ON GROUPS OF ORDER \boldsymbol{p}^{3}

JAMES A. COHN AND DONALD LIVINGSTONE

The simplest example of two non-isomorphic groups with the same character tables is provided by the non-abelian groups of order $p^{3}, p \neq 2$. Let G_{1} be the one of exponent p and let G_{2} be the other. If Q denotes the field of rational numbers, then Berman (2) has shown that $Q G_{1} \approx Q G_{2}$, where $Q G_{i}$ denotes the rational group algebra. In this note we shall show that the corresponding statement is false for $Z G_{i}$, where Z is the ring of rational integers. More explicitly we shall show that $Z G_{1}$ does not contain a unit of order p^{2} so that it is impossible to embed $Z G_{2}$ in $Z G_{1}$.

We represent the elements of G_{1} by the ordered triples $[r, s, t]$ of integers $(\bmod p)$ where

$$
[r, s, t]\left[r^{\prime}, s^{\prime}, t^{\prime}\right]=\left[r+r^{\prime}, s+s^{\prime}, t+t^{\prime}+s r^{\prime}\right]
$$

It follows that the unit vectors generate G_{1}, and $[0,0,1]$ generates the centre of G_{1}, which is also its commutator subgroup $G_{1}{ }^{\prime}$. Let ϕ be the homomorphism of $Z G_{1}$ onto $Z\left(G_{1} / G_{1}{ }^{\prime}\right)$, and let Γ denote one of the non-linear irreducible representations of $Q G_{1}$. Obviously $Z G_{1}$ can be embedded in the direct sum of the irreducible representations of $Q G_{1}$. Since the linear representations of $Z G_{1}$ can all be factored through $Z\left(G_{1} / G_{1}{ }^{\prime}\right)$ and since the non-linear representations are all conjugate, it follows that $\phi \oplus \Gamma$ embeds $Z G_{1}$ in $Z\left(G_{1} / G_{1}{ }^{\prime}\right) \oplus M$, where M is a ring of $p \times p$ matrices with entries from $Z(\omega), \omega$ a primitive p th root of unity. In fact we can choose M to consist of matrices with entries from $Z[\omega]$ since the representations are monomial. More explicitly we define
$\Gamma[1,0,0]=\left[\begin{array}{lllll}1 & & & \\ & \cdot & & \\ & \cdot & & \\ & & & & \\ & & & 1\end{array}\right], \quad \Gamma[0,1,0]=\left[\begin{array}{llll}1 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \hline p-1\end{array}\right], \quad \Gamma[0,0,1]=\omega I$.
Since $Z G_{1}$ is embedded in $Z\left(G_{1} / G_{1}{ }^{\prime}\right) \oplus M$, it follows that $U\left(Z G_{1}\right)$, the group of units of $Z G_{1}$, is embedded in $U\left(Z\left(G_{1} / G_{1}{ }^{\prime}\right)\right) \times U(M)$. Thus to show that $Z G_{1}$ has no unit of order p^{2} it suffices to show this for $Z\left(G_{1} / G_{1}{ }^{\prime}\right)$ and M separately. Since $G_{1} / G_{1}{ }^{\prime}$ is abelian, every unit of finite order in $Z\left(G_{1} / G_{1}{ }^{\prime}\right)$ is

[^0]trivial, i.e., of the form $\pm v, v \in G_{1} / G_{1}{ }^{\prime}$ (see 1). It follows that no unit in $Z\left(G_{1} / G_{1}{ }^{\prime}\right)$ can have order p^{2}. Thus we need only consider the units of M.

We next show that in fact we need only consider a certain homomorphic image M_{1} of M. Let P be the unique prime ideal dividing p in $Z[\omega]$, so that $P=(1-\omega)$.

Lemma. If $A=\left(\alpha_{i j}\right), \alpha_{i j} \in Z[\omega]$ is an $n \times n$ matrix of p-power order such that $A \equiv I\left(\bmod P^{2}\right)$, then $A=I$.

Proof. Assume $A=I+(1-\omega)^{a} B$, where $B=\left(\beta_{i j}\right),(1-\omega) \nmid \beta_{i j}$ for some i, j, and $A^{t}=I$, where $t=p^{b}$. Then, using the binomial theorem, we have

$$
\sum_{i=1}^{t}\binom{t}{i}\left[(1-\omega)^{a} B\right]^{i}=0
$$

If $a \geqslant 2$, then $(1-\omega)^{2 a+p-1}$ divides all the terms from $i=2$ on, since $(1-\omega)^{p-1}$ divides p exactly. It follows that $(1-\omega)^{2 a+p-1}$ divides $p(1-\omega)^{a} \beta_{i j}$ for all i, j. Thus $(1-\omega)^{a}$ divides $\beta_{i j}$ for all i, j, which is a contradiction, and so our lemma is proved.

Using the Lemma we see that if M_{1} is the ring obtained by reducing the entries of the matrices in $M\left(\bmod P^{2}\right)$, then this homomorphism preserves the order of units (of p-power order). Thus it suffices to show that M_{1} has no unit of order p^{2}.

