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1. Introduction

A difference field is a field with an endomorphism. If this endomorphism is invertible, then

a difference field is the same as an action of the group (Z,+) by field automorphisms.
Model theory of difference fields has been extensively studied for more than 20 years

(see, e.g. [3, 4, 17]). It is also natural to study model theory of fields with actions of

an arbitrary (fixed) group, instead of the infinite cyclic group. This topic had not been
considered much until recently, we give a short account of earlier works below.

• Besides the model companion of the theory of algebraically closed fields with
automorphisms (ACFA) corresponding to the action of Z, model theory of fields
with free group actions has also been considered, which resulted in the theory
ACFAn, see, e.g. [12], [14], [23, Theorem 16] and [19, Proposition 4.12].

• Actions of the group Z×Z were considered by Hrushovski, who proved that a
model companion does not exist in this case (see [13]).

• Actions of finite groups were considered first by Sjögren in [23].
• Model theory of actions of (Q,+) on fields was studied in [18].

For a fixed group G, the first natural question to be considered is the following: Does

a model companion of the theory of fields with G-actions exist? In the examples given
above, the corresponding model companions exist, except for the case of the group Z×Z.

If such a model companion exists, then we call this model companion G-transformally

closed fields (TCF), and we say that ‘G-TCF exists’.
More recently, Daniel Hoffmann and the second author considered in [10] the case of

finite groups (being unaware then of Sjögren’s work from [23]). In [1], the authors of this

paper extended some of the results from [3] and [10] into a very natural common context

of virtually free groups. This work is a continuation of the general line of research from
[1], however, it goes in a different direction, that is, we consider infinite torsion Abelian

groups. Let A be a torsion Abelian group. This paper is almost exclusively devoted to

the proof of the following result.

Theorem 1.1. The theory A−TCF exists if and only if, for each prime p, the p-primary

part of A is either finite or it is isomorphic with the Prüfer p-group. Moreover, if the theory
A−TCF exists, then it is simple; and it is strictly simple (that is: simple, not stable and

not supersimple) when A is infinite.

Regarding the question of the existence of the theory G-TCF for G coming from a

given class of groups, the theorem above is a rare instance of a situation when a full
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answer is given. For example, we are still far from obtaining a corresponding answer
for the class of all finitely generated groups: we showed in [1] that for virtually free

groups the corresponding model companions exist; and we only conjectured in [1] the

opposite implication (this conjecture is confirmed in [1] in the case of finitely generated
commutative groups). It should be also noted that Theorem 1.1 disproves our own [1,

Conjecture 5.12], that is, G-TCF need not exist for a locally virtually free (even locally

finite) group G.

Let us fix our (standard) notation here. We denote the set of all prime numbers by P.
For n > 0, the cyclic group of order n is denoted by Cn, and:

Cp∞ = lim−→n
Cpn

is the Prüfer p-group. For any group G and any ordinal number α, we denote by G(α) the
direct sum of α copies of G. If a group G acts on a set X, then by XG we denote the set

of invariants of this action. For a field K, Gal(K) denotes the (profinite) absolute Galois

group of K, that is the group Gal(Ksep/K), where Ksep is the separable closure of K.
By a G-field, we mean a field with an action of the group G by field automorphisms.

Similarly, we consider G-rings, G-field extensions, etc. By LG, we denote the natural

language of G-fields, where the elements of G serve as unary function symbols.

Remark 1.2. We give here two conditions on an Abelian group A, which are equivalent

to the condition appearing in the statement of Theorem 1.1.

(1) The group A does not contain (up to an isomorphism) any of the following two

‘forbidden subgroups’:

• C
(ω)
p ,

• Cp⊕Cp∞ .

(2) There is no p ∈ P, such that there exists an infinite strictly increasing sequence:

C2
p
∼= P1 < P2 < P3 < .. . ,

where each Pi is a finite p-subgroup of A.

We would like to say a few words about the shape of the axioms of the theory A-TCF

from the statement of Theorem 1.1. The axioms of ACFA from [3] are geometric, that

is, they describe the intersections of algebraic varieties with the graph of the generic
automorphism. In the case of a finite group, geometric axioms were used in [10] as well,

which was the main difference with the approach taken in [23]. Using the Bass-Serre

theory, the geometric axioms from [10] were ‘glued’ in [1] to obtain geometric axioms
for actions of arbitrary finitely generated virtually free groups. Let us now go back to

the axioms from [23]. They are not geometric in the above sense, since they describe the

properties of certain absolute Galois groups. This is why we call them Galois axioms,
and we formalise this notion below. Before that, let us recall that a field K is pseudo

algebraically closed (abbreviated PAC ), if each absolutely irreducible variety defined over

K has a K -rational point.
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Definition 1.3. We say that the theory of a G-field K is axiomatised by Galois axioms,
if G is the union of its finitely generated subgroups (Gi)i∈I (for convenience, we assume

that 0 is a distinguished element of I and G0 = {1}), such that the theory of the G-field

K is implied by the following statements:

(1) the action of G on K is faithful (we say that the G-field K is strict);

(2) K is a perfect field;

(3) for each i ∈ I, KGi is PAC;

(4) for each i ∈ I, we have:

Gal
(
KGi

)∼= Gi,

where (Gi)i∈I is a fixed collection of small profinite groups.

Let us remark here, that the definition of ‘strict’ above extends [10, Definition 2.2] in

the case of a finite group G.

Clearly, Items (1) and (2) are first order. By [5, Chapter 11.3], Item (3) is a first-order
condition as well. Since the set of extensions of a field F (inside a fixed algebraic closure

of F ) of a fixed degree n is ‘uniformly definable’ in F (see, e.g. [21, Remark 2.6(i)]),

and there are finitely many of them in the situation of Definition 1.3 (by the smallness

assumption), we see that Item (4) is also first order. We would like to point out that in
the case of a group G which is not finitely generated, the field of constants KG is not

definable in the G-field K (it is merely type definable). Hence, there is not much chance

for any statement about Gal(KG) to be first order.
As we have said above, the theory G−TCF is axiomatised by Galois axioms for a finite

G (by [23]), which we will also point out in Proposition 2.17. In this paper, we prove a

version of this result for torsion Abelian groups satisfying the equivalent conditions from
Remark 1.2.

This paper is organised as follows. In Section 2, we collect some general results

(originating often from [23]) about existentially closed G-fields and we also discuss

Hrushovski’s notion of pseudo-existentially closed G-fields. In Section 3, we show a
crucial technical result about pronilpotency of certain absolute Galois groups. Section

4 is concerned with the negative (or nonexistence) results. More precisely, we show there

the left-to-right implication from Theorem 1.1. Section 5 is about the positive results, that
is, we show there the right-to-left implication from Theorem 1.1. In Section 6, we collect

several miscellaneous results and observations regarding the model theory of G-fields.

2. General results about G-fields

In this section, we discuss Hrushovski’s notion of pseudo-existentially closed G-fields and

we also collect the results about existentially closed G-fields and PAC fields, which will
be important in the sequel. We finish this section with some well-known results about

chains of theories and we give examples of such chains in the case of group actions on

fields.

https://doi.org/10.1017/S1474748022000305 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000305


Model Theory of Galois Actions of Torsion Abelian Groups 2947

2.1. Pseudo-existentially closed G-fields and PAC fields

The following notion we learnt from Udi Hrushovski (private communication, 2019). It

originated from our attempts to show that if G has a subgroup isomorphic to Z×Z, then

G-TCF does not exist (those attempts will be discussed in Section 6.2).

Definition 2.1. A G-field F is pseudo-existentially closed (abbreviated p.e.c.), if for any

G-field extension F ⊆K, such that the pure field extension F ⊆K is regular, the G-field

F is existentially closed in the G-field K.

