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Abstract

We obtain the approximate functional equation for the Rankin–Selberg zeta function in the critical strip
and, in particular, on the critical line Re s = 1

2 .
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1. Introduction

Let ϕ(z) be a holomorphic cusp form of weight κ with respect to the full modular group
SL(2, Z), so that

ϕ

(
az + b
cz + d

)
= (cz + d)κϕ(z)

where a, b, c, d ∈ Z and ad − bc = 1, Im z > 0 and limIm z→∞ ϕ(z) = 0 (see, for instance,
Rankin [12] for basic notions). We denote by a(n) the nth Fourier coefficient of ϕ(z)
and suppose that ϕ(z) is a normalized eigenfunction for the Hecke operators T (n), that
is, a(1) = 1 and T (n)ϕ = a(n)ϕ for every n ∈ N (see Rankin [12] for the definition and
properties of the Hecke operators). The classical example is a(n) = τ(n), when κ = 12.
This is the well-known Ramanujan tau function, defined by

∞∑
n=1

τ(n)xn = x{(1 − x)(1 − x2)(1 − x3) · · · }
24

when |x| < 1.
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Let cn be the nonnegative convolution function defined by

cn = n1−κ
∑
m2 |n

m2(κ−1)
∣∣∣∣∣a( n

m2

)∣∣∣∣∣2. (1.1)

Note that cn is a multiplicative arithmetic function, that is, cmn = cmcn when (m, n) = 1,
since a(n) is multiplicative.

The well-known Rankin–Selberg problem consists of the estimation of the error
term function

∆(x) =
∑
n6x

cn −Cx. (1.2)

The positive constant C in (1.2) may be written explicitly (see, for instance, [8]):

C = C(ϕ) =
2π2(4π)κ−1

Γ(κ)

"
F

yκ−2|ϕ(x + iy)|2 dx dy,

the integral being taken over a fundamental domain F of the group SL(2, Z). The
classical upper bound for ∆(x) (strictly speaking, ∆(x) = ∆(x; ϕ)) due to Rankin and
Selberg, obtained independently in their important works [11, 14] published in 1939–
1940, is

∆(x) = O(x3/5). (1.3)

This result is one of the longest-standing unimproved bounds of analytic number
theory, but this paper is not concerned with this problem. Our object of study is the
so-called Rankin–Selberg zeta function

Z(s) =

∞∑
n=1

cnn−s, (1.4)

which is the generating Dirichlet series for the sequence {cn}n≥1. One can
define the Rankin–Selberg zeta function in various degrees of generality; see, for
instance, Li and Wu [10] where the authors establish universality properties of such
functions.

Note that the series in (1.4) converges absolutely if Re s > 1. Indeed, from (1.2) and
the estimate, due to Deligne [1], that |a(n)| ≤ n(κ−1)/2d(n), where d(n) is the number of
positive divisors of n (note that d(n)�ε nε),

cn�ε nε, (1.5)

providing absolute convergence of Z(s) when Re s > 1. Here and later ε denotes an
arbitrarily small constant, not necessarily the same at each occurrence, while a = Oε(b)
and a�ε b mean that a 6Cb, where C depends on ε.

When Re s ≤ 1, the function Z(s) is defined by analytic continuation. It has a simple
pole at s = 1 with residue C (compare with (1.1)), and is otherwise regular. For every
s ∈ C it satisfies the functional equation

Γ(s + κ − 1)Γ(s)Z(s) = (2π)4s−2Γ(κ − s)Γ(1 − s)Z(1 − s), (1.6)
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where Γ(s) is the gamma function. One has the decomposition

Z(s) = ζ(2s)
∞∑

n=1

|a(n)|2n1−κ−s,

where ζ(s) is the familiar Riemann zeta function (ζ(s) =
∑∞

n=1 n−s when Re s > 1). This
formula is the analytic equivalent of the arithmetic relation (1.1). In our context, it is
more important that one also has the decomposition

