ON THE RANKIN-SELBERG ZETA FUNCTION

ALEKSANDAR IVIĆ

(Received 14 January 2011; accepted 1 February 2012; first published online 19 September 2012)

Communicated by F. Pappalardi

Dedicated to the memory of Alfred van der Poorten

Abstract

We obtain the approximate functional equation for the Rankin-Selberg zeta function in the critical strip and, in particular, on the critical line $\operatorname{Re} s=\frac{1}{2}$.

2010 Mathematics subject classification: primary 11N37; secondary 11M06, 44A15, 26 A12.
Keywords and phrases: Rankin-Selberg zeta function, approximate functional equation.

1. Introduction

Let $\varphi(z)$ be a holomorphic cusp form of weight κ with respect to the full modular group $\operatorname{SL}(2, \mathbb{Z})$, so that

$$
\varphi\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{\kappa} \varphi(z)
$$

where $a, b, c, d \in \mathbb{Z}$ and $a d-b c=1, \operatorname{Im} z>0$ and $\lim _{\operatorname{Im} z \rightarrow \infty} \varphi(z)=0$ (see, for instance, Rankin [12] for basic notions). We denote by $a(n)$ the nth Fourier coefficient of $\varphi(z)$ and suppose that $\varphi(z)$ is a normalized eigenfunction for the Hecke operators $T(n)$, that is, $a(1)=1$ and $T(n) \varphi=a(n) \varphi$ for every $n \in \mathbb{N}$ (see Rankin [12] for the definition and properties of the Hecke operators). The classical example is $a(n)=\tau(n)$, when $\kappa=12$. This is the well-known Ramanujan tau function, defined by

$$
\left.\sum_{n=1}^{\infty} \tau(n) x^{n}=x_{\ell}(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots\right\}^{24}
$$

when $|x|<1$.

[^0]Let c_{n} be the nonnegative convolution function defined by

$$
\begin{equation*}
c_{n}=n^{1-\kappa} \sum_{m^{2} \mid n} m^{2(\kappa-1)}\left|a\left(\frac{n}{m^{2}}\right)\right|^{2} . \tag{1.1}
\end{equation*}
$$

Note that c_{n} is a multiplicative arithmetic function, that is, $c_{m n}=c_{m} c_{n}$ when $(m, n)=1$, since $a(n)$ is multiplicative.

The well-known Rankin-Selberg problem consists of the estimation of the error term function

$$
\begin{equation*}
\Delta(x)=\sum_{n \leqslant x} c_{n}-C x \tag{1.2}
\end{equation*}
$$

The positive constant C in (1.2) may be written explicitly (see, for instance, [8]):

$$
C=C(\varphi)=\frac{2 \pi^{2}(4 \pi)^{\kappa-1}}{\Gamma(\kappa)} \iint_{\mathfrak{F}} y^{\kappa-2}|\varphi(x+i y)|^{2} d x d y
$$

the integral being taken over a fundamental domain \mathfrak{F} of the group $\operatorname{SL}(2, \mathbb{Z})$. The classical upper bound for $\Delta(x)$ (strictly speaking, $\Delta(x)=\Delta(x ; \varphi)$) due to Rankin and Selberg, obtained independently in their important works [11, 14] published in 19391940, is

$$
\begin{equation*}
\Delta(x)=O\left(x^{3 / 5}\right) \tag{1.3}
\end{equation*}
$$

This result is one of the longest-standing unimproved bounds of analytic number theory, but this paper is not concerned with this problem. Our object of study is the so-called Rankin-Selberg zeta function

$$
\begin{equation*}
Z(s)=\sum_{n=1}^{\infty} c_{n} n^{-s} \tag{1.4}
\end{equation*}
$$

which is the generating Dirichlet series for the sequence $\left\{c_{n}\right\}_{n \geq 1}$. One can define the Rankin-Selberg zeta function in various degrees of generality; see, for instance, Li and Wu [10] where the authors establish universality properties of such functions.

Note that the series in (1.4) converges absolutely if $\operatorname{Re} s>1$. Indeed, from (1.2) and the estimate, due to Deligne [1], that $|a(n)| \leq n^{(\kappa-1) / 2} d(n)$, where $d(n)$ is the number of positive divisors of n (note that $d(n) \ll_{\varepsilon} n^{\varepsilon}$),

$$
\begin{equation*}
c_{n}<_{\varepsilon} n^{\varepsilon}, \tag{1.5}
\end{equation*}
$$

providing absolute convergence of $Z(s)$ when $\operatorname{Re} s>1$. Here and later ε denotes an arbitrarily small constant, not necessarily the same at each occurrence, while $a=O_{\varepsilon}(b)$ and $a<_{\varepsilon} b$ mean that $a \leqslant C b$, where C depends on ε.

When $\operatorname{Re} s \leq 1$, the function $Z(s)$ is defined by analytic continuation. It has a simple pole at $s=1$ with residue C (compare with (1.1)), and is otherwise regular. For every $s \in \mathbb{C}$ it satisfies the functional equation

$$
\begin{equation*}
\Gamma(s+\kappa-1) \Gamma(s) Z(s)=(2 \pi)^{4 s-2} \Gamma(\kappa-s) \Gamma(1-s) Z(1-s), \tag{1.6}
\end{equation*}
$$

where $\Gamma(s)$ is the gamma function. One has the decomposition

$$
Z(s)=\zeta(2 s) \sum_{n=1}^{\infty}|a(n)|^{2} n^{1-\kappa-s}
$$

where $\zeta(s)$ is the familiar Riemann zeta function $\left(\zeta(s)=\sum_{n=1}^{\infty} n^{-s}\right.$ when $\left.\operatorname{Re} s>1\right)$. This formula is the analytic equivalent of the arithmetic relation (1.1). In our context, it is more important that one also has the decomposition

$$
\begin{equation*}
Z(s)=\sum_{n=1}^{\infty} c_{n} n^{-s}=\zeta(s) \sum_{n=1}^{\infty} b_{n} n^{-s}=\zeta(s) B(s) \tag{1.7}
\end{equation*}
$$

say, where $B(s)$ belongs to the Selberg class of Dirichlet series of degree three. The coefficients b_{n} in (1.7) are multiplicative and satisfy

$$
\begin{equation*}
b_{n}<_{\varepsilon} n^{\varepsilon} . \tag{1.8}
\end{equation*}
$$