We would like to point out that if G= {1}, then p.e.c. G-fields are exactly PAC fields

(since being PAC is the same as being existentially closed in regular extensions, see [5,

Proposition 11.3.5]), which justifies the choice of the term ‘pseudo-existentially closed’
above. We will also use in the sequel the abbreviation ‘e.c.’ for ‘existentially closed’. We

recall that a G-field is G-closed if it has no proper algebraic (as pure fields) G-field

extensions.
The crucial good property of p.e.c. G-fields is the result below, which is clearly false

for e.c. G-fields (consider H = {1}). This result and its proof were pointed out to us by

Udi Hrushovski.

Proposition 2.2. Suppose that M is a p.e.c. G-field and H � G. Then M is a p.e.c.

H-field as well.

Proof. Assume that F is a G-field and F ⊆K is an H -field extension, which is regular

(as an extension of pure fields). To conclude the proof, it is enough to construct a field

extension of K ⊆ L and an action of G on L, such that F ⊆ L is a G-field extension and

K ⊆ L is an H -field extension.
Let W be a set of representatives for G/H, such that 1 ∈W . For each r ∈W , we fix a

set rK, such that:

(i) 1K =K;

(ii) for all r,r′ ∈W , if r �= r′, then rK ∩ r′K = F ;

(iii) there is a bijection (denoted by r as well) r :K → rK, such that for all x ∈ F , we
have r(x) = r ·x (the action of G on F ).

For any g ∈G and r ∈W , there are unique r′ ∈W and h ∈H, such that gr = r′h, and we

define a bijection g : rK → r′K by the following commutative diagram:

rK
g ��

r−1

��

r′K

K
·h �� K,

r′

��

where ·h comes from the given action of H on K. Let us also define:

Z :=
⋃
r∈W

rK.
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It is easy to see that the above diagram defines an action of G on the set Z, which extends
the action of H on K and the action of G on F. For each r ∈W , we define a field structure

on rK in such a way that r :K → rK is a field isomorphism. Then for each g,r,r′ as above,
the map g : rK → r′K is a field isomorphism as well.
We define now:

R :=
⊗
r∈W

rK,

where the tensor product is taken over the field F. By the universal property of the tensor

product (in the category of F -algebras), the action of G on Z uniquely extends to an
action of G on R by ring automorphisms. Since the field extension F ⊆K is regular, the

ring R is a domain by [2, Proposition 2 in §17, A.V.141]. Hence, we can take as L the

field of fractions of R with the induced action of G.

Remark 2.3. We collect here several observations about e.c., p.e.c. and G-closed fields.

Let H �G.

(0) Any G-closed G-field is perfect [23, Proof of Theorem 1], and if K is a perfect

G-field, then KG is also perfect [10, Lemma 3.2].

(1) We will give a quick argument showing that a G-field K is e.c. if and only if K is
both p.e.c. and G-closed.

The left-to-right implication is clear (two weakenings). For the right-to-left

implication, we assume that K is a G-closed G-field and K ⊆ M is a G-field
extension. It is enough to show that the field extension K ⊆M is regular. By Item

(0) above, K is perfect, hence, this extension is separable. Since K is G-closed, K

is relatively algebraically closed in M (note that this relative algebraic closure is a

G-subfield of M ), therefore, the field extension K ⊆M is regular indeed.

(2) It is also clear that if K is a G-field, which is H -closed, then K is G-closed as well.

(3) Proposition 2.2 says that the opposite happens with the notion of p.e.c.: if K is a

p.e.c. G-field, then K is a p.e.c. H -field.

(4) It is easy to find examples of e.c. G-fields, which are not e.c. H -fields (taking
H = {1}).

(5) We still do not know whether the existence of G-TCF implies the existence of

H -TCF (see Conjecture 6.6 for a special case).

(6) The notion of a p.e.c. G-field and Proposition 2.2 should generalise to the context
of an arbitrary theory (instead of the theory of fields) having a stable completion,

which is the context considered in [7].

The following result will be crucial in the sequel.

Proposition 2.4. If K is a p.e.c. G-field and G is finitely generated, then the field KG

(the field of constants) is PAC.

Proof. Let us denote KG by C, and we take an absolutely irreducible variety V over C.

Then, the field extension C ⊆ C(V ) is regular (see [5, Section 10.2]). Therefore, the ring
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R := C(V )⊗C K is a domain (again by [2, Proposition 2 in §17, A.V.141]). We define a

G-ring structure on R, such that K ⊆ R is a G-ring extension and RG = C(V ) in the

obvious way. Then V (RG) �= ∅, since there is an RG-rational point corresponding to the
identity map. Let L be the fraction field of R. Then the G-action on R extends uniquely

to a G-action on L by field automorphisms.

Therefore, we have:

• the extension K ⊆ L is a G-field extension;
• the field extension K ⊆L is again regular, since L∼=K K(VK) and VK is absolutely

irreducible, where we consider the base change variety here: VK := V ×Spec(C)

Spec(K);
• the statement ‘V (LG) �= ∅’ is first order (since G is finitely generated).

Since K is a p.e.c. G-field, we obtain that V (KG) �= ∅, which finishes the proof.

Corollary 2.5. Suppose that K is a p.e.c. G-field and H � G is a finitely generated

subgroup. Then the field KH is PAC. In particular, K =K{1} is a PAC field.

Proof. It follows directly from Propositions 2.2 and 2.4.

Remark 2.6. We would like to comment here how the results of this subsection are
related to [23].

(1) It is stated in [23, Theorem 2] that if G is an arbitrary group and K is an

existentially closed G-field, then KG is PAC. The proof of [23, Theorem 2] is
basically the same as the proof of Proposition 2.4 above, and we believe that one

still has to assume that G is finitely generated for this proof to work (although we

do not have a counterexample for the statement with an arbitrary group G).

(2) In [23, Theorem 3], it is stated that if K is an existentially closed G-field, then
K is PAC. Corollary 2.5 is more genera, and its proof is simpler, since it is using

Proposition 2.2.

2.2. Existentially closed G-fields

In this subsection, we go through several results which originally appeared in [23], namely:

Theorems 4, 5 and 6 there. We do it for the sake of completeness and we would like to

discuss some issues concerning [23, Theorem 6] as well.
Suppose that K is a G-field, C =KG and:

ϕ :G−→Aut(K/C)

corresponds to the action of G on K. For a group G, we denote the profinite completion
of G by Ĝ. For a profinite group G, we denote the universal Frattini cover of G by G̃ (see

[5, Chapter 22]). For a cardinal number κ and p ∈ P, we denote the free pro-p group of

rank κ by F̂κ(p) (see [5, Remark 17.4.7]).
The lemma below originates from [23, Theorem 4]. It is also related to [8, Proposition

5.1], where a version of this lemma is proved in a more general context (see Remark

2.3(6)).
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Lemma 2.7. There is a unique continuous epimorphism:

α : Ĝ−→Gal
((
Calg∩K

)
/C
)
,

such that the following diagram is commutative:

Ĝ
α �� Gal(Calg ∩K/C)

G

ι

��

ϕ �� Aut(K/C).

res

��

Moreover, if (K,G) is p.e.c., and G is finitely generated, then the map α is an
isomorphism.

Proof. Let us consider a finite Galois extension C ⊆ C ′, such that C ′ ⊆K. We consider

the restriction map:

r :G−→Gal(C ′/C).

It is enough to show that the map r is onto. Let H := r(G) and C0 := (C ′)H . Then G
acts trivially on C0, hence, C0 ⊆ C and H =Gal(C ′/C), which we needed to show.

For the moreover part, it is shown in the proof of [23, Theorem 4] (in the e.c. case) that

G and Gal(Calg∩K/C) have the same finite quotients, which is enough (see [5, Corollary
16.10.8]), since Ĝ is small being topologically finitely generated, which follows from the

assumption that G is finitely generated. We sketch below the argument given in [23].

Let π : G → H be an epimorphism and ι : H → Sm be an embedding, where Sm is the
symmetric group on m= |H| generators (m is finite). Then the field of rational functions

K ′ :=K(t1, . . . ,tm) has a natural structure of a G-extension of K (given by ι ◦π). It is

easy to see that:

C(t1, . . . ,tm)H = (K ′)
G
,

hence, the field of constants of K ′ has a Galois extension with Galois group isomorphic

to H. Since this last condition is first order (G is finitely generated), K is p.e.c., and the
extension K ⊂K ′ is regular, the result follows.