Let u be a unit of finite order in $Z G_{1}$. Then since $\phi(u)$ is a trivial unit in $Z\left(G_{1} / G_{1}{ }^{\prime}\right)$, we have $\phi(u)=\phi([r, s, t])$, where we can assume that

$$
[r, s, t]=[0,0,0]=1
$$

or that r and s are not both zero. In the latter case G_{1} has an automorphism sending $[r, s, t]$ to $[1,0,0]$; and since we are only interested in the order of u, we can assume then that $[r, s, t]=1$ or $[1,0,0]$. Thus either $u-1$ or $u-[1,0,0]$ is in ker ϕ.

We shall now give a Z-basis for $\Gamma(\operatorname{ker} \phi)$ and $\Gamma(\operatorname{ker} \phi)\left(\bmod P^{2}\right)$. Clearly ker ϕ consists of those elements of $Z G_{1}$ which sum to zero on the conjugate classes of G_{1}, i.e., on the cosets of $G_{1}{ }^{\prime}$ in G_{1}. Let $\alpha_{k}=1-\omega^{k}$; and let $z=[0,0,1]$ so that $G_{1}{ }^{\prime}=\langle z\rangle$. Then $\Gamma\left(1-z^{k}\right)=\alpha_{k} I$ and so $\left\{\alpha_{k} I\right\}$ is a Z-basis of the elements summing to zero in $G_{1}{ }^{\prime}$.

The elements $[0, s, 0]\left(1-z^{k}\right)$ form a Z-basis for the elements which sum to zero on the $[0, s, 0]$-cosets of $G_{1}{ }^{\prime}$. By means of a unimodular transformation we can take the elements $([0, s, 0]-1)\left(1-z^{k}\right)$ as a basis instead. However,

$$
\begin{aligned}
\Gamma\left(([0, s, 0]-1)\left(1-z^{k}\right)\right) & =\operatorname{diag}\left(0,\left(\omega^{s}-1\right) \alpha_{k}, \ldots,\left(\omega^{s(p-1)}-1\right) \alpha_{n}\right) \\
& \equiv 0\left(\bmod P^{2}\right)
\end{aligned}
$$

and so these yield nothing new $\left(\bmod P^{2}\right)$, i.e., in M_{1}.
Finally we turn to the $[r, s, 0]$ cosets. We shall refer to the main diagonal
of one of our matrices as the 0 -stripe, the elements $\alpha_{21}, \alpha_{32}, \ldots, \alpha_{p, p-1}, \alpha_{1, p}$ as the 1 -stripe, etc. Then a basis for the elements which sum to zero on the [$r, s, 0]$-cosets maps under Γ to the matrices with α_{k} on the r-stripe and 0 elsewhere $\left(\bmod P^{2}\right)$.

Now recall that $u-1$ or $u-[1,0,0] \in \operatorname{ker} \phi$; hence $\Gamma(u)=A+B$, where $B \in \Gamma(\operatorname{ker} \phi)$, and where either $A=I$ or $A=\Gamma[1,0,0]$ and hence has 1 on the 1 -stripe and 0 elsewhere. It follows from our description of a Z-basis $\left(\bmod P^{2}\right)$ for $\Gamma(\operatorname{ker} \phi)$ that B is constant on the various stripes, and hence $A B=B A\left(\bmod P^{2}\right)$ in either case. Thus

$$
(\Gamma(u))^{p}=(A+B)^{p} \equiv I\left(\bmod P^{2}\right)
$$

It follows from the lemma that $u^{p}=1$ and so $Z G_{1}$ has no unit of order p^{2}.
It may be added that the isomorphism $Q G_{1} \approx Q G_{2}$ mentioned in the introduction can be realized explicitly by observing that the element $x u$, where

$$
u=1-\frac{1}{p}\left(1-z^{-1}\right) \sum y^{s}
$$

and x, y, and z are the elements of G_{1} represented in our notation by the unit vectors, is a unit of order p^{2} which, with y and z, generates a group isomorphic to G_{2}. Since u is itself a unit (of order p) in $Z[1 / p]\langle y, z\rangle$, it follows that the group rings of G_{1} and G_{2} are already isomorphic over the coefficient ring $Z[1 / p]$.

References

1. S. D. Berman, On certain properties of integral group rings, Dokl. Akad. Nauk SSSR(N.S.), 91 (1953), 7-9; M.R. 15, 99.
2. -On certain properties of group rings over the field of rational numbers, Užgorod. Gos. Univ. Naučn. Zap. Him. Fiz. Mat., 12 (1955), 88-110; M.R. 20 ,No. 3920. (This article was not available to us, and so our knowledge of it is based upon the review.)

University of Michigan, Ann Arbor, Michigan

[^0]: Received August 31, 1962. The second author's research was supported in part by a fellowship from the Rackham School of Graduate Studies, University of Michigan; and the first author's research was supported in part by NSF-05259.