Z(s) =

∞∑
n=1

cnn−s = ζ(s)
∞∑

n=1

bnn−s = ζ(s)B(s), (1.7)

say, where B(s) belongs to the Selberg class of Dirichlet series of degree three. The
coefficients bn in (1.7) are multiplicative and satisfy

bn�ε nε. (1.8)

This follows from the formula

bn =
∑
d|n

µ(d)cn/d,

which is a consequence of (1.7), the Möbius inversion formula and (1.5). Actually the
coefficients bn are bounded by a log power (see [13]) in mean square, but this stronger
property is not needed here. For the definition and basic properties of the Selberg
class S of L-functions the reader is referred to Selberg’s seminal paper [15] and the
comprehensive survey paper of Kaczorowski and Perelli [9].

In view of (1.8), the series for B(s) converges absolutely when Re s > 1, but B(s)
has an analytic continuation that is holomorphic when Re s > 0. This important fact
follows from Shimura’s work [16] (see also Sankaranarayanan [13]), and it implies
that (1.7), that is, Z(s) = ζ(s)B(s), holds when Re s > 0 and not only when Re s > 1.
The function B(s) is of degree three in S, as its functional equation (see, for instance,
Sankaranarayanan [13]) is

B(s)∆1(s) = B(1 − s)∆1(1 − s),

∆1(s) = π−3s/2Γ( 1
2 (s + κ − 1))Γ( 1

2 (s + κ))Γ( 1
2 (s + κ + 1)).

It is very likely that B(s) is primitive in S, that is, it cannot be factored nontrivially as
F1(s)F2(s) with F1, F2 ∈ S, but this seems hard to prove. Since B(s) is holomorphic
for Re s > 0, it would follow that one of the factors, say F1(s), is L(s + iα, χ) for some
α ∈ R and χ a primitive Dirichlet character. This follows from the fact that elements
of degree one in S are ζ(s + iα) and L(s + iα, χ). However, then F2(s) would have
degree two in S, but the classification of functions in S of degree two is a difficult
open problem.

2. The approximate functional equation for Z(s)

Approximate functional equations are an important tool in the study of Dirichlet
series F(s) =

∑
n≥1 f (n)n−s. Their purpose is to approximate F(s) by Dirichlet
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polynomials of the type
∑

n≤x f (n)n−s in a certain region where the series defining
F(s) does not converge absolutely. In the case of the powers of ζ(s) they were studied,
for instance, in [5, Ch. 4] and [6], and in a more general setting by the author [7].

Before we state our results, which involve approximations of Z(s) by Dirichlet
polynomials of the form

∑
n≤x cnn−s, we need some notation. Let (see (1.6))

X(s) =
Z(s)

Z(1 − s)
= (2π)4s−2 Γ(κ − s)Γ(1 − s)

Γ(s + κ − 1)Γ(s)
, (2.1)

let τ = τ(t) be defined by

log τ = −
X′( 1

2 + it)

X( 1
2 + it)

(2.2)

where t ≥ 3, and
Φ(w) = Φ(w; s, τ) = τw−sX(w) − X(s) (2.3)

where 1
2 ≤ σ = Re s ≤ 1. Then the following theorem holds.

T 2.1. If 1
2 ≤ σ = Re s ≤ 1, t ≥ 3, and s = σ + it, then

Z(s) =
∑
n≤x

cnn−s + X(s)
∑
n≤y

cnns−1 + C1
x1−s

1 − s
+ C2X(s)

ys

s

+ Oε{t
ε(x−σ + hx1−σ) + t2+ε−4σ(yσ−1 + hyσ)}

−
1

2πih3

∫ 1/2+i∞

1/2−i∞
Z(1 − z)Φ(z; s, τ)ys−z(z − s)−4(1 − e−h(s−z))3 dz,

(2.4)

where xy = τ, 1� x� τ, 1� y� τ, 0 < h ≤ 1 is a parameter to be suitably chosen,
and C1 and C2 are absolute constants.

The restriction 1
2 ≤ σ = Re s ≤ 1 in Theorem 2.1 can be removed, and one can

consider the whole range 0 ≤ σ ≤ 1. For 0 ≤ σ ≤ 1
2 this is achieved by replacing s

by 1 − s, interchanging x and y, and using Z(1 − s)X(s) = Z(s), together with (2.4) and
(3.5) of Lemma 3.2.

