationship

E

[
Uk+1
Tk+1

1{zTk+1=1}1B
Tk
T1

]
=

n∑
· · ·

n∑
tk>···>t1>0

E

[
E
[
Uk+1
Tk+1

1{zTk+1=1} | Zk
tk , ztk = 1

]
1{Tk+1>tk}1{Tk=tk} · · · 1{T1=t1}1B

tk
t1

]
. (24)

Again, we emphasize that we are allowed to make this specific conditioning because the value
ztk = 1 is imposed by the indicator 1{ztk =1} contained in 1

B
tk
t1

. Let us now isolate the inner

expectation in (24) and consider the following optimal stopping problem in place of (23):

max
Tk+1>tk

E
[
Uk+1
Tk+1

1{zTk+1 =1} | Zk
tk , ztk = 1

]
. (25)

Following [17, 20], for t > tk we need to define the sequence of optimal rewards {Rk
t }, where

Rk
t = max

Tk+1≥t
E
[
Uk+1
Tk+1

1{zTk+1=1} | Zk
t , ztk = 1

]
. (26)

From optimal stopping theory we have that {Rk
t } satisfies the backward recursion

Rk
t = max

{
Uk+1

t 1{zt=1},E
[
Rk

t+1 | Zk
t , ztk = 1

]}
, (27)

which must be applied for t = n, n − 1, . . . , tk + 1 and initialized with Rk
n+1 = 0. We recall

that tk is excluded from the possible values of Tk+1 since we require Tk+1 > tk.
In order to find an explicit formula for the reward, we use the definition of the sequence {Ak

t }
from (13) and we introduce a second sequence {Bk

t (m)} satisfying the backward recursion

Bk
t−1(m) =Bk

t (m)

(
1 − 1

t

)

+ (
Ak

t +Bk
t (m) − max{Uk+1

t ,Ak
t }
)1

t

(
p(m) − q(m)

)
(t − 1)

p(m)(t − 1) + q(m)(n − t + 1)
, (28)

t = n, . . . , tk, m = 1, . . . , M, which is initialized with Bk
n(m) = 0. Actually, we are interested in

the expected reward Vk
t =E[Rk

t+1 | Zk
t , ztk = 1] for which we intend to show, using (backward)

induction, that
Vk

t =Ak
t +Bk

t (ζtk )1t
tk+1. (29)

Indeed, we have that (29) is true for t = n since both the right- and left-hand sides are 0. Assume
our claim is true for t; then we will show that it is also valid for t − 1. Using (27) we can
write

Rk
t = max{Uk+1

t ,Vk
t }1{zt=1} +Vk

t 1{zt>1}

= max{Uk+1
t ,Ak

t +Bk
t (ζtk )1t

tk+1}1{zt=1} + (
Ak

t +Bk
t (ζtk )1t

tk+1

)
1{zt>1}

= max{Uk+1
t ,Ak

t }1{zt=1} + (
Ak

t +Bk
t (ζtk )1t−1

tk+1

)
1{zt>1}.
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Taking expectations on both sides conditioned on {Zk
t−1, ztk = 1}, using (8), and rearranging

terms, it is not complicated to verify that Vk
t−1 is also equal to Ak

t−1 +Bk
t−1(ζtk )1t−1

tk+1, provided

that {Ak
t } and {Bk

t (m)} are defined by (13) and (28), respectively.
Let us now return to the optimization problem in (25). According to our analysis, the optimal

reward satisfies

max
Tk+1>tk

E
[
Uk+1
Tk+1

1{zTk+1 =1} | Zk
tk , ztk = 1

]=Vk
tk =Ak

tk +Bk
tk (ζtk )1tk

tk+1 =Ak
tk +Bk

tk (ζtk ), (30)

since, according to our definition, 1b
a = 1 when a > b.