We recall (see [5, Definition 22.5.1]) that a continuous epimorphism of profinite groups

f : G →H is a Frattini cover, if for any closed subgroup G0 � G, we have that G0 = G if

and only if f(G0) =H. We give here a connection between Frattini covers and extensions
of group actions. It is just a reformulation of [10, Lemma 3.7] (see also [10, Remark 3.8]).

Lemma 2.8. We assume that:

• C ⊆K is a finite Galois extension and G=Gal(K/C);
• G0 �Gal(C) is a closed subgroup;

• C ′ := (Csep)
G0 ;

• K ′ := C ′K = (Csep)
G0∩Gal(K)

.
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Then the following are equivalent:

(1) K ⊆ K ′ is a G-field extension, where the G-field structure on K ′ is given by

Gal(K ′/C ′);

(2) res(G0) =G=Gal(K/C), where the map:

res : Gal(C)−→G

is the restriction epimorphism.

Moreover, if any of the equivalent two conditions above holds, then we have:

[K ′ :K] = [Gal(C) : G0].

Proof. We just point out here that both the conditions are equivalent to the fact that

the restriction map:

res : Gal(K ′/C ′)−→Gal(K/C)

is an isomorphism, so K ′ gets the G-field structure (extending the one on K ) using this
restriction isomorphism.

We will use the following consequence of an implication from Lemma 2.8 several times.

Proposition 2.9. Suppose that we have a tower of fields K2 ⊆K1 ⊆K, such that K/K1

and K/K2 are finite Galois extensions and we set:

H := Gal(K/K1), G := Gal(K/K2).

Assume that for i ∈ {1,2}, Gi �Gal(Ki) are closed subgroups, such that:

(1) for i ∈ {1,2}, we have res(Gi) = Gal(K/Ki),

(2) G1∩Gal(K) = G2∩Gal(K) and G1 ⊆ G2.

Let K ′ (respectively K ′′) be the H-field (respectively G-field) extension of K given by

Lemma 2.8. Then K ′ =K ′′ and the G-structure on K ′ expands the H-structure on K ′.

Proof. We define:

C ′ := (Ksep)
G1 , C ′′ := (Ksep)

G2 .

Then we have:

K ′ = C ′K, K ′′ = C ′′K,

and since G1∩Gal(K) = G2∩Gal(K), we get that K ′ =K ′′.
We have the following commutative diagram:

Gal(K ′/C ′′)
res ��
∼=

�� Gal(K/K2)

Gal(K ′/C ′)

�
��

res ��
∼=

�� Gal(K/K1).

�
��
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By the description from Lemma 2.8 of both the G-field structure and the H -field structure
onK ′, we see that the above diagram implies that the G-action expands the H -action.

Remark 2.10. After assuming Item (1) from Proposition 2.9, Item (2) is equivalent to

the following equality:

G2∩Gal(K1) = G1.

The next result generalises an implication from Lemma 2.8 (a version of it, in a more

general context, appeared as [7, Corollary 3.47]).

Proposition 2.11. If (K,G) is G-closed, then the restriction map:

Gal(C)−→Gal(Calg ∩K/C)

is a Frattini cover. Hence, if C is PAC and (K,G) is G-closed (for example, when (K,G)

is e.c. and G is finitely generated), then this restriction map is the universal Frattini
cover.

Proof. Since K is G-closed, we get that C is a perfect field by Remark 2.3(0). Let us

consider the restriction map:

α : Gal(C)−→Gal
(
Calg∩K/C

)
,

and we take a closed subgroup G � Gal(C), such that α(G) = Gal
(
Calg∩K/C

)
. It is

enough to show that G =Gal(C). Since ker(α)G =Gal(C), we get that:(
Calg

)ker(α)∩ (Calg
)G

= C.

Since the extension C ⊆
(
Calg

)ker(α)
is Galois (ker(α) is clearly a normal subgroup), we

get that (Calg)ker(α) is linearly disjoint from (Calg)G over C using, for example, the remark

below the proof of Corollary 2.5.2 in [5] (the remark is for finite extensions, but since both
being Galois and linearly disjoint are locally finite notions, it works in general). Since we

have:

Calg ∩K ⊆
(
Calg

)ker(α)
,

we get that Calg ∩K is linearly disjoint from (Calg)G over C. Since K is G-closed, it is

perfect. Hence, the field Calg∩K is perfect as well, and the field extension Calg∩K ⊆K

is regular. Therefore (by the definition of regularity), K is linearly disjoint from Calg over
Calg ∩K. By the tower property for linear disjointness (see [5, Lemma 2.5.3]), we finally

get that K is linearly disjoint from (Calg)G over C. Therefore, we have:

K(Calg)G ∼= Frac
(
K⊗C (Calg)G

)
,

hence, the action of G on K extends to an action of G to K(Calg)G . Since (K,G) is G-

closed, we get that K(Calg)G =K, so (Calg)G ⊆Calg∩K, and then, by linear disjointness,
(Calg)G = C. By Galois theory, we get that G =Gal(C), which finishes the proof.

Remark 2.12. It is easy to see that the opposite implication to the one appearing in

Proposition 2.11 is not true. It is enough to take an algebraically closed field C, K =C(X)
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and G=Z acting on K in the ‘classical difference way’, that is σ(X) =X+1, where σ is

a generator of the group Z.

Our first corollary is exactly [23, Theorem 5] (it was also generalised to a more abstract
context in [8, Corollary 5.6]).

Corollary 2.13. If (K,G) is e.c. and G is finitely generated, then we have:

Gal(C)∼= ˜̂G.

Proof. It follows directly from Lemma 2.7 and Proposition 2.11.

The next corollary is much weaker than the statement in [23, Theorem 6], which will

be discussed in Remark 2.18(2).

Corollary 2.14. Suppose that (K,G) is e.c., then we have the following.

(1) There is an epimorphism:

Gal(K)−→ ker
(
Gal(C)→Gal

(
Calg ∩K/C

))
.

(2) If G is finitely generated, then:

ker(
˜̂
G→ Ĝ)∼= ker

(
Gal(C)→Gal

(
Calg∩K/C

))
,

and there is a monomorphism:

ker(
˜̂
G→ Ĝ)−→Gal(K).

Proof. Since the extension Calg∩K ⊆K is regular (as in the proof of Proposition 2.11),

the restriction map:

r : Gal(K)→Gal(Calg ∩K)

is onto. By Galois theory, we have the following isomorphism:

ker
(
Gal(C)→Gal

(
Calg∩K/C

))∼=Gal
(
Calg ∩K

)
showing Item (1).

For Item (2), by Corollary 2.13 we have:

ker(
˜̂
G→ Ĝ)∼= ker

(
Gal(C)→Gal

(
Calg∩K/C

))
.

Therefore, the profinite group Gal(Calg ∩K) is projective (as a closed subgroup of the

profinite projective group
˜̂
G, see [5, Proposition 22.4.7]), hence, the map r above has a

section, which gives the result.

We point out below that for a finite group G, the theory G−TCF is axiomatised

by Galois axioms, which was shown in [23] and [10]. We include here, a version of the

statement from [10], which is convenient for us to work with. For the proof of this version,
we need the following result, which may be folklore. We recall that for a profinite group G,
the rank of G, denoted rk(G), is the minimal cardinality of a set of topological generators

of G.
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Proposition 2.15. Assume that H is a profinite group of finite rank. Then, any
continuous epimorphism π : H̃ →H is a (the universal) Frattini cover.

Proof. The proof consists of two steps.

Step 1: The result holds if H is a pro-p group.

Proof of Step 1. Let r= rk(H). By [5, Lemma 22.7.4], there is an epimorphism H→Cr
p

(which is a Frattini cover). By [5, Lemma 22.5.4], we can assume that H= Cr
p .