The most important case of Theorem 2.1 is when s lies on the so-called critical line
Re s = 1

2 , that is, s = 1
2 + it. Then we obtain the following result from (2.4).

T 2.2. If s = 1
2 + it, t ≥ 3, xy = τ, 1� x� τ and 1� y� τ, then

Z(s) =
∑
n≤x

cnn−s + X(s)
∑
n≤y

cnns−1 + C1
x1−s

1 − s
+ C2X(s)

ys

s

+ Oε(tε−11/16(x1/2 + t2x−1/2)3/4) + Oε(t1/2+µ(1/2)+ε),

(2.5)

where, for σ ∈ R,

µ(σ) = lim sup
t→∞

log |ζ(σ + it)|
log t

.
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The best-known result, that µ(1/2) ≤ 32/205 = 0.15609 . . ., is due to Huxley [4].
The famous Lindelöf hypothesis is that µ(1/2) = 0 (this is equivalent to µ(σ) = 0 for
σ ≥ 1/2), and it makes the second error term in (2.5) equal to Oε(t1/2+ε).

In general, if one introduces smooth weights in the sums in question, then the
ensuing error terms are substantially improved. This was done, for instance, in [5,
Ch. 4], in [6] and in [7]. From [7, equations (19) and (20)], with σ = 1

2 , K = 4, t ≥ 3,
xy = τ, and 1� x, y� τ,

Z(s) =
∑
n≤x

ρ(n/x)cnn−s + X(s)
∑
n≤y

ρ(n/y)cnns−1 + Oε(tε), (2.6)

where s = 1
2 + it. The smooth function ρ(x) is defined as follows (see [6, Ch. 4] for an

explicit construction). Let b > 1 be a fixed constant and ρ(x) ∈C∞(0,∞). Then

ρ(x) + ρ(1/x) = 1 ∀x > 0 and ρ(x) = 0 ∀x ≥ b.

There is another aspect of this subject worth mentioning. One can consider the
function

Z(t) = Z( 1
2 + it)X−1/2( 1

2 + it) (2.7)

where t ∈ R. The functional equation for Z(s) in the form Z(s) = X(s)Z(1 − s) leads
easily to X(s)X(1 − s) = 1, hence

Z(t) = Z( 1
2 − it)X−1/2( 1

2 − it) = Z( 1
2 + it)X( 1

2 − it)X−1/2( 1
2 − it)

= Z( 1
2 + it)X−1/2( 1

2 + it) =Z(t).

ThereforeZ(t) ∈ R when t ∈ R. The functionZ(t) is the analogue of Hardy’s classical
function ζ( 1

2 + it)χ−1/2( 1
2 + it), where ζ(s) = χ(s)ζ(1 − s), which plays a fundamental

role in the study of the zeros of ζ(s) on the critical line Re s = 1/2. Taking x = (t/2π)2

in Theorem 2.2, we then obtain, with the aid of Lemma 3.2, the following corollary.

C 2.3. For t ∈ R such that |t| ≥ 1,

Z(t) = 2
∑

n≤(t/2π)2

cnn−1/2 cos
(
t log

( (t/2π)2

n

)
− 2t + (κ − 1)π

)
+ Oε(t1/2+µ(1/2)+ε). (2.8)

One can compare (2.8) to the analogue for Z4(t) = |ζ( 1
2 + it)|4, since [5, equation

(4.29)] may be rewritten as

Z4(t) = 2
∑

n≤(t/2π)2

d4(n)n−1/2 cos
(
t log

( (t/2π)2

n

)
− 2t −

1
2
π
)

+ Oε(t13/48+ε), (2.9)

where d4(n) =
∑

abcd=n 1 is the divisor function generated by ζ4(s). The reason why the
error term in (2.9) is sharper than that in (2.8) is that we have much more information
on ζ4(s) than on Z(s).