This follows from the formula

$$
b_{n}=\sum_{d \mid n} \mu(d) c_{n / d}
$$

which is a consequence of (1.7), the Möbius inversion formula and (1.5). Actually the coefficients b_{n} are bounded by a log power (see [13]) in mean square, but this stronger property is not needed here. For the definition and basic properties of the Selberg class \mathcal{S} of L-functions the reader is referred to Selberg's seminal paper [15] and the comprehensive survey paper of Kaczorowski and Perelli [9].

In view of (1.8), the series for $B(s)$ converges absolutely when $\operatorname{Re} s>1$, but $B(s)$ has an analytic continuation that is holomorphic when $\operatorname{Re} s>0$. This important fact follows from Shimura's work [16] (see also Sankaranarayanan [13]), and it implies that (1.7), that is, $Z(s)=\zeta(s) B(s)$, holds when $\operatorname{Re} s>0$ and not only when $\operatorname{Re} s>1$. The function $B(s)$ is of degree three in \mathcal{S}, as its functional equation (see, for instance, Sankaranarayanan [13]) is

$$
\begin{aligned}
B(s) \Delta_{1}(s) & =B(1-s) \Delta_{1}(1-s) \\
\Delta_{1}(s) & =\pi^{-3 s / 2} \Gamma\left(\frac{1}{2}(s+\kappa-1)\right) \Gamma\left(\frac{1}{2}(s+\kappa)\right) \Gamma\left(\frac{1}{2}(s+\kappa+1)\right) .
\end{aligned}
$$

It is very likely that $B(s)$ is primitive in \mathcal{S}, that is, it cannot be factored nontrivially as $F_{1}(s) F_{2}(s)$ with $F_{1}, F_{2} \in \mathcal{S}$, but this seems hard to prove. Since $B(s)$ is holomorphic for $\operatorname{Re} s>0$, it would follow that one of the factors, say $F_{1}(s)$, is $L(s+i \alpha, \chi)$ for some $\alpha \in \mathbb{R}$ and χ a primitive Dirichlet character. This follows from the fact that elements of degree one in \mathcal{S} are $\zeta(s+i \alpha)$ and $L(s+i \alpha, \chi)$. However, then $F_{2}(s)$ would have degree two in \mathcal{S}, but the classification of functions in \mathcal{S} of degree two is a difficult open problem.

2. The approximate functional equation for $Z(s)$

Approximate functional equations are an important tool in the study of Dirichlet series $F(s)=\sum_{n \geq 1} f(n) n^{-s}$. Their purpose is to approximate $F(s)$ by Dirichlet
polynomials of the type $\sum_{n \leq x} f(n) n^{-s}$ in a certain region where the series defining $F(s)$ does not converge absolutely. In the case of the powers of $\zeta(s)$ they were studied, for instance, in [5, Ch. 4] and [6], and in a more general setting by the author [7].

Before we state our results, which involve approximations of $Z(s)$ by Dirichlet polynomials of the form $\sum_{n \leq x} c_{n} n^{-s}$, we need some notation. Let (see (1.6))

$$
\begin{equation*}
X(s)=\frac{Z(s)}{Z(1-s)}=(2 \pi)^{4 s-2} \frac{\Gamma(\kappa-s) \Gamma(1-s)}{\Gamma(s+\kappa-1) \Gamma(s)}, \tag{2.1}
\end{equation*}
$$

let $\tau=\tau(t)$ be defined by

$$
\begin{equation*}
\log \tau=-\frac{X^{\prime}\left(\frac{1}{2}+i t\right)}{X\left(\frac{1}{2}+i t\right)} \tag{2.2}
\end{equation*}
$$

where $t \geq 3$, and

$$
\begin{equation*}
\Phi(w)=\Phi(w ; s, \tau)=\tau^{w-s} X(w)-X(s) \tag{2.3}
\end{equation*}
$$

where $\frac{1}{2} \leq \sigma=\operatorname{Re} s \leq 1$. Then the following theorem holds.
Theorem 2.1. If $\frac{1}{2} \leq \sigma=\operatorname{Re} s \leq 1, t \geq 3$, and $s=\sigma+i t$, then

$$
\begin{align*}
Z(s)=\sum_{n \leq x} & c_{n} n^{-s}+X(s) \sum_{n \leq y} c_{n} n^{s-1}+C_{1} \frac{x^{1-s}}{1-s}+C_{2} X(s) \frac{y^{s}}{s} \\
& +O_{\varepsilon}\left\{t^{\varepsilon}\left(x^{-\sigma}+h x^{1-\sigma}\right)+t^{2+\varepsilon-4 \sigma}\left(y^{\sigma-1}+h y^{\sigma}\right)\right\} \tag{2.4}\\
& \quad-\frac{1}{2 \pi i h^{3}} \int_{1 / 2-i \infty}^{1 / 2+i \infty} Z(1-z) \Phi(z ; s, \tau) y^{s-z}(z-s)^{-4}\left(1-e^{-h(s-z)}\right)^{3} d z
\end{align*}
$$

where $x y=\tau, 1 \ll x \ll \tau, 1 \ll y \ll \tau, 0<h \leq 1$ is a parameter to be suitably chosen, and C_{1} and C_{2} are absolute constants.