Let us take B ⊂ Cr
p , such that |B| = r. Since r is finite, B generates the group Cr

p if

and only if B is a basis of Cr
p considered as an Fp-vector space. Therefore, the group

Aut(Cr
p) = GLr(Fp) acts transitively on the family of sets of generators of Cr

p of size r.

By [5, Corollary 22.5.3], rk(H̃) = r, and we fix B̃, which is a set of generators of H̃
of size r. Let B be the image of B̃ by the universal Frattini cover map and B′ := π(B̃).
Then, both B and B′ have size r and generate Cr

p . Hence, there is an automorphism of

Cr
p taking B to B′. Therefore, π is the composition of the universal Frattini cover map

and this last automorphism, thus, π is a Frattini cover itself.

Let us take a closed subgroup G � H̃, such that:

π|G : G −→H

is a Frattini cover (it exists by [5, Lemma 22.5.6]). We aim to show that G = H̃.

For necessary background regarding profinite Sylow theory, we refer the reader to the

beginning of Section 3 (see also [5, Proposition 22.9.2]).

Step 2: For each p ∈P, any p-Sylow subgroup of G is a p-Sylow subgroup of H̃ as well.

Proof of Step 2. Let Q be a p-Sylow subgroup of G. We have Q= P ∩G for a p-Sylow

subgroup P of H̃ by [5, Proposition 22.9.2(a)]. Since π(G) = H, we get that π(Q) and

π(P) are p-Sylow subgroups of H (see [5, Proposition 22.9.2(c)]), and, thus, π(Q) = π(P).

By Step 1, the map:

π|P : P −→ π(P)

is a Frattini cover, and then we obtain that Q= P (see [5, Definition 22.5.1]).

By Step 2, for any normal open subgroup N of H̃, any p-Sylow subgroup of GN/N is

of the form PN/N for a p-Sylow subgroup P of H̃, and, thus, it is a p-Sylow subgroup

of H̃/N . It follows that GN/N = H̃/N for any N as above, and, therefore, we obtain

that G = H̃.

Remark 2.16.

(1) The statement of Step 1 from the proof of Proposition 2.15 has already appeared

in [1] as Lemma 4.4. Unfortunately, we gave an erroneous proof of [1, Lemma 4.4]

(confusing two universal properties).
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(2) In the case of pro-p groups, Proposition 2.15 can be generalised to the following

statement, which we will need in the sequel:

Any continuous epimorphism of pro-p groups of the same finite rank

is a Frattini cover.

It can be proved in the same way as Step 1 in the proof of Proposition 2.15 was

shown. Namely, if π : G →H is such an epimorphism, and the rank is r, then, by [5,

Lemma 22.5.4], there are Frattini cover maps:

p1 : G −→ Cr
p, p2 :H−→ Cr

p .

Hence, we can replace π with p2 ◦π and conclude as in the proof of Step 1 above.

(3) It is easy to see that not every epimorphism of profinite (even finite) groups

of the same finite rank is a Frattini cover, consider, for example, the following

epimorphism:

C2
6 −→ C6×C3.

We now point out that for a finite group G, the theory G-TCF is axiomatised by Galois
axioms from Definition 1.3.

Proposition 2.17. If G is finite, then a G-field K is existentially closed if and only if
K is strict, perfect, the field of constants C :=KG is PAC and:

Gal(C)∼= G̃.

Proof. For the left-to-right implication, we notice first that K is strict by [10, Lemma

3.4] (see also the remark right after Definition 1.3). Using Remark 2.3(0) and Remark

2.3(1), we obtain that K is perfect. By Proposition 2.4, C is PAC, and by Corollary 2.13,
we get that Gal(C)∼= G̃.

For the right-left implication, we observe that C is also perfect (since K is perfect

and the extension C ⊆ K is finite) and C ⊆ K is a finite Galois extension, such that
Gal(K/C)∼=G (since G is finite and K is strict). Therefore, the pair (C,K) satisfies the

assumptions of [10, Theorem 3.29]. By Proposition 2.15 and the assumption Gal(C)∼= G̃,

the restriction map Gal(C)→ Gal(K/C) is a Frattini cover, thus, the pair (C,K) is G-
closed in the sense of [10, Definition 3.18] (or, equivalently, the G-field K is G-closed by

Lemma 2.8). We conclude the proof by using the implication (4)⇒ (1) of [10, Theorem

3.29].

Remark 2.18. We would like to point out several general observations concerning Galois

axioms and absolute Galois groups.

(1) The original theory ACFA(=Z−TCF) is not axiomatised by Galois axioms. To see

that, we notice first that the Galois axioms in the case of a difference field (K,σ)

say that K is algebraically closed and C = Fix(σ) is pseudofinite.
By [11, Section 13.3], any model of ACFA of characteristic 0 has infinite

transcendence degree over Q. By [5, Theorems 18.5.6 and 18.6.1], for almost all

(in the sense of the Haar measure) σ ∈ Gal(Q), the field Fix(σ) is pseudofinite.
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Hence, such a difference field (Qalg,σ) satisfies the Galois axioms, but it is not
existentially closed.

(2) It is stated in [23, Theorem 6] that if G is finitely generated and finitely presented,

and K is an e.c. G-field, then we have:

Gal(K)∼= ker

(˜̂
G−→ Ĝ

)
.

The main part of the proof of [23, Theorem 6] is an argument, which is supposed

to show that the monomorphism appearing in Corollary 2.14 is actually an
isomorphism. We do not know how to make this argument work, we comment

more on it below.

(a) The monomorphism from Corollary 2.14 is an isomorphism in the case of a finite

group G, which was shown in [10, Theorem 3.40(2)].

(b) In [1, Section 4], we use [23, Theorem 6] to show [1, Theorem 4.7] saying that if G

is a finitely generated virtually free group, which is neither free nor finite, then

the theory G-TCF is not simple, since the absolute Galois group of underlying
fields of models of G-TCF are not small. However, if a profinite groups is small,

then its image by a continuous epimorphism is also small. Therefore, in order

to show [1, Theorem 4.7], it is enough to use just Corollary 2.14 instead of [23,

Theorem 6].

(c) Nick Ramsey communicated to us a proof of the result saying that for G finitely

generated and virtually free, the theory G-TCF is NSOP1. However, this proof

seems to be using the full version of [23, Theorem 6].

(d) Example 2.21(2) gives a counterexample for the isomorphism:

Gal(K)∼= ker

(˜̂
G−→ Ĝ

)
in the case of G= Cp∞ , which is obviously not finitely generated.

(e) Similar issues were discussed in a more general context in [8] (see [8, Conjecture

5.7] and [8, Remark 5.8]).

2.3. Chains of theories

In this subsection, we collect several well-known results about chains of theories. They

can be found, for example, in [18] or [20], but we include them here for the sake of
completeness.

Let L be a language and T be an L-theory. It is easy to see that T is closed under

consequences (that is: T |= φ if and only if φ ∈ T ) if and only if:

T =
⋂

M |=T

Th(M).

From now on, all the theories we consider are closed under consequences.

Suppose that L⊆ L′ are languages, T is an L-theory and T ′ is an L′-theory. We have

the following obvious result.
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Fact 2.19. The following are equivalent.

(1) T ⊆ T ′.

(2) ‘Mod(T ′)⊆Mod(T )’, i.e. for each M ′ |= T ′, we have M ′ |= T .

For the general notion of a model companion of the theory T, we refer the reader to

[6, Section 7.1]. If a model companion of T exists, then it is unique and we denote it by
Tmc. All the particular theories considered in this paper are universal, hence, inductive,

and then a model companion exists if and only if the class of existentially closed models

of T is elementary, and then Tmc coincides with the axiomatisation of this class. The

following result is crucial and it appeared in [18] and [20].

Proposition 2.20. Suppose we have an increasing sequence of languages (Lm)m>0 and
Lm-theories (Tm)m>0. If the model companions (Tmc

m )m form an increasing sequence as

well, then the model companion of T∞ :=
⋃

mTm exists and we have:

Tmc
∞ =

∞⋃
m=1

Tmc
m .