The rest of this paper is organized as follows. In Section 3 we shall formulate and
prove the lemmas necessary for the proofs. In Section 4 we shall prove Theorem 2.1,
and in Section 5 we shall prove Theorem 2.2.
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3. The necessary lemmas

Here is our first lemma.

L 3.1. If X > 1, then ∫ X

0

∣∣∣∣∣Z(1
2

+ it
)∣∣∣∣∣ dt�ε X5/4+ε. (3.1)

P. From the decomposition (1.7) and the Cauchy–Schwarz inequality for
integrals, ∫ X

X/2

∣∣∣∣∣Z(1
2

+ it
)∣∣∣∣∣ dt ≤

(∫ X

X/2

∣∣∣∣∣ζ(1
2

+ it
)∣∣∣∣∣2 dt

∫ X

X/2

∣∣∣∣∣B(1
2

+ it
)∣∣∣∣∣2 dt

)1/2

. (3.2)

Note that we have the elementary bound (see, for instance, [5, Ch. 1])∫ X

0

∣∣∣∣∣ζ(1
2

+ it
)∣∣∣∣∣2 dt� X log X, (3.3)

and that B(s) belongs to the Selberg class of degree three. Therefore B(s) is analogous
to ζ3(s), and by following the proof of [5, Theorem 4.4] (when k = 3) it may be seen
that B(s) satisfies an analogous approximate functional equation, where M ≥ (3X)3/Y
and Xε ≤ t ≤ X. Taking Y = X3/2 and applying the mean value theorem for Dirichlet
polynomials (see [5, Theorem 5.2]), we obtain, in view of (1.8),∫ X

X/2

∣∣∣∣∣B(1
2

+ it
)∣∣∣∣∣2 dt�ε X3/2+ε. (3.4)

The bound in (3.1) follows immediately from equations (3.2)–(3.4) if we replace X by
X/2 j (where j = 1, 2, . . .) and add the resulting expressions. The best bound for the
integral in (3.1) is X1+ε, up to ε. This follows, for instance, by obvious modifications
of the arguments used in the proof of [5, Theorem 9.5]. It would improve the bound in
(1.3) to Oε(x1/2+ε). �

L 3.2. For 0 ≤ σ ≤ 1 fixed and t ≥ 3,

X(σ + it) =

( t
2π

)2−4σ

exp
(
4it − 4it log

( t
2π

)
+ (1 − κ)πi

)
×

(
1 + O

(1
t

))
, (3.5)

where the O-term admits an asymptotic expansion in negative powers of t.

P. This follows from (2.1) and the full form of Stirling’s formula, that is,

log Γ(s + b) =

(
s + b −

1
2

)
log s − s +

1
2

log 2π +

K∑
j=1

(−1) jB j+1(b)

j( j + 1)s j
+ Oδ

( 1
|s|K+1

)
,

which holds for a constant b, any fixed integer K ≥ 1, and |arg s| ≤ π − δ for δ > 0,
where the points s = 0 and the neighbourhoods of the poles of Γ(s + b) are excluded,
and the B j(b) are Bernoulli polynomials; see, for instance, Erdélyi et al. [2]. �
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L 3.3. Let τ = τ(t) be defined by (2.2). Then

τ =

( t
2π

)4(
1 + O

( 1
t2

))
, (3.6)

where t ≥ 3; the O-term admits an asymptotic expansion in negative powers of t. If
Φ(w) is defined by (2.3), then Φ(w)(s − w)−2 is regular for Re w ≤ 1

2 and also for
Re w < σ if 1

2 < σ ≤ 1. Moreover, uniformly in s for Re w = 1
2 and t ≥ 3,

Φ(w)� t2−4σ min{1, (t−1|w − s|2)}. (3.7)

P. The functions τ and Φ were introduced, in the case of ζ2(s), by Hardy and
Littlewood [3] in their classical proof of the approximate functional equation for ζ2(s).
To prove (3.6), recall from (2.1) that

X(s) =
Z(s)

Z(1 − s)
= (2π)4s−2 Γ(κ − s)Γ(1 − s)

Γ(s + κ − 1)Γ(s)
.