The restriction $\frac{1}{2} \leq \sigma=\operatorname{Re} s \leq 1$ in Theorem 2.1 can be removed, and one can consider the whole range $0 \leq \sigma \leq 1$. For $0 \leq \sigma \leq \frac{1}{2}$ this is achieved by replacing s by $1-s$, interchanging x and y, and using $Z(1-s) X(s)=Z(s)$, together with (2.4) and (3.5) of Lemma 3.2.

The most important case of Theorem 2.1 is when s lies on the so-called critical line $\operatorname{Re} s=\frac{1}{2}$, that is, $s=\frac{1}{2}+i t$. Then we obtain the following result from (2.4).
Theorem 2.2. If $s=\frac{1}{2}+i t, t \geq 3, x y=\tau, 1 \ll x \ll \tau$ and $1 \ll y \ll \tau$, then

$$
\begin{align*}
Z(s)= & \sum_{n \leq x} c_{n} n^{-s}+X(s) \sum_{n \leq y} c_{n} n^{s-1}+C_{1} \frac{x^{1-s}}{1-s}+C_{2} X(s) \frac{y^{s}}{s} \tag{2.5}\\
& +O_{\varepsilon}\left(t^{\varepsilon-11 / 16}\left(x^{1 / 2}+t^{2} x^{-1 / 2}\right)^{3 / 4}\right)+O_{\varepsilon}\left(t^{1 / 2+\mu(1 / 2)+\varepsilon}\right)
\end{align*}
$$

where, for $\sigma \in \mathbb{R}$,

$$
\mu(\sigma)=\limsup _{t \rightarrow \infty} \frac{\log |\zeta(\sigma+i t)|}{\log t}
$$

The best-known result, that $\mu(1 / 2) \leq 32 / 205=0.15609 \ldots$, is due to Huxley [4]. The famous Lindelöf hypothesis is that $\mu(1 / 2)=0$ (this is equivalent to $\mu(\sigma)=0$ for $\sigma \geq 1 / 2$), and it makes the second error term in (2.5) equal to $O_{\varepsilon}\left(t^{1 / 2+\varepsilon}\right)$.

In general, if one introduces smooth weights in the sums in question, then the ensuing error terms are substantially improved. This was done, for instance, in [5, Ch. 4], in [6] and in [7]. From [7, equations (19) and (20)], with $\sigma=\frac{1}{2}, K=4, t \geq 3$, $x y=\tau$, and $1 \ll x, y \ll \tau$,

$$
\begin{equation*}
Z(s)=\sum_{n \leq x} \rho(n / x) c_{n} n^{-s}+X(s) \sum_{n \leq y} \rho(n / y) c_{n} n^{s-1}+O_{\varepsilon}\left(t^{\varepsilon}\right), \tag{2.6}
\end{equation*}
$$

where $s=\frac{1}{2}+i t$. The smooth function $\rho(x)$ is defined as follows (see [$\left.6, \mathrm{Ch} .4\right]$ for an explicit construction). Let $b>1$ be a fixed constant and $\rho(x) \in C^{\infty}(0, \infty)$. Then

$$
\rho(x)+\rho(1 / x)=1 \quad \forall x>0 \quad \text { and } \quad \rho(x)=0 \quad \forall x \geq b .
$$

There is another aspect of this subject worth mentioning. One can consider the function

$$
\begin{equation*}
\mathcal{Z}(t)=Z\left(\frac{1}{2}+i t\right) X^{-1 / 2}\left(\frac{1}{2}+i t\right) \tag{2.7}
\end{equation*}
$$

where $t \in \mathbb{R}$. The functional equation for $Z(s)$ in the form $Z(s)=X(s) Z(1-s)$ leads easily to $X(s) X(1-s)=1$, hence

$$
\begin{aligned}
\overline{Z(t)} & =Z\left(\frac{1}{2}-i t\right) X^{-1 / 2}\left(\frac{1}{2}-i t\right)=Z\left(\frac{1}{2}+i t\right) X\left(\frac{1}{2}-i t\right) X^{-1 / 2}\left(\frac{1}{2}-i t\right) \\
& =Z\left(\frac{1}{2}+i t\right) X^{-1 / 2}\left(\frac{1}{2}+i t\right)=\mathcal{Z}(t) .
\end{aligned}
$$

Therefore $\mathcal{Z}(t) \in \mathbb{R}$ when $t \in \mathbb{R}$. The function $\mathcal{Z}(t)$ is the analogue of Hardy's classical function $\zeta\left(\frac{1}{2}+i t\right) \chi^{-1 / 2}\left(\frac{1}{2}+i t\right)$, where $\zeta(s)=\chi(s) \zeta(1-s)$, which plays a fundamental role in the study of the zeros of $\zeta(s)$ on the critical line $\operatorname{Re} s=1 / 2$. Taking $x=(t / 2 \pi)^{2}$ in Theorem 2.2, we then obtain, with the aid of Lemma 3.2, the following corollary.
Corollary 2.3. For $t \in \mathbb{R}$ such that $|t| \geq 1$,

$$
\begin{equation*}
\mathcal{Z}(t)=2 \sum_{n \leq(t / 2 \pi)^{2}} c_{n} n^{-1 / 2} \cos \left(t \log \left(\frac{(t / 2 \pi)^{2}}{n}\right)-2 t+(\kappa-1) \pi\right)+O_{\varepsilon}\left(t^{1 / 2+\mu(1 / 2)+\varepsilon}\right) \tag{2.8}
\end{equation*}
$$