Moreover, if all the theories Tmc
m are simple, then the theory Tmc

∞ is simple as well.

Proof. Let us denote:

L∞ :=

∞⋃
m=1

Lm, T ′
∞ :=

∞⋃
m=1

Tmc
m .

It is easy to see, and it is pointed out, e.g. in [18, Theorem 2] that T ′
∞ inherits all the

‘local’ properties enjoyed by all the theories Tmc
m . In particular, T ′

∞ is model complete,

and if all the theories Tmc
m are simple, then the theory T ′

∞ is simple as well. Therefore, it
is enough to show that each model of T∞ embeds into a model of T ′

∞. We will actually

show that this last embedding property is also ‘local’.

Let us fix M |= T∞. We need to show that the theory diag+(M)∪T ′
∞ is consistent,

where diag+(M) is the set of all atomic L∞-sentences with parameters from M which

are true in M. Since we have:

diag+(M) :=

∞⋃
m=1

diag+ (M |Lm
),

the result follows.

Example 2.21. We give here an argument showing that for any p∈P, the theory Cp∞ −
TCF exists, which may be considered as a ‘baby case’ of the right-to-left implication in

Theorem 1.1.
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(1) By Fact 2.19 and Proposition 2.20, it is enough to check that if (K,σ) |= Cpm+1 −
TCF, then (K,σp) |= Cpm −TCF. Let C = Fix(σ) and C ′ = Fix(σp). Consider the
following commutative diagram with exact rows:

0 �� Gal(K)
< �� Gal(C) =Zp

res �� Gal(K/C) = Cpm+1 �� 0

0 �� Gal(K)

=

��

< �� Gal(C′)

<

��

res �� Gal(K/C′) = pCpm+1

<

��

�� 0,

where the description of the profinite group Gal(C) comes from Proposition 2.17.

Hence, we have:

Gal(C ′) = res−1
(
pCpm+1

)
= pZp

∼=Zp.

Since C ⊆ C ′ is a finite field extension and C is a (perfect) PAC field, then C ′ is
(perfect) and PAC as well [5, Corollary 11.2.5]. Hence, (K,σp) satisfies the Galois
axioms for the theory Cpm −TCF by Proposition 2.17.

(2) By Item (1), it is easy to see that if K is an e.c. Cp∞ -field, then we have:

Gal(K)∼=Zp.

(3) If A is any divisible group, K is an A-field, and C = KA, then Calg ∩K = C,
since there are no nontrivial homomorphisms from a divisible group into a profinite

group. Therefore, for an A-closed field K, the extension C ⊆ K is regular (since

C is perfect and Calg ∩K = C), hence, C is algebraically closed (since, by linear
disjointness, KCalg has a natural structure of an A-extension of K ). In particular,

if K |= Cp∞ −TCF, then Gal(C) = 1, where C = KCp∞ is the field of absolute

constants.

Example 2.22. We discuss here what may happen if the model companions from

Proposition 2.20 exist, but they do not form an increasing chain.

(1) The theories (C2
pm −TCF)m>0 do not form an increasing chain. To see that let us

take:

(K,σ,τ) |= C2
p2 −TCF, C = Fix(σ,τ), C ′ = Fix(σp,τp).

Then, we have:

Gal(C)/Gal(C ′)∼=Gal(C ′/C)∼= C2
p .

By Proposition 2.17 and [5, Proposition 22.7.6] (this is a result of Tate saying that

projective pro-p groups are pro-p free), we get Gal(C) ∼= F̂2(p). Since [Gal(C) :
Gal(C ′)] = p2, we get by [5, Proposition 17.6.2] (the profinite Nielsen-Schreier

formula) that:

Gal(C ′)∼= F̂p2+1(p)�Gal(C).
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In particular, by Proposition 2.17, the C2
p -field (C ′,σp,τp) is not existentially closed,

so we get:

C2
p −TCF� C2

p2 −TCF.

This observation can not be immediately made into a proof of the nonexistence of
the theory C2

p∞ −TCF, for which we will need the results of Section 3.

(2) As was noted in [20, Theorem 4], a model companion of the theory T∞ (in the

notation from Proposition 2.20) may still exist, even when the theories (Tmc
m )m do

not form an increasing chain. We come across such a situation in the case of actions

of torsion Abelian groups. Namely, let us define:

CP :=
⊕
p∈P

Cp
∼= lim−→m

Cp1...pm
,

where P = (pi)i>0 is an enumeration of the set of all primes. Then, one can see

(similarly as in Item (1) above) that:

C2−TCF� C6−TCF,

but (by Theorem 1.1) the theory CP-TCF still exists.

Remark 2.23. The situation from Proposition 2.20 also appears in a differential context.
In [16], the second author gave geometric axioms of the model companion of the theory

of fields with finitely many commuting Hasse-Schmidt derivations using increasing chains

of theories. This last result was generalised in [9] to actions of formal groups on fields (an
iterative Hasse-Schmidt derivation corresponds to an action of the formalisation of the

additive group).

3. Absolute Galois groups

In this section, we begin our proof of Theorem 1.1 (the main result of this paper) by
describing the absolute Galois groups of certain fields of invariants.

First, we collect several notions from the theory of profinite groups, which we will

often use in the sequel without any references. Proofs of these results can be found in [5,

Chapter 22.9]. The classical Sylow theory for finite groups generalises smoothly to the
profinite context after replacing the notion of a p-subgroup with the notion of a closed

pro-p subgroup. In particular, for p ∈P and a profinite group G, p-Sylow subgroups of G
exist, and they are conjugate. We also have the corresponding results about pronilpotent
groups, that is: a profinite group G is pronilpotent if and only if it is the product of its

unique p-Sylow subgroups. If G is a pronilpotent group and p∈P, then we denote by G(p)

the unique p-Sylow subgroup of G. Throughout this section, ‘cl’ denotes the topological
closure (in an ambient profinite group).

We will need a very general result about pronilpotent groups stated below. It may be

folklore, but we were unable to find it in the literature.
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Proposition 3.1. Let G be a profinite group, (I, �) be a directed partially ordered set

and (Pi)i∈I be a direct system of closed pronilpotent subgroups of G (ordered by inclusion).

Then, the subgroup:

P∞ := cl

(⋃
i∈I

Pi

)
is pronilpotent as well.

Proof. For each i ∈ I, we have:

Pi =
∏
p∈P

(Pi)(p).

By [5, Proposition 22.9.2(a)], for each p ∈ P, we get that
(
(Pi)(p)

)
i∈I

is a direct system

of pro-p groups (ordered by inclusion). For p ∈ P, we define:

P∞,p := cl

(⋃
i∈I

(Pi)(p)

)
.

Since for each i ∈ I, we have:

Pi ⊆
∏
p∈P

P∞,p,

(it follows from (Pi)(p) ⊆ P∞,p for each p ∈ P), we obtain that:

P∞ ⊆
∏
p∈P

P∞,p.

Therefore, it is enough to show that each P∞,p is a pro-p group. To ease the notation,

we assume that each Pi is a pro-p group, and we aim to show that P∞ is a pro-p group
as well.

Let us fix a p-Sylow subgroup P � G. For each i ∈ I, we define:

Xi :=
{
g ∈ G | Pi ⊆ gPg−1

}
.

Since for any fixed x ∈ G, the map g �→ g−1xg is continuous, it is easy to see that for
each i ∈ I, the set Xi is closed. Since all p-Sylow subgroups of G are conjugate, each Xi

is nonempty and (Xi)i∈I a direct system ordered by the reversed inclusion. Since G is

compact, we get that: ⋂
i∈I

Xi �= ∅.

Let us take g ∈
⋂

i∈I Xi. Then for each i ∈ I, we have:

Pi ⊆ gPg−1.