The next step consists in finding a more convenient expression for the sum Ak
t +Bk

t (m).
Again, using backward induction we prove that

Bk
t (m) =Ak

t

(
q(m) − p(m)

)
t

p(m)t + q(m)(n − t)
. (31)

Clearly, for t = n this expression is true since both sides are 0. We assume it is true for t, and
we show that it is valid for t − 1. Indeed, if we substitute (31) into the definition in (28), then,
after some straightforward manipulations, we end up with the equality

Bk
t−1(m) =

{
Ak

t

(
1 − 1

t

)
+ max{Uk+1

t ,Ak
t }

1

t

}
(q(m) − p(m))(t − 1)

p(m)(t − 1) + q(m)(n − t + 1)
,

which, with the help of (13), proves the induction. Substituting (31) into (30) provides a more
concise expression for the optimal reward,

max
Tk+1>tk

E
[
Uk+1
Tk+1

1{zTk+1 =1} | Zk
tk , ztk = 1

]=Ak
tk

q(ζtk )n

p(ζtk )tk + q(ζtk )(n − tk)
, (32)

which depends only on the most recent expert response ζtk . Using (32), we obtain the following
(attainable) upper bound for (22):

E

[
Uk+1
Tk+1

1{zTk+1 =1}1B
Tk
T1

]
≤E

[
Ak

Tk

q(ζTk )n

p(ζTk )Tk + q(ζTk )(n − Tk)
1
B

Tk
T1

]

=E

[
Ak

Tk

q(ζTk )n

p(ζTk )Tk + q(ζTk )(n − Tk)
1{zTk =1}1{DTk =0}1B

Tk−1
T1

]
.

(33)

The optimal performance, according to optimal stopping theory, can be achieved by the stop-
ping time Tk+1 = min{t > tk : Uk+1

t 1{zt=1} ≥Ak
t +Bk

t (ζtk )1t
tk+1}. The previous stopping rule

gives the impression that the optimal Tk+1 depends on the expert response value ζtk . However,
we observe that the only way we can stop is if zt = 1, which forces the indicator 1t

tk+1
to become 0. Consequently, the optimal version of Tk+1 is equivalent to Tk+1 = min{t >

tk : Uk+1
t 1{zt=1} ≥Ak

t }, which is independent of ζtk and proves (17).
We conclude that the solution of the optimization problem introduced in (25) resulted in the

identification of the optimal querying times T1, . . . , TK and the optimal final time Tf (since

https://doi.org/10.1017/jpr.2023.61 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.61


598 G. V. MOUSTAKIDES ET AL.

Tf = TK+1). Let us now see how we can optimize the remaining elements of our search strategy,
namely, the decision functions DT1 , . . . ,DTK . Consider the last component of the sum in (15),
which can be written as

P
(
ξTk = 1,DTk = 1, B

Tk−1
T1

)

=
n∑

· · ·
n∑

tk>···>t1>0

E

[
1{ξtk =1}1{Tk=tk} · · · 1{T1=t1}1{Dtk =1}1B

tk−1
t1

]

=
n∑

· · ·
n∑

tk>···>t1>0

E

[
P(ξtk = 1 | Zk

tk )1{Tk=tk} · · · 1{T1=t1}1{Dtk =1}1B
tk−1
t1

]

=
n∑

· · ·
n∑

tk>···>t1>0

E

[
p(ζtk )tk

p(ζtk )tk + q(ζtk )(n − tk)
1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1{Dtk =1}1B

tk−1
t1

]

=E

[
p(ζTk )Tk

p(ζTk )Tk + q(ζTk )(n − Tk)
1{zTk =1}1{DTk =1}1B

Tk−1
T1

]
. (34)

The second equality is true because we condition on Zk
t and, since all indicator functions are

measurable with respect to this sigma-algebra they can be placed outside the inner expectation,
which gives rise to the conditional probability. For the third equality we simply apply (6). If
we now add the two parts analyzed in (33) and (34), we can optimize the sum with respect to
DTk . In particular,

P(ξTk = 1,DTk = 1,B
Tk−1
T1

) +E

[
Uk+1
Tk+1

1{zTk+1 =1}1B
Tk
T1

]

≤E

[
p(ζTk )Tk

p(ζTk )Tk + q(ζTk )(n − Tk)
1{zTk =1}1{DTk =1}1B

Tk−1
T1

]

+E

[
Ak

Tk

q(ζTk )n

p(ζTk )Tk + q(ζTk )(n − Tk)
1{zTk =1}1{DTk =0}1B

Tk−1
T1

]

≤E

[ max{p(ζTk )Tk/n, q(ζTk )Ak
Tk

}
p(ζTk )Tk/n + q(ζTk )(1 − (Tk/n))

1{zTk =1}1
B

Tk−1
T1

]
. (35)

We attain the last upper bound if we select DTk = 1 (i.e. stop) when p(ζTk )Tk/n ≥ q(ζTk )Ak
Tk

and DTk = 0 (i.e. continue to the next query or final time if k = K) when the inequality
is reversed. This clearly establishes (18) and identifies the optimal version of the decision
functions.