One can compare (2.8) to the analogue for $Z^{4}(t)=\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4}$, since [5, equation (4.29)] may be rewritten as

$$
\begin{equation*}
Z^{4}(t)=2 \sum_{n \leq(t / 2 \pi)^{2}} d_{4}(n) n^{-1 / 2} \cos \left(t \log \left(\frac{(t / 2 \pi)^{2}}{n}\right)-2 t-\frac{1}{2} \pi\right)+O_{\varepsilon}\left(t^{13 / 48+\varepsilon}\right) \tag{2.9}
\end{equation*}
$$

where $d_{4}(n)=\sum_{a b c d=n} 1$ is the divisor function generated by $\zeta^{4}(s)$. The reason why the error term in (2.9) is sharper than that in (2.8) is that we have much more information on $\zeta^{4}(s)$ than on $Z(s)$.

The rest of this paper is organized as follows. In Section 3 we shall formulate and prove the lemmas necessary for the proofs. In Section 4 we shall prove Theorem 2.1, and in Section 5 we shall prove Theorem 2.2.

3. The necessary lemmas

Here is our first lemma.
Lemma 3.1. If $X>1$, then

$$
\begin{equation*}
\int_{0}^{X}\left|Z\left(\frac{1}{2}+i t\right)\right| d t<_{\varepsilon} X^{5 / 4+\varepsilon} \tag{3.1}
\end{equation*}
$$

Proof. From the decomposition (1.7) and the Cauchy-Schwarz inequality for integrals,

$$
\begin{equation*}
\int_{X / 2}^{X}\left|Z\left(\frac{1}{2}+i t\right)\right| d t \leq\left(\int_{X / 2}^{X}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t \int_{X / 2}^{X}\left|B\left(\frac{1}{2}+i t\right)\right|^{2} d t\right)^{1 / 2} \tag{3.2}
\end{equation*}
$$

Note that we have the elementary bound (see, for instance, [5, Ch. 1])

$$
\begin{equation*}
\int_{0}^{X}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t \ll X \log X \tag{3.3}
\end{equation*}
$$

and that $B(s)$ belongs to the Selberg class of degree three. Therefore $B(s)$ is analogous to $\zeta^{3}(s)$, and by following the proof of [5, Theorem 4.4] (when $k=3$) it may be seen that $B(s)$ satisfies an analogous approximate functional equation, where $M \geq(3 X)^{3} / Y$ and $X^{\varepsilon} \leq t \leq X$. Taking $Y=X^{3 / 2}$ and applying the mean value theorem for Dirichlet polynomials (see [5, Theorem 5.2]), we obtain, in view of (1.8),

$$
\begin{equation*}
\int_{X / 2}^{X}\left|B\left(\frac{1}{2}+i t\right)\right|^{2} d t<_{\varepsilon} X^{3 / 2+\varepsilon} \tag{3.4}
\end{equation*}
$$

The bound in (3.1) follows immediately from equations (3.2)-(3.4) if we replace X by $X / 2^{j}$ (where $j=1,2, \ldots$) and add the resulting expressions. The best bound for the integral in (3.1) is $X^{1+\varepsilon}$, up to ε. This follows, for instance, by obvious modifications of the arguments used in the proof of [5, Theorem 9.5]. It would improve the bound in (1.3) to $O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)$.

Lemma 3.2. For $0 \leq \sigma \leq 1$ fixed and $t \geq 3$,

$$
\begin{equation*}
X(\sigma+i t)=\left(\frac{t}{2 \pi}\right)^{2-4 \sigma} \exp \left(4 i t-4 i t \log \left(\frac{t}{2 \pi}\right)+(1-\kappa) \pi i\right) \times\left(1+O\left(\frac{1}{t}\right)\right) \tag{3.5}
\end{equation*}
$$

where the O-term admits an asymptotic expansion in negative powers of t.
Proof. This follows from (2.1) and the full form of Stirling's formula, that is,

$$
\log \Gamma(s+b)=\left(s+b-\frac{1}{2}\right) \log s-s+\frac{1}{2} \log 2 \pi+\sum_{j=1}^{K} \frac{(-1)^{j} B_{j+1}(b)}{j(j+1) s^{j}}+O_{\delta}\left(\frac{1}{|s|^{K+1}}\right),
$$

which holds for a constant b, any fixed integer $K \geq 1$, and $|\arg s| \leq \pi-\delta$ for $\delta>0$, where the points $s=0$ and the neighbourhoods of the poles of $\Gamma(s+b)$ are excluded, and the $B_{j}(b)$ are Bernoulli polynomials; see, for instance, Erdélyi et al. [2].