Since gPg−1 is pro-p, P∞ is also pro-p, which finishes the proof.
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We state below a crucial result about absolute Galois groups of fixed subfields of
A-closed fields, where A is a torsion Abelian group. Let us fix such a group A and we

present it as:

A= lim−→i∈I
Ai

for finite Abelian groups Ai, such that A0 = {0} (0 appearing in the subscript is the

smallest element in (I, �)). For each p ∈ P, we denote its p-power torsion subgroup by

A(p) (which can be considered as its p-Sylow subgroup). Let us fix an A-field K. For each

i ∈ I, we denote:

Ki :=KAi,

and we have the following short exact sequence:

1 �� Gal(K)
< �� Gal(Ki)

resi �� Gal(K/Ki) �� 1,

where resi is the appropriate restriction map.

Theorem 3.2. Suppose that K is A-closed and strict. Then we have the following.

(1) For each i ∈ I, the profinite group Gal(Ki) is pronilpotent.

(2) Suppose that for each p ∈ P, the group A(p) is finite. We enumerate the set of all

primes P= (pn)n>0 and set:

An :=A(p1)⊕. . .⊕A(pn).

Let us take j,n ∈N. If j � n, then the restriction map:

resn : Gal(Kn)(pj) −→A(pj) = (An)(pj)

is a Frattini cover.

Proof. We proceed to show Item (1), and then we will notice that under the extra

assumptions of Item (2), the proof of Item (1) gives the stronger conclusion from Item

(2). The following claim is crucial for our proof of Item (1), and the proof of this claim is

rather long. Since K is a strict A-field, for each i∈ I, we will identify Gal(K/Ki) with Ai.

Claim. For each i ∈ I, there is a closed subgroup Wi �Gal(Ki), such that:

(1) the profinite group Wi is pronilpotent;

(2) we have:

resi(Wi) =Ai;

(3) for each i,j ∈ I, if i� j, then we have:

Gal(Ki)∩Wj =Wi.

Before proving the Claim, we will quickly see that it implies Item (1) from Theorem 3.2.

Let W be the common intersection of all Wi’s with Gal(K) and K ′ := (Kalg)W. By the
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Claim and Proposition 2.9, the action of A on K extends to K ′. Since K is A-closed, we

get K =K ′. Therefore, Gal(K) =W , and for each i, we have:

ker(resi) = Gal(K)⊆Wi.

Since resi(Wi) = Ai, we get that Wi = Gal(Ki), so all the profinite groups Gal(Ki) are

pronilpotent.

Proof of Claim. For each i∈ I and p∈P, let ni,p be the cardinality of the finite p-group

(Ai)(p). We define the following set of infinite tuples:

Cli :=

⎧⎨⎩x ∈
∏
p∈P

Gal(Ki)
ni,p | x satisfies the conditions (i)–(iii) below

⎫⎬⎭ .

Before stating the conditions (i)–(iii), we fix the obvious presentation of a tuple x ∈∏
p∈PGal(Ki)

ni,p :

x=
(
x(p)

)
p∈P

, x(p) ∈Gal(Ki)
ni,p .

We give the conditions defining the set Cli below.

(i) For each p ∈ P, we have:

resi
(
x(p)

)
= (Ai)(p).

(ii) For each p ∈ P, the group cl(〈x(p)〉) is a pro-p subgroup of Gal(Ki).

(iii) For each p,q ∈ P, if p �= q, then:

[x(p),x(q)] = 1,

i.e. the coordinates of the tuple x(p) commute with the coordinates of the tuple

x(q).

For each x ∈ Cli, we define:

W x
i := cl(〈x〉).

Subclaim 1. For each i ∈ I, we have the following.

(1) Cli �= ∅.
(2) Cli is a closed subset of

∏
p∈PGal(Ki)

ni,p .

(3) For each x ∈ Cli, the profinite group W x
i is pronilpotent and resi(W

x
i ) =Ai.

Proof of Subclaim 1. For the proof of Item (1), we notice that there is a closed subgroup

Wi �Gal(Ki) by [22, Lemma 2.8.15], such that:

resi|Wi
:Wi −→Ai

is a Frattini cover. By [5, Corollary 22.10.6(b)], the universal Frattini cover Ãi of the

commutative profinite group Ai is pronilpotent. Since Wi →Ai is a Frattini cover, there

is a continuous epimorphism Ãi →Wi (see the condition (b) in [5, Proposition 22.6.1]),
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which implies that the profinite group Wi is pronilpotent as well. We have the following
decomposition:

Wi =
∏
p∈P

(Wi)(p).

For each p ∈ P, we have:

resi
(
(Wi)(p)

)
= (Ai)(p).

Hence, there is x(p) ∈ (Wi)
ni,p

(p) , such that resi(x(p)) = (Ai)(p). Thus, we have:

x :=
(
x(p)

)
p∈P

∈ Cli,

and Cli is nonempty.

For the proof of Item (2), it is clear that the conditions (i) and (iii) from the definition
of Cli are closed. Since any closed pro-p subgroup of Gal(Ki) is contained in a Sylow

pro-p subgroup of Gal(Ki), x satisfies the condition (ii) for a prime p if and only if the

tuple x(p) is contained in a p-Sylow subgroup of Gal(Ki). Hence, it is enough to check
that this last condition on the tuple x(p) is closed. Let us fix P, a p-Sylow subgroup of

Gal(Ki). We set n := ni,p and consider the following function:

Ψ : Gal(Ki)×Pn −→Gal(Ki)
n, Ψ(g,(x1, . . . ,xn)) =

(
gx1g

−1, . . . ,gxng
−1
)
.

Since all p-Sylow subgroups of Gal(Ki) are conjugate, the set of tuples x(p) satisfying
our last condition coincides with the image of the function Ψ. Since Ψ is a continuous

function between compact topological spaces, its image is closed.

Item (3) is obvious from the definition of the group W x
i .

From Item (3) in Subclaim 1, we see that for each i ∈ I, there is a closed pronilpotent

subgroup Wi � Gal(Ki), such that resi(Wi) = Ai. To finish the proof of the Claim, we
need to find such Wi’s satisfying the extra condition saying that for i � j, we have

Wj ∩Gal(Ki) = Wi. First, we will find Wi’s satisfying the following weaker condition:

Wi ⊆Wj (for i� j).
For each i,j ∈ I, such that i� j, we define the following coordinate projection map:

πj
i :
∏
p∈P

Gal(Kj)
nj,p −→

∏
p∈P

Gal(Kj)
ni,p,

where the projections are induced by the inclusions (Ai)(p) � (Aj)(p). We define:

Clji := πj
i (Clj)∩

∏
p∈P

Gal(Ki)
ni,p .

Subclaim 2. For each i,j ∈ I, such that i� j, we have the following.

(1) Clji ⊆ Cli.

(2) Clji �= ∅.
(3) Clji is closed.
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Proof of Subclaim 2. To show Item (1), we consider the following commutative diagram

with exact rows:

1 �� Gal(K)
< ��

=

��

Gal(Ki)

�
��

resi �� Ai

�
��

�� 1

1 �� Gal(K)
< �� Gal(Kj)

resj �� Aj
�� 1.

The right part of this diagram is a Cartesian square, that is res−1
j (Ai) = Gal(Ki).

Therefore, each x ∈ Clji satisfies Condition (i) from the definition of the set Cli. Since

Conditions (ii) and (iii) are clearly satisfied for any x ∈ Clji , Item (1) is proved.
For Item (2), it is enough to notice (by the same Cartesian square argument as above)

that the condition resj(Wj) =Aj implies that:

resi (Wj ∩Gal(Ki)) =Ai.

Item (3) is obvious, since πj
i is a continuous map between compact topological spaces.

The set Clji has the following interpretation: for any x ∈Clji , there is y ∈Clj such that

W x
i ⊆W y

j , so W x
i extends to W y

j . We want to have this extension property ‘all the way
along (I, <)’: in particular, for i1 � i2 � i3 � . . ., we want to find x1, such that W x1

i1
extends to W x2

i2
, which extends to W x3

i3
, etc. To this end, for any i1 � i1 � . . . � in from

I, we define:

Cli2,i3i1
:= πi2

i1

(
Cli3i2
)
, Cli2,...,ini1

:= πi2
i1

(
Cli3,...,ini2

)
.