As we can see, the upper bound in (35) is written in terms of the expert response ζTk . In
order to obtain an expression which has the same form as the one in (15) we need to average
out this random variable. We note that
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E

[ max
{
p(ζTk )Tk/n, q(ζTk )Ak

Tk

}
p(ζTk )Tk/n + q(ζTk )(1 − (Tk/n))

1{zTk =1}1
B

Tk−1
T1

]

=
n∑

· · ·
n∑

tk>···>t1>0

E

[
max

{
p(ζtk )tk/n, q(ζtk )Ak

tk

}
p(ζtk )tk/n + q(ζtk )(1 − (tk/n))

1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B
tk−1
t1

]

=
n∑

· · ·
n∑

tk>···>t1>0

M∑
m=1

E

[
max

{
p(m)tk/n, q(m)Ak

tk

}
p(m)tk/n + q(m)(1 − (tk/n))

1{ζtk =m}1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B
tk−1
t1

]

=
n∑

· · ·
n∑

tk>···>t1>0

M∑
m=1

max
{
p(m)tk/n, q(m)Ak

tk

}
p(m)tk/n + q(m)(1 − (tk/n))

E

[
1{ζtk =m}1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B

tk−1
t1

]
,

(36)

with the last equality being true because the ratio is deterministic. Consider the last expectation
separately. Because of the existence of the indicator 1{ztk =1}, we can write

E

[
1{ζtk =m}1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B

tk−1
t1

]

=E

[
P(ζtk = m | Zk−1

tk , ztk = 1)1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B
tk−1
t1

]

=E

[{
p(m)

tk
n

+ q(m)

(
1 − tk

n

)}
1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B

tk−1
t1

]

=
{

p(m)
tk
n

+ q(m)

(
1 − tk

n

)}
E

[
1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B

tk−1
t1

]
.

According to Remark 3, all indicators are {Zk−1
tk , ztk = 1}-measurable and this allowed us in the

first equation to position them outside the inner expectation, which resulted in the conditional
probability. For the second equation we used (7). Substituting into (36) we obtain

E

[ max
{
p(ζTk )Tk/n, q(ζTk )Ak

Tk

}
p(ζTk )Tk/n + q(ζTk )(1 − (Tk/n))

1{zTk =1}1
B

Tk−1
T1

]

=
n∑

· · ·
n∑

tk>···>t1>0

(
M∑

m=1

max

{
p(m)

tk
n

, q(m)Ak
tk

})
E

[
1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B

tk−1
t1

]

=
n∑

· · ·
n∑

tk>···>t1>0

Uk
tkE

[
1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B

tk−1
t1

]

=
n∑

· · ·
n∑

tk>···>t1>0

E

[
Uk

tk 1{ztk =1}1{Tk=tk} · · · 1{T1=t1}1B
tk−1
t1

]
=E

[
Uk
Tk

1{zTk =1}1
B

Tk−1
T1

]
, (37)

where we recall that Uk
t is deterministic and defined in (14).
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As we have seen, the sum of the two terms in (35) is optimized in (37). A direct consequence
of this optimization is the following inequality:

Pk =
k∑

�=1

P
(
ξT�

= 1,DT�
= 1, B

T�−1
T1

)+E

[
Uk+1
Tk+1

1{zTk+1 =1}1B
Tk
T1

]

=
k−1∑
�=1

P(ξT�
= 1,DT�

= 1, B
T�−1
T1

)

+ P

(
ξTk = 1,DTk = 1, B

Tk−1
T1

)
+E

[
Uk+1
Tk+1

1{zTk+1=1}1B
Tk
T1

]