Lemma 3.3. Let $\tau=\tau(t)$ be defined by (2.2). Then

$$
\begin{equation*}
\tau=\left(\frac{t}{2 \pi}\right)^{4}\left(1+O\left(\frac{1}{t^{2}}\right)\right) \tag{3.6}
\end{equation*}
$$

where $t \geq 3$; the O-term admits an asymptotic expansion in negative powers of t. If $\Phi(w)$ is defined by (2.3), then $\Phi(w)(s-w)^{-2}$ is regular for $\operatorname{Re} w \leq \frac{1}{2}$ and also for $\operatorname{Re} w<\sigma$ if $\frac{1}{2}<\sigma \leq 1$. Moreover, uniformly in s for $\operatorname{Re} w=\frac{1}{2}$ and $t \geq 3$,

$$
\begin{equation*}
\Phi(w) \ll t^{2-4 \sigma} \min \left\{1,\left(t^{-1}|w-s|^{2}\right)\right\} . \tag{3.7}
\end{equation*}
$$

Proof. The functions τ and Φ were introduced, in the case of $\zeta^{2}(s)$, by Hardy and Littlewood [3] in their classical proof of the approximate functional equation for $\zeta^{2}(s)$. To prove (3.6), recall from (2.1) that

$$
X(s)=\frac{Z(s)}{Z(1-s)}=(2 \pi)^{4 s-2} \frac{\Gamma(\kappa-s) \Gamma(1-s)}{\Gamma(s+\kappa-1) \Gamma(s)} .
$$

Logarithmic differentiation then gives

$$
\begin{aligned}
& -\frac{X^{\prime}\left(\frac{1}{2}+i t\right)}{X\left(\frac{1}{2}+i t\right)} \\
& \quad=-4 \log (2 \pi)+\frac{\Gamma^{\prime}\left(\kappa-\frac{1}{2}-i t\right)}{\Gamma\left(\kappa-\frac{1}{2}-i t\right)}+\frac{\Gamma^{\prime}\left(\frac{1}{2}-i t\right)}{\Gamma\left(\frac{1}{2}-i t\right)}+\frac{\Gamma^{\prime}\left(\kappa-\frac{1}{2}+i t\right)}{\Gamma\left(\kappa-\frac{1}{2}+i t\right)}+\frac{\Gamma^{\prime}\left(\frac{1}{2}+i t\right)}{\Gamma\left(\frac{1}{2}+i t\right)}
\end{aligned}
$$

If we use (see [5, equation (A.35)])

$$
\frac{\Gamma^{\prime}(s)}{\Gamma(s)}=\log s-\frac{1}{2 s}+O\left(\frac{1}{|s|^{2}}\right)
$$

(when $|\arg s| \leq \pi-\delta$ and $|s| \geq \delta$), where the O-term has an asymptotic expansion in term of negative powers of s,

$$
\log \tau=-\frac{X^{\prime}\left(\frac{1}{2}+i t\right)}{X\left(\frac{1}{2}+i t\right)}=4 \log t-4 \log (2 \pi)+O\left(\frac{1}{t^{2}}\right)
$$

when $t \geq 3$, which is equivalent to (3.6).
The only nontrivial case concerning the regularity of $\Phi(w)(s-w)^{-2}$ is when $w=$ $\frac{1}{2}+i v$ and $s=\frac{1}{2}+i t$, and this follows from (3.7). If $w=\frac{1}{2}+i v$, then

$$
|\Phi(w)| \leq \tau^{1 / 2-\sigma}\left|X\left(\frac{1}{2}+i v\right)\right|+|X(\sigma+i t)| \ll t^{2-4 \sigma}
$$

in view of (3.6) and (3.5).
To obtain the other bound in (3.7) suppose that $|w-s| \ll \sqrt{t}$, which is the relevant range of its validity. Then $v \asymp t$ (that is, $v<t$ and $t \ll v$) for $w=\frac{1}{2}+i v$, and

$$
\frac{d^{2}}{d w^{2}} X(w) \asymp \frac{1}{t}
$$

when $w=\frac{1}{2}+i v$ and $v \asymp t$. Write (2.3) as

$$
\begin{equation*}
\Phi(w)=\tau^{w-s} X(w)\left(1-\frac{X(s)}{X(w)} \tau^{s-w}\right) \tag{3.8}
\end{equation*}
$$

and note that, by Taylor's formula,

$$
\begin{aligned}
\frac{X(s)}{X(w)} \tau^{s-w} & =\exp (\log X(s)-\log X(w)+(s-w) \log \tau) \\
& =\exp \left((s-w) \frac{X^{\prime}(w)}{X(w)}+O\left(|s-w|^{2} t^{-1}\right)+(s-w) \log \tau\right) \\
& =\exp \left((s-w) \frac{X^{\prime}\left(\frac{1}{2}+i t\right)}{X\left(\frac{1}{2}+i t\right)}+O\left(|s-w|^{2} t^{-1}\right)+(s-w) \log \tau\right) \\
& =1+O\left(|s-w|^{2} t^{-1}\right)
\end{aligned}
$$

in view of (2.2) and (2.6). If we insert this in (3.8), then we obtain the second estimate in (3.7) from (3.5) and (3.6).

4. Proof of Theorem 2.1

The idea of the proof of Theorem 2.1 goes back to Hardy and Littlewood [3], who considered the approximate functional equation for $\zeta^{2}(s)$. Wiebelitz [17] generalized their method to deal with $\zeta^{k}(s)$ when $k \in \mathbb{N}$ and $k>2$, and this was refined in [5, Theorem 4.3]. In what follows we shall make the modifications which are necessary in the case of $Z(s)$. Let the hypotheses of Theorem 2.1 hold and set

$$
\begin{aligned}
I=I(s, x) & =\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} Z(s+w) x^{w} w^{-4} d w \\
& =\sum_{n=1}^{\infty} c_{n} n^{-s}\left\{\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty}\left(\frac{x}{n}\right)^{w} w^{-4} d w\right\} \\
& =\frac{1}{3!} \sum_{n \leq x} c_{n} n^{-s} \log ^{3}(x / n)=S_{x}
\end{aligned}
$$