Logarithmic differentiation then gives

−
X′( 1

2 + it)

X( 1
2 + it)

= −4 log(2π) +
Γ′(κ − 1

2 − it)

Γ(κ − 1
2 − it)

+
Γ′( 1

2 − it)

Γ( 1
2 − it)

+
Γ′(κ − 1

2 + it)

Γ(κ − 1
2 + it)

+
Γ′( 1

2 + it)

Γ( 1
2 + it)

.

If we use (see [5, equation (A.35)])

Γ′(s)
Γ(s)

= log s −
1
2s

+ O
( 1
|s|2

)
(when |arg s| ≤ π − δ and |s| ≥ δ), where the O-term has an asymptotic expansion in
term of negative powers of s,

log τ = −
X′( 1

2 + it)

X( 1
2 + it)

= 4 log t − 4 log(2π) + O
( 1
t2

)
when t ≥ 3, which is equivalent to (3.6).

The only nontrivial case concerning the regularity of Φ(w)(s − w)−2 is when w =
1
2 + iv and s = 1

2 + it, and this follows from (3.7). If w = 1
2 + iv, then

|Φ(w)| ≤ τ1/2−σ|X( 1
2 + iv)| + |X(σ + it)| � t2−4σ,

in view of (3.6) and (3.5).
To obtain the other bound in (3.7) suppose that |w − s| �

√
t, which is the relevant

range of its validity. Then v � t (that is, v� t and t� v) for w = 1
2 + iv, and

d2

dw2
X(w) �

1
t
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when w = 1
2 + iv and v � t. Write (2.3) as

Φ(w) = τw−sX(w)
(
1 −

X(s)
X(w)

τs−w
)

(3.8)

and note that, by Taylor’s formula,

X(s)
X(w)

τs−w = exp(log X(s) − log X(w) + (s − w) log τ)

= exp
(
(s − w)

X′(w)
X(w)

+ O(|s − w|2t−1) + (s − w) log τ
)

= exp
(
(s − w)

X′( 1
2 + it)

X( 1
2 + it)

+ O(|s − w|2t−1) + (s − w) log τ
)

= 1 + O(|s − w|2t−1),

in view of (2.2) and (2.6). If we insert this in (3.8), then we obtain the second estimate
in (3.7) from (3.5) and (3.6). �

4. Proof of Theorem 2.1

The idea of the proof of Theorem 2.1 goes back to Hardy and Littlewood [3], who
considered the approximate functional equation for ζ2(s). Wiebelitz [17] generalized
their method to deal with ζk(s) when k ∈ N and k > 2, and this was refined in [5,
Theorem 4.3]. In what follows we shall make the modifications which are necessary
in the case of Z(s). Let the hypotheses of Theorem 2.1 hold and set

I = I(s, x) =
1

2πi

∫ 2+i∞

2−i∞
Z(s + w)xww−4 dw

=

∞∑
n=1

cnn−s
{ 1

2πi

∫ 2+i∞

2−i∞

( x
n

)w

w−4 dw
}

=
1
3!

∑
n≤x

cnn−s log3(x/n) = S x,

say, where we used the absolute convergence of Z(s) for σ > 1 and [5, equation (A.12)]
with k = 4, reflecting the fact that Z(s) belongs to the Selberg class of degree k = 4. The
basic idea is to use a differencing argument to recover

∑
n≤x cnn−s from the same sum

weighted by log3(x/n). To achieve this, first we move the line of integration in I to
Re w = −1/4. In doing this we pass over the poles w = 0 and w = 1 − s of the integrand,
with the residues

Fx =

3∑
m=0

Z(m)(s)
m! (3 − m)!