≤
k−1∑
�=1

P

(
ξT�

= 1,DT�
= 1, B

T�−1
T1

)
+E

[
Uk
Tk

1{zTk =1}1
B

Tk−1
T1

]
=Pk−1,

namely Pk ≤Pk−1. Repeated application of this fact for k = K, . . . , 1 proves (16), except for
the last inequality. In other words, we have Psucc =PK ≤PK−1 ≤ · · · ≤P0 =E[U1

T1
]. The

last expectation can be further optimized with respect to T1 using our results from (26) for
k = 0. In fact, the corresponding optimization is far simpler than the general case considered in
(26) because there is no query response available and therefore the elements of the sequences
{B0

t (m)} are equal to 0. This also implies that the corresponding optimal average reward, from
(29), is equal to A0

t , which establishes the last inequality in (16) and concludes the proof of
our main theorem. �

Proof of Lemma 3. Let us first prove Ak
t ≤Ak−1

t . We will show this fact using backward
induction. To show its validity for k = K we note from (14) that

UK
t =

M∑
m=1

max

{
p(m)

t

n
, q(m)AK

t

}
≥

M∑
m=1

p(m)
t

n
= t

n
=UK+1

t .

Applying (13) for k = K and k = K − 1, using the previous inequality and the fact that AK
n =

AK−1
n = 0, we can easily show using backward induction in t that AK

t ≤AK−1
t . Suppose now

it is true for k, that is, Ak
t ≤Ak−1

t ; then we will show that Ak−1
t ≤Ak−2

t . From Ak
t ≤Ak−1

t and
(14) we conclude that Uk

t ≤Uk−1
t . Expressing Ak−1

t and Ak−2
t with the help of (13), using the

facts that Uk
t ≤Uk−1

t and Ak−1
n =Ak−2

n = 0, we can again prove using backward induction in t
that Ak−1

t ≤Ak−2
t , therefore completing the induction. The monotonicity in k of Uk

t is a direct
consequence of (14) and of the same monotonicity of Ak

t .
To establish that {Ak

t } is decreasing in t we use (13) and observe that

Ak
t−1 −Ak

t = (
max

{
Uk+1

t ,Ak
t

}−Ak
t

)1

t
≥ 0,

which proves the desired inequality. Demonstrating that {Uk
t } is increasing in t requires more

work. From the definition in (14) and using (13) to replace Ak
t−1, we have
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Uk
t−1 =

M∑
m=1

max

{
p(m)

t − 1

n
, q(m)Ak

t−1

}

=
M∑

m=1

max

{
p(m)

t

n

(
1 − 1

t

)
, q(m)

[
Ak

t

(
1 − 1

t

)
+ max{Uk+1

t ,Ak
t }

1

t

]}

≤
M∑

m=1

(
max

{
p(m)

t

n
, q(m)Ak

t

}(
1 − 1

t

)
+ q(m) max{Uk+1

t ,Ak
t }

1

t

)

=Uk
t

(
1 − 1

t

)
+ max

{
Uk+1

t ,Ak
t

}1

t

=Uk
t + (

max
{
Uk+1

t ,Ak
t

}−Uk
t

)1

t
,

with the inequality being true because max{ad, bd + c} ≤ max{a, b}d + c when c, d ≥ 0. To
establish that Uk

t−1 ≤Uk
t it suffices to prove that Uk

t ≥ max{Uk+1
t ,Ak

t }, namely that Uk
t ≥Uk+1

t

(which we already know to be the case) and Uk
t ≥Ak

t . To show the latter, from its definition in
(14) we can see that Uk

t ≥∑M
m=1 q(m)Ak

t =Ak
t , and this establishes the desired result.

To complete our proof we still need to show that Ak
n ≤Uk+1

n and Ak
0 ≥Uk+1

0 . We recall
that Ak

n = 0. On the other hand, from (14) we can see that Uk+1
n = 1, and therefore the first

inequality is true. For the second, again from (14), we observe that Uk+1
0 =Ak+1

0 and since we
previously established that Ak

t is decreasing in k for fixed t, this proves the second inequality
and concludes our proof. �
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