say, where we used the absolute convergence of $Z(s)$ for $\sigma>1$ and [5, equation (A.12)] with $k=4$, reflecting the fact that $Z(s)$ belongs to the Selberg class of degree $k=4$. The basic idea is to use a differencing argument to recover $\sum_{n \leq x} c_{n} n^{-s}$ from the same sum weighted by $\log ^{3}(x / n)$. To achieve this, first we move the line of integration in I to $\operatorname{Re} w=-1 / 4$. In doing this we pass over the poles $w=0$ and $w=1-s$ of the integrand, with the residues

$$
F_{x}=\sum_{m=0}^{3} \frac{Z^{(m)}(s)}{m!(3-m)!}(\log x)^{3-m}
$$

and

$$
Q_{x}:=\frac{C x^{1-s}}{(1-s)^{4}}
$$

respectively. Hence by the residue theorem,

$$
\begin{equation*}
J_{0}=\frac{1}{2 \pi i} \int_{-1 / 4-i \infty}^{-1 / 4+i \infty} Z(s+w) x^{w} w^{-4} d w=I-F_{x}-Q_{x}=S_{x}-F_{x}-Q_{x} \tag{4.1}
\end{equation*}
$$

In the integral in (4.1), set $z=s+w$, replace x by τ / y, and use the functional equation for $Z(s)$ and (2.3) in the form

$$
\tau^{u-s} X(u)=X(s)+\Phi(u ; s, \tau)
$$

to obtain

$$
\begin{aligned}
J_{0}= & \frac{1}{2 \pi i} \int_{-1 / 4-i \infty}^{-1 / 4+i \infty} Z(1-z) X(s) y^{s-z}(z-s)^{-4} d z \\
& +\frac{1}{2 \pi i} \int_{-1 / 4-i \infty}^{-1 / 4+i \infty} Z(1-z) \Phi(z ; s, \tau) y^{s-z}(z-s)^{-4} d z \\
= & X(s) J_{1}+J_{2},
\end{aligned}
$$

say. This is the point that explains the definition of the function Φ in (2.3). We use [5, equation (A.12)] again to deduce that

$$
J_{1}=\frac{1}{3!} \sum_{n \leq y} c_{n} n^{s-1} \log ^{3}(x / n)=S_{y}
$$

with notation similar to when we evaluated I. The line of integration in J_{2} is moved to $\operatorname{Re} z=1 / 4$. We pass over the pole $z=0$ of the integrand, picking up the residue $-X(s) Q_{y}$, where

$$
Q_{y}=-\frac{C y^{s}}{s^{4}}
$$

Therefore from (4.1),

$$
\begin{equation*}
F_{x}-S_{x}+Q_{x}=-X(s)\left(S_{y}-Q_{y}\right)-J_{y} \tag{4.2}
\end{equation*}
$$

with

$$
J_{y}=\frac{1}{2 \pi i} \int_{1 / 4-i \infty}^{1 / 4+i \infty} Z(1-z) \Phi(z ; s, \tau) y^{s-z}(z-s)^{-4} d z
$$

In (4.2) we replace x and y by $x e^{v h}$ and $y e^{-v h}$ (where $0 \leq v \leq 3$), respectively, so that the condition $x e^{\nu h} \cdot y e^{-v h}=\tau$ is preserved. We use (see [5, equations (4.39) and (4.40)])

$$
\begin{equation*}
\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} v^{p}=m!\quad \forall p \in \mathbb{N} \tag{4.3}
\end{equation*}
$$

when $p=m$, and the result that the sum is equal to 0 when $p<m$, and the estimate

$$
e^{z}=\sum_{n=0}^{M} \frac{z^{n}}{n!}+O\left(|z|^{M+1}\right)
$$

(when $M \geq 1$ and $a \leq \operatorname{Re} z \leq b$), where a and b are fixed. To better distinguish the sums which will arise in this process, we introduce left indices to obtain, from (4.2),

$$
\sum_{v=0}^{3}(-1)^{v}\binom{3}{v}\left({ }_{\nu} F_{x}-{ }_{v} S_{x}+{ }_{\nu} Q_{x}+X(s)\left({ }_{v} S_{y}-{ }_{v} Q_{y}\right)+{ }_{v} J_{y}\right)=0
$$

or abbreviating,

$$
\begin{equation*}
\bar{F}_{x}-\bar{S}_{x}+\bar{Q}_{x}+X(s) \bar{S}_{y}-X(s) \bar{Q}_{y}+\bar{J}_{y}=0 \tag{4.4}
\end{equation*}
$$

Each term in (4.4) will be evaluated or estimated separately. First,

$$
\bar{F}_{x}=\sum_{m=0}^{3} \frac{Z^{(m)}(s)}{3!(3-m)!} A_{m}(x)
$$

where

$$
\begin{aligned}
A_{m}(x) & =\sum_{v=0}^{3}(-1)^{v}\binom{3}{v}(\log x+v h)^{3-m} \\
& =\sum_{r=0}^{3-m}\binom{3-m}{r} h^{r} \log ^{3-m-r} x \sum_{v=0}^{3}(-1)^{v}\binom{3}{v} v^{r}=3!h^{3}
\end{aligned}
$$

for $m=0$, and otherwise $A_{m}(x)=0$, where we used (4.3). Therefore

$$
\bar{F}_{x}=h^{3} Z(s),
$$

and this is exactly what is needed for the approximate functional equation that will follow on dividing (4.4) by h^{3}. Consider next