(log x)3−m

and

Qx :=
Cx1−s

(1 − s)4
,
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respectively. Hence by the residue theorem,

J0 =
1

2πi

∫ −1/4+i∞

−1/4−i∞
Z(s + w)xww−4 dw = I − Fx − Qx = S x − Fx − Qx. (4.1)

In the integral in (4.1), set z = s + w, replace x by τ/y, and use the functional equation
for Z(s) and (2.3) in the form

τu−sX(u) = X(s) + Φ(u; s, τ)

to obtain

J0 =
1

2πi

∫ −1/4+i∞

−1/4−i∞
Z(1 − z)X(s)ys−z(z − s)−4 dz

+
1

2πi

∫ −1/4+i∞

−1/4−i∞
Z(1 − z)Φ(z; s, τ)ys−z(z − s)−4 dz

= X(s)J1 + J2,

say. This is the point that explains the definition of the function Φ in (2.3). We use [5,
equation (A.12)] again to deduce that

J1 =
1
3!

∑
n≤y

cnns−1 log3(x/n) = S y,

with notation similar to when we evaluated I. The line of integration in J2 is moved
to Re z = 1/4. We pass over the pole z = 0 of the integrand, picking up the residue
−X(s)Qy, where

Qy = −
Cys

s4
.

Therefore from (4.1),

Fx − S x + Qx = −X(s)(S y − Qy) − Jy (4.2)

with

Jy =
1

2πi

∫ 1/4+i∞

1/4−i∞
Z(1 − z)Φ(z; s, τ)ys−z(z − s)−4 dz.

In (4.2) we replace x and y by xeνh and ye−νh (where 0 ≤ ν ≤ 3), respectively, so that the
condition xeνh · ye−νh = τ is preserved. We use (see [5, equations (4.39) and (4.40)])

m∑
ν=0

(−1)ν
(
m
ν

)
νp = m! ∀p ∈ N (4.3)

when p = m, and the result that the sum is equal to 0 when p < m, and the estimate

ez =

M∑
n=0

zn

n!
+ O(|z|M+1),
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(when M ≥ 1 and a ≤ Re z ≤ b), where a and b are fixed. To better distinguish the sums
which will arise in this process, we introduce left indices to obtain, from (4.2),

3∑
ν=0

(−1)ν
(
3
ν

)
(νFx − νS x + νQx + X(s)(νS y − νQy) + νJy) = 0,

or abbreviating,
F̄x − S̄ x + Q̄x + X(s)S̄ y − X(s)Q̄y + J̄y = 0. (4.4)

Each term in (4.4) will be evaluated or estimated separately. First,

F̄x =

3∑
m=0

Z(m)(s)
3! (3 − m)!

Am(x),

where

Am(x) =

3∑
ν=0

(−1)ν
(
3
ν

)
(log x + νh)3−m

=

3−m∑
r=0

(
3 − m

r

)
hr log3−m−r x

3∑
ν=0

(−1)ν
(
3
ν

)
νr = 3!h3

for m = 0, and otherwise Am(x) = 0, where we used (4.3). Therefore

F̄x = h3Z(s),

and this is exactly what is needed for the approximate functional equation that will
follow on dividing (4.4) by h3. Consider next

S̄ x =
1
3!

∑
n≤x

cnn−s
3∑
ν=0

(
3
ν

)
(−1)ν(νh + log(x/n))3

+
1
3!

3∑
ν=0

(
3
ν

)
(−1)ν

∑
x<n≤xeνh

cnn−s(νh + log(x/n))3

= Σ1 + Σ2,

say. Analogously to the evaluation of F̄x it follows that

Σ1 = h3
∑
n≤x

cnn−s.

We estimate Σ2 trivially, using (1.5), to obtain

∣∣∣Σ2

∣∣∣ ≤ 1
3!

3∑
ν=0

(
3
ν

)
(2νh)3x−σ

∑
x<n≤xe3h

cn

�ε h3x−σtε(1 + x(e3h − 1))�ε tε(h3x−σ + h4x1−σ).
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Similarly, it follows that

−X(s)S̄ y = h3X(s)
∑
n≤y

cnns−1 + Oε

(
h3|X(σ + it)|

3∑
ν=0

∑
ye−3h<n≤y

cnnσ−1
)

= h3X(s)
∑
n≤y

cnns−1 + Oε(h3t2+ε−4σ(yσ−1 + hyσ)).

Also

Q̄x = 3!h3C
x1−s

1 − s
+ O(h4x1−σ)

and

X(s)Q̄y = C2X(s)h3 ys

s
+ Oε(t2+ε−4σh4yσ).