To convey the main idea in a proper way, it is more convenient to continue in the special
case when I =N and � is the standard ordering on N. We will point out later what one

needs to do in the general case. We define:

Cl∞0 :=

∞⋂
n=2

Cl2,...,n0 .

As it was argued several times before in this proof, the compactness of Gal(K0) =Gal(K)

implies that the set Cl∞0 is nonempty. Let us take x0 ∈Cl∞0 . It follows from the definition

of Cl∞0 that there is a sequence (xi ∈ Cli)i�0, such that for each i� 0 we have:

πi+1
i (xi+1) = xi.

Let us define:

Vi :=W xi
i �Gal(Ki).

Then the profinite groups Vi’s are pronilpotent, they project onto the corresponding

Ai’s and we have Vi ⊆ Vi+1. So we have achieved the first step of approximating the

conditions on Wi from the statement of the Claim. We will correct these Vi’s to satisfy
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the conditions from the Claim fully. This is a very general procedure, we start from the
following commutative diagram of inclusions, which summarises our situation:

Gal(K0)
< �� Gal(K1)

< �� Gal(K2)
< �� . . .

V0
< ��

<

��

V1
< ��

<

��

V2
< ��

<

��

. . . .

For each 0� i < j, we define:

Vi,j := Vj ∩Gal(Ki), V
(1)
i := cl

⎛⎝⋃
j>i

Vi,j

⎞⎠ .

It is finally the right moment to use Proposition 3.1, and thanks to this result, each
profinite group V

(1)
i is pronilpotent. Clearly, V

(1)
i ’s project again onto Ai’s, and we have:

Vi ⊆ V
(1)
i ⊆ V

(1)
i+1.

For each i� 0,n > 0, we define now:

V
(n+1)
i :=

(
V

(n)
i

)(1)
, V

(ω)
i := cl

( ∞⋃
n=1

V
(n)
i

)
.

Again, V
(ω)
i ’s are pronilpotent, they project onto Ai’s and we have V

(ω)
i ⊆ V

(ω)
i+1 . We can

continue like this using transfinite induction as long as we wish. However, this procedure

must finish after some (ordinal) number of steps — it is possible that countably many

steps are enough, but for sure, it is enough to take:

κ :=
∣∣Aut

(
Kalg

)∣∣+
of them. Then, for each i > 0, we define:

Wi := V
(κ)
i ,

and, by the construction, these Wi’s satisfy the conditions of the Claim, which finishes
the proof of the Claim in the case of (I, �) = (N, �).

We sketch now how one can proceed in the case of an arbitrary directed poset (I, �).

We choose a maximal antichain A in I. Without loss of generality, A is infinite (otherwise,
I can be taken to be N). Then, we can assume that:

(I, �) =
(
[A]<ω, ⊆

)
,

which is the set of finite subsets of A ordered by the inclusion relation. For any n > 0, let

In denote the subset of I consisting of subsets of A of cardinality n. Then we have:

I = I1∪· I2∪· . . . ,
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and we can repeat the previous argument with taking an extra care about all the elements
of In at each level n. Namely, for any i ∈ I we define:

Cl1i :=
⋂
a∈A

Cliai ,

where ia := i∪{a}. The set Cl1i is nonempty by the arguments as above. Then, we define:

Cl2i := πia
i

(
Cl1ia

)
, Cln+1

i := πi2
i1
(Clnia),

and we can continue as in the case of I =N above.
Hence, we have obtained the subgroups Wi � Gal(Ki) for each i ∈ I, which satisfy

Items (1) and (2) from the Claim, and such that for each i,j ∈ I, if i� j, then Wi ⊆Wj .

To correct these Wi’s to satisfy Item (3) from Claim, one can just repeat the procedure
described in the case of I =N.

As it was explained immediately after the statement of the Claim, Item (1) (from the
statement of Theorem 3.2, which we are still proving) directly follows from the Claim,

whose proof was just finished above.

We proceed now towards the proof of Item (2). Having the extra assumptions from
Item (2), we:

• set rn,p as the rank (rather than just the cardinality) of (An)(p);
• replace Condition (i) from the proof of the Claim with the following condition:

(i’)
〈
resn

(
x(p)

)〉
= (An)(p).

Condition (i’) is still closed, since there is a fixed finite set of sequences of length rn,p
generating the group (An)(p).
We consider now the following commutative diagram:

Gal(Kj)(pj)

resj �� (Aj)(pj)

=

��

(Vj)(pj)

������������������
�
��

�
��

(Vj+1)(pj)

F.c.

�����
����

����
����

�
��

Gal(Kj+1)(pj)

resj+1 �� (Aj+1)(pj).

By Remark 2.16(2), any continuous epimorphism of pro-p groups of the same finite rank

is necessarily a Frattini cover. Hence, the map resj+1 restricted to (Vj+1)(pj) is a Frattini

cover as indicated in the diagram above. Since:

resj+1

(
(Vj)(pj)

)
= resj

(
(Vj)(pj)

)
= (Aj)(pj) = (Aj+1)(pj),

we get that (Vj+1)(pj) = (Vj)(pj). Hence, for each n� j, we have: (Vn)(pj) = (Vj)(pj).
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Therefore, if we repeat the process of getting Wn’s from Vn’s appearing at the end of
the proof of Item (1), then for each n� j, we have

(Wn)(pj) = (Vn)(pj).

Since for each n� j, (Vn)(pj) is a Frattini cover of (An)(pj) and Gal(Kn) =Wn, the proof

is finished.

Remark 3.3. Item (1) in Theorem 3.2 cannot be improved towards the conclusion from

the statement of Item (2). To see that, let us consider an existentially closed C2
p∞ -field K

and let An := C2
pn . By the Claim from the beginning of Section 4, the restriction map:

Gal(Kn)−→An = C2
pn

is not a Frattini cover.

4. Negative results

This section is mostly about the proof of the left-to-right implication from Theorem 1.1.

Using Remark 1.2(2), we assume that there is an infinite strictly increasing sequence:

P1 = C2
p < P2 < P3 < .. . ,

such that each Pi is a finite p-subgroup of A. We aim to show that the theory A-TCF
does not exist.

Assume that the theory A-TCF exists, and let K be an |A|+-saturated and existentially

closed A-field. We will reach a contradiction.
By Theorem 3.2(1), for each i ∈ I, the profinite group Gal(Ki) is pronilpotent, hence,

it decomposes as:

Gal(Ki) =
∏
p∈P

Gal(Ki)(p).

By Corollary 2.5, for each i ∈ I, the field Ki is PAC. Hence (see [5, Theorem 11.6.2]), the

profinite group Gal(Ki) is projective and each pro-p group Gal(Ki)(p) is projective. As

in Example 2.22(1), Gal(Ki)(p) is pro-p free, so there is a cardinal κi, such that:

Gal(Ki)(p) ∼= F̂κi
(p).

Claim. For each i ∈ I, such that C2
p = P1 ⊆Ai, the restriction map:

Gal(Ki)(p) −→ (Ai)(p)

is not a Frattini cover.

Proof of Claim. Assume that the Claim does not hold, and let us take i ∈ I as above,

such that the map:

resi : Gal(Ki)(p) −→ (Ai)(p)
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is a Frattini cover. Let r be the rank of (Ai)(p). By our assumption, r is finite and r � 2.

Since the map resi is a Frattini cover, we get that r = rk(Gal(Ki)(p)), hence, (see [5,

Corollary 22.5.3]) r = κi.
For any j ∈ I, such that i� j, we have the following commutative diagram:

1 �� Gal(K)(p)

=

��

< �� Gal(Ki)(p) ∼= F̂r(p)
resi ��

<

��

(Ai)(p)

<

��

�� 1

1 �� Gal(K)(p)
< �� Gal(Kj)(p) ∼= F̂κj

(p)
resj �� (Aj)(p) �� 1.

Hence, we have:

tj :=
[
F̂κj

(p) : F̂r(p)
]
=
[
(Aj)(p) : (Ai)(p)

]
.