$$
\begin{aligned}
\bar{S}_{x}= & \frac{1}{3!} \sum_{n \leq x} c_{n} n^{-s} \sum_{v=0}^{3}\binom{3}{v}(-1)^{v}(v h+\log (x / n))^{3} \\
& +\frac{1}{3!} \sum_{v=0}^{3}\binom{3}{v}(-1)^{v} \sum_{x<n \leq x e^{v h}} c_{n} n^{-s}(v h+\log (x / n))^{3} \\
= & \Sigma_{1}+\Sigma_{2},
\end{aligned}
$$

say. Analogously to the evaluation of \bar{F}_{x} it follows that

$$
\Sigma_{1}=h^{3} \sum_{n \leq x} c_{n} n^{-s} .
$$

We estimate Σ_{2} trivially, using (1.5), to obtain

$$
\begin{aligned}
\left|\Sigma_{2}\right| & \leq \frac{1}{3!} \sum_{v=0}^{3}\binom{3}{v}(2 v h)^{3} x^{-\sigma} \sum_{x<n \leq x e^{3 h}} c_{n} \\
& \ll_{\varepsilon} h^{3} x^{-\sigma} t^{\varepsilon}\left(1+x\left(e^{3 h}-1\right)\right)<_{\varepsilon} t^{\varepsilon}\left(h^{3} x^{-\sigma}+h^{4} x^{1-\sigma}\right)
\end{aligned}
$$

Similarly, it follows that

$$
\begin{aligned}
-X(s) \bar{S}_{y} & =h^{3} X(s) \sum_{n \leq y} c_{n} n^{s-1}+O_{\varepsilon}\left(h^{3}|X(\sigma+i t)| \sum_{v=0}^{3} \sum_{y e^{-3 h}<n \leq y} c_{n} n^{\sigma-1}\right) \\
& =h^{3} X(s) \sum_{n \leq y} c_{n} n^{s-1}+O_{\varepsilon}\left(h^{3} t^{2+\varepsilon-4 \sigma}\left(y^{\sigma-1}+h y^{\sigma}\right)\right) .
\end{aligned}
$$

Also

$$
\bar{Q}_{x}=3!h^{3} C \frac{x^{1-s}}{1-s}+O\left(h^{4} x^{1-\sigma}\right)
$$

and

$$
X(s) \bar{Q}_{y}=C_{2} X(s) h^{3} \frac{y^{s}}{s}+O_{\varepsilon}\left(t^{2+\varepsilon-4 \sigma} h^{4} y^{\sigma}\right)
$$

Therefore we are left with the evaluation of

$$
\bar{J}_{y}=\frac{1}{2 \pi i} \int_{1 / 4-i \infty}^{1 / 4+i \infty} Z(1-z) \Phi(z ; s, \tau) y^{s-z}(z-s)^{-4} \sum_{v=0}^{3}(-1)^{v}\binom{3}{v} e^{-v h(s-z)} d z
$$

Observing that (3.7) holds and that the function

$$
\sum_{v=0}^{3}(-1)^{v}\binom{3}{v} e^{-v h(s-z)}=\left(1-e^{-h(s-z)}\right)^{3}
$$

has a zero of order three at $z=s$, we can move the line of integration in \bar{J}_{y} to $\operatorname{Re} z=\frac{1}{2}$. Hence

$$
\bar{J}_{y}=\frac{1}{2 \pi i} \int_{1 / 2-i \infty}^{1 / 2+i \infty} Z(1-z) \Phi(z ; s, \tau) y^{s-z}(z-s)^{-4}\left(1-e^{-h(s-z)}\right)^{3} d z
$$

Therefore we obtain the assertion of Theorem 2.1 from (4.4) by dividing the whole expression by h^{3} and collecting the above estimates for the error terms.

5. Proof of Theorem 2.2

We set $s=\frac{1}{2}+i t$ and $z=\frac{1}{2}+i v$ in (2.4), and write the right-hand-side integral as

$$
\begin{equation*}
i \int_{-\infty}^{\infty} \cdots d v=i\left(\int_{-\infty}^{t / 2}+\int_{t / 2}^{2 t}+\int_{2 t}^{\infty}\right) \cdots d v=i\left(I_{1}+I_{2}+I_{3}\right) \tag{5.1}
\end{equation*}
$$

say. The integrals I_{1} and I_{3} are estimated similarly. The latter is, by trivial estimation and the first bound in (3.7),

$$
\begin{align*}
\int_{2 t}^{\infty} & Z\left(\frac{1}{2}-i v\right) \Phi\left(\frac{1}{2}+i v ; s, \tau\right) y^{i(t-v)}(t-v)^{-4}\left(1-e^{-h i(t-v)}\right)^{3} d v \\
& \ll \int_{2 t}^{\infty}\left|Z\left(\frac{1}{2}+i v\right)\right| v^{-4} d v<{ }_{\varepsilon} t^{\varepsilon-11 / 4} \tag{5.2}
\end{align*}
$$

where we used (3.1). From (2.4), (5.1) and (5.2), it follows that

$$
\begin{gather*}
Z(s)=\sum_{n \leq x} c_{n} n^{-s}+X(s) \sum_{n \leq y} c_{n} n^{s-1}+C_{1} \frac{x^{1-s}}{1-s}+C_{2} X(s) \frac{y^{s}}{s} \tag{5.3}\\
+O_{\varepsilon}\left(1+t^{\varepsilon-11 / 16}\left(x^{1 / 2}+t^{2} x^{-1 / 2}\right)^{3 / 4}\right)-\frac{1}{2 \pi i h^{3}} I_{2}
\end{gather*}
$$

with the choice

$$
h=t^{-11 / 16}\left(x^{1 / 2}+t^{2} x^{-1 / 2}\right)^{-1 / 4}
$$

so that $0<h \leq 1$. To estimate I_{2}, we use

$$
\left(1-e^{-h i(t-v)}\right)^{3} \ll h^{3}|t-v|^{3}
$$

and the second bound in (3.7) $\left(\sigma=\frac{1}{2}\right)$. This gives, on using the Cauchy-Schwarz inequality for integrals,