Therefore we are left with the evaluation of

J̄y =
1

2πi

∫ 1/4+i∞

1/4−i∞
Z(1 − z)Φ(z; s, τ)ys−z(z − s)−4

3∑
ν=0

(−1)ν
(
3
ν

)
e−νh(s−z) dz.

Observing that (3.7) holds and that the function

3∑
ν=0

(−1)ν
(
3
ν

)
e−νh(s−z) = (1 − e−h(s−z))3

has a zero of order three at z = s, we can move the line of integration in J̄y to Re z = 1
2 .

Hence

J̄y =
1

2πi

∫ 1/2+i∞

1/2−i∞
Z(1 − z)Φ(z; s, τ)ys−z(z − s)−4(1 − e−h(s−z))3 dz.

Therefore we obtain the assertion of Theorem 2.1 from (4.4) by dividing the whole
expression by h3 and collecting the above estimates for the error terms.

5. Proof of Theorem 2.2

We set s = 1
2 + it and z = 1

2 + iv in (2.4), and write the right-hand-side integral as

i
∫ ∞

−∞

· · · dv = i

(∫ t/2

−∞

+

∫ 2t

t/2
+

∫ ∞

2t

)
· · · dv = i(I1 + I2 + I3), (5.1)

say. The integrals I1 and I3 are estimated similarly. The latter is, by trivial estimation
and the first bound in (3.7),∫ ∞

2t
Z
(1
2
− iv

)
Φ

(1
2

+ iv; s, τ
)
yi(t−v)(t − v)−4(1 − e−hi(t−v))3 dv

�

∫ ∞

2t

∣∣∣∣∣Z(1
2

+ iv
)∣∣∣∣∣v−4 dv�ε tε−11/4,

(5.2)
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where we used (3.1). From (2.4), (5.1) and (5.2), it follows that

Z(s) =
∑
n≤x

cnn−s + X(s)
∑
n≤y

cnns−1 + C1
x1−s

1 − s
+ C2X(s)

ys

s

+ Oε(1 + tε−11/16(x1/2 + t2x−1/2)3/4) −
1

2πih3
I2,

(5.3)

with the choice
h = t−11/16(x1/2 + t2x−1/2)−1/4,

so that 0 < h ≤ 1. To estimate I2, we use

(1 − e−hi(t−v))3� h3|t − v|3

and the second bound in (3.7) (σ = 1
2 ). This gives, on using the Cauchy–Schwarz

inequality for integrals,

h−3I2�

∫ 2t

t/2

∣∣∣∣∣Z(1
2

+ iv
)∣∣∣∣∣ min

( 1
|t − v|

,
|t − v|

v

)
dv

�

(∫ 2t

t/2

∣∣∣∣∣Z(1
2

+ iv
)∣∣∣∣∣2 dv

)1/2

( j1 + j2 + j3)1/2,

(5.4)

say. By (1.7), (3.4) and the definition of the µ-function,∫ 2t

t/2

∣∣∣∣∣Z(1
2

+ iv
)∣∣∣∣∣2 dv =

∫ 2t

t/2

∣∣∣∣∣ζ(1
2

+ iv
)∣∣∣∣∣2∣∣∣∣∣B(1

2
+ iv

)∣∣∣∣∣2 dv�ε t2µ(1/2)+3/2+ε. (5.5)

Now

j1 =

∫ t−
√

t

t/2

dv
(t − v)2

�
1
√

t
,

and the same bound holds for

j3 =

∫ 2t

t+
√

t

dv
(t − v)2

.

Further,

j2 =

∫ t+
√

t

t−
√

t

(
t − v

)2 dv
v2
�

1
√

t
,

so that from (5.4) and (5.5) and the bounds for j1, j2 and j3, we infer that

h−3I2�ε t1/2+µ(1/2)+ε. (5.6)

The assertion of Theorem 2.2 follows from (5.3) and (5.6), since the first error term in
(5.3) is absorbed by the right-hand side of (5.6), because x1/2� t2.
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