$$
\begin{align*}
h^{-3} I_{2} & \ll \int_{t / 2}^{2 t}\left|Z\left(\frac{1}{2}+i v\right)\right| \min \left(\frac{1}{|t-v|}, \frac{|t-v|}{v}\right) d v \\
& \ll\left(\int_{t / 2}^{2 t}\left|Z\left(\frac{1}{2}+i v\right)\right|^{2} d v\right)^{1 / 2}\left(j_{1}+j_{2}+j_{3}\right)^{1 / 2} \tag{5.4}
\end{align*}
$$

say. By (1.7), (3.4) and the definition of the μ-function,

$$
\begin{equation*}
\int_{t / 2}^{2 t}\left|Z\left(\frac{1}{2}+i v\right)\right|^{2} d v=\int_{t / 2}^{2 t}\left|\zeta\left(\frac{1}{2}+i v\right)\right|^{2}\left|B\left(\frac{1}{2}+i v\right)\right|^{2} d v<_{\varepsilon} t^{2 \mu(1 / 2)+3 / 2+\varepsilon} \tag{5.5}
\end{equation*}
$$

Now

$$
j_{1}=\int_{t / 2}^{t-\sqrt{t}} \frac{d v}{(t-v)^{2}} \ll \frac{1}{\sqrt{t}},
$$

and the same bound holds for

$$
j_{3}=\int_{t+\sqrt{t}}^{2 t} \frac{d v}{(t-v)^{2}}
$$

Further,

$$
j_{2}=\int_{t-\sqrt{t}}^{t+\sqrt{t}}(t-v)^{2} \frac{d v}{v^{2}} \ll \frac{1}{\sqrt{t}},
$$

so that from (5.4) and (5.5) and the bounds for j_{1}, j_{2} and j_{3}, we infer that

$$
\begin{equation*}
h^{-3} I_{2}<\varepsilon_{\varepsilon} t^{1 / 2+\mu(1 / 2)+\varepsilon} \tag{5.6}
\end{equation*}
$$

The assertion of Theorem 2.2 follows from (5.3) and (5.6), since the first error term in (5.3) is absorbed by the right-hand side of (5.6), because $x^{1 / 2} \ll t^{2}$.

References

[1] P. Deligne, 'La conjecture de Weil', Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273-307.
[2] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Volume I (McGraw-Hill, New York, 1953).
[3] G. H. Hardy and J. E. Littlewood, 'The approximate functional equation for $\zeta(s)$ and $\zeta^{2}(s)^{\prime}$, Proc. Lond. Math. Soc. 29 (1929), 81-97.
[4] M. N. Huxley, 'Exponential sums and the Riemann zeta function V', Proc. Lond. Math. Soc. 90 (2005), 1-41.
[5] A. Ivić, The Riemann Zeta-Function (Wiley, New York, 1985), (2nd edn, Dover, Mineola, NY, 2003).
[6] A. Ivić, Lectures on Mean Values of the Riemann Zeta-Function, Lectures on Mathematics and Physics, 82 (Springer, Berlin, 1991).
[7] A. Ivić, 'An approximate functional equation for a class of Dirichlet series', J. Anal. (Madras, India) 3 (1995), 241-252.
[8] A. Ivić, K. Matsumoto and Y. Tanigawa, 'On Riesz mean of the coefficients of the Rankin-Selberg series', Math. Proc. Cambridge Philos. Soc. 127 (1999), 117-131.
[9] A. Kaczorowski and A. Perelli, 'The Selberg class: a survey', in: Number Theory in Progress, Proc. Conf. in Honour of A. Schinzel, (eds. K. Győry, H. Iwaniec and J. Urbanowicz) (W. de Gruyter, Berlin, 1999), pp. 953-992.
[10] H. Li and J. Wu, 'The universality of symmetric power L-functions and their Rankin-Selberg L-functions', J. Math. Soc. Japan 59 (2007), 371-392.
[11] R. A. Rankin, 'Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions II. The order of the Fourier coefficients of integral modular forms', Proc. Cambridge Philos. Soc. 35 (1939), 357-372.
[12] R. A. Rankin, Modular Forms and Functions (Cambridge University Press, Cambridge, 1977).
[13] A. Sankaranarayanan, 'Fundamental properties of symmetric square L-functions I', Illinois J. Math. 46 (2002), 23-43.
[14] A. Selberg, 'Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist', Arch. Math. Naturvid. 43 (1940), 47-50.
[15] A. Selberg, Old and new conjectures and results about a class of Dirichlet series', Proc. Amalfi Conf. Analytic Number Theory 1989 (eds. E. Bombieri et al.), University of Salerno, Salerno, 1992, pp. 367-385.
[16] G. Shimura, 'On the holomorphy of certain Dirichlet series', Proc. Lond. Math. Soc. 31 (1975), 79-98.
[17] R. Wiebelitz, 'Über approximative Funktionalgleichungen der Potenzen der Riemannschen Zetafunktion', Math. Nachr. 6 (1951-1952), 263-270.

ALEKSANDAR IVIĆ, Katedra Matematike RGF-a, Universitet u Beogradu,
Đušina 7, 11000 Beograd, Serbia
e-mail: ivic@rgf.bg.ac.rs, aivic@ matf.bg.ac.rs

[^0]: (C) 2012 Australian Mathematical Publishing Association Inc. 1446-7887/2012 \$16.00