Therefore, by our main assumption on the sequence of groups (Ai)i, the indices tj go

to infinity when j → ∞. This leads to a contradiction by the profinite version of the
Nielsen-Schreier formula [5, Proposition 17.6.2], which we observe below.

Since r is finite, κj is finite as well for each j � i, and we have:

r = 1+ tj(κj −1).

Since r � 2, then for each j � i, we have κj −1> 0. Since tj ’s go to infinity with j, then

the constant r tends to infinity as well, which is obviously a contradiction.

Using the Claim above, we obtain that for each i ∈ I, such that C2
p ⊆Ai, the map:

resi : Gal(Ki)(p) −→ (Ai)(p)

is not a Frattini cover, which is witnessed by a closed proper subgroup Hi <Gal(Ki)(p),

such that:

resi(Hi) = (Ai)(p) .

Without loss of generality, Hi is a maximal proper closed subgroup of Gal(Ki)(p). Since

the profinite group Gal(Ki)(p) is pro-p, we get that:[
Gal(Ki)(p) :Hi

]
= p.

Hence, by Lemma 2.8 (applied to G0 :=Hi×
∏

q �=pGal(Ki)(q)), for each such i ∈ I, there

is an Ai-field extension K ⊂ Li of degree p. Since K is |A|+-saturated, there is an A-field
extension K ⊂ L of degree p, which gives our final contradiction (K is an existentially

closed A-field, so it is also A-closed) and finishes the proof of the left-to-right implication

in Theorem 1.1.

5. Positive results

This section is about the proof of the right-to-left implication in Theorem 1.1. Similarly,

as in Section 3, we start this section with a very general result, which will be needed

later.
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Proposition 5.1. Let K1 ⊇K2 ⊇K3 ⊇ . . . be a decreasing tower of fields, and let:

K∞ :=

∞⋂
n=1

Kn.

We assume that K∞ is PAC, and that the field extension K∞ ⊆ K1 is algebraic. Let
V be an algebraic variety over K∞, such that for all n > 0, we have V (Kn) �= ∅. Then
V (K∞) �= ∅.

Proof. Let V = V1 ∪ . . . ∪ Vd be the decomposition of V into irreducible components

over Kalg
∞ . We assume that the result does not hold (for this fixed tower (Kn)n) and

take a counterexample V, which is minimal with respect to (dim(V ),d). We will reach a
contradiction.

Since K∞ is PAC, we have d > 1. Without loss of generality, we may assume that for

each n, the set:

Qn := V (Kn)∩V1

(
Kalg

∞
)

is nonempty. Let Wn be the Zariski closure of Qn for each n inside V1

(
Kalg

∞
)
. Then, for

each n, we have the following:

• Wn is nonempty;
• Wn is defined over Kn;
• Wn ⊆ V1;
• Wn(Kn) �= ∅;
• Wn’s form a descending chain.

Hence, there is a varietyW, such that for n� 0, we haveW =Wn. Therefore,W is defined

over K∞ =
⋂
Kn, and W satisfies the assumption of the statement we are proving. But,

sinceW ⊆ V1 and d> 1, either dim(W )< dim(V ) or the number of irreducible components

(over Kalg
∞ ) of W is smaller than d (actually, if dim(W ) = dim(V ), then W = V1, so W is

absolutely irreducible). By minimality of V, we get W (K∞) �= ∅. But then V (K∞) �= ∅, a
contradiction.

Remark 5.2.

(1) The conclusion of Proposition 5.1 can be easily strengthened by replacing the variety
V with a constructible set. By a constructible set defined over a field M, we just

mean a quantifier-free formula in the language of rings with parameters from M. If

we evaluate this formula on Malg, then we get a ‘classical’ constructible set which is
a Noetherian topological space with the induced Zariski topology, and its irreducible

components are constructible sets as well (defined over Malg). To make the proof

of Proposition 5.1 work in this context, one only needs to notice that since for an
absolutely irreducible variety W over a PAC field C, we have that W (C) is Zariski

dense in W [5, Proposition 11.1.1], then any absolutely irreducible constructible set

over C has a C -rational point as well.
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(2) If we do not put assumptions on the intersection of the tower of fields, then

Proposition 5.1 fails, we give an example below. For n > 0, let:

Kn :=
(
F

alg
3

)Zp1
×...×Zpn

(we enumerate the primes P = (pn)n>0). Each field extension F3 ⊂ Kn is infinite

algebraic, so, by [5, Corollary 11.2.4], each fieldKn is PAC. Therefore, it is enough to

take an absolutely irreducible variety V over F3, such that V (F3) = ∅, for example:

V = V (Y 2−X3+X+1)

(we could have taken any finite field in place of F3, see [5, Example 11.2.9]).

We proceed towards the right-to-left implication in Theorem 1.1. Let us fix first a

‘good’ torsion Abelian group B of a special kind, that is, we assume that for all p ∈ P,

the p-primary part subgroup B(p) is finite. We also fix an enumeration of the primes

P= (pn)n>0, and for each n ∈N, we define the finite subgroup of B :

Bn :=B(p1)⊕. . .⊕B(pn).

Then (Bn)n is an increasing sequence, such that B =
⋃

nBn as in the assumptions of

Theorem 3.2(2). Let K be a B -field, and, as usual, we define Kn as KBn . The main point

is to show the following result below. We would like to point out that the conditions
(1)–(3) below are exactly the Galois axioms from Definition 1.3 (see Remark 5.4).

Theorem 5.3. The B-field K is existentially closed if and only if the following conditions

hold:

(1) K is strict and perfect;

(2) for each n ∈N, Kn is PAC;

(3) we have:

Gal(K)∼= ker

(˜̂
B −→ B̂

)
=
∏
t>0

ker
(
B̃(pt) −→B(pt)

)
,

and for each n > 0, we have

Gal(Kn)∼= B̃n×
∏
t>n

ker
(
B̃(pt) −→B(pt)

)
.

Proof. For the implication ‘⇒’, we notice first that any e.c. B -field is strict and perfect
(see, e.g. [10, Lemma 3.1] and [10, Lemma 3.4], which hold for an arbitrary group), so

we get Item (1). Item (2) follows from Corollary 2.5. We proceed to show Item (3). Let

us fix n ∈N. By Theorem 3.2(1), the profinite group Gal(Kn) is pronilpotent, hence, we
have:

Gal(Kn) =
∏
p∈P

Gal(Kn)(p).
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We need to show that for any j > 0, we have:

(i) if j � n, then:

Gal(Kn)(pj)
∼= B̃(pj);

(ii) if j > n, then:

Gal(Kn)(pj)
∼= ker

(
B̃(pj) −→B(pj)

)
.

Since Kn is PAC, we get that Gal(Kn) is projective as well as Gal(Kn)(p) for each p ∈P.

In the situation of Item (i), we get what we want directly from Theorem 3.2(2).

In the situation of Item (ii), we consider the following short exact sequence:

1 �� Gal(Kn) �� Gal(Kj)
res �� Gal(Kn/Kj) �� 1.

Since Kj =KBj and Kn =KBn , we get (using that K is a strict B -field) the following:

Gal(Kn/Kj)∼=Bj/Bn
∼=B(pn+1)⊕. . .⊕B(pj).

By the isomorphism above and Theorem 3.2(2), we get the following short exact sequence:

1 �� Gal(Kn)(pj)
�� Gal(Kj)(pj)

∼= B̃(pj)
res �� B(pj)

�� 1,

which gives the desired description of Gal(Kn)(pj).
For the implication ‘⇐’, let us assume that K is a B -field satisfying the conditions

(1)–(3) above. We need the following conclusion of the Galois axioms in this case.

Claim 1. K is B-closed.

Proof of Claim 1. Let K ⊆K ′ be an algebraic B -field extension. We aim to show that
K ′ = K. For each n > 0, K ⊆ K ′ is an algebraic Bn-field extension. Let K ′

n := (K ′)Bn

and Gn �Gal(Kn) be a closed subgroup, such that:

K ′
n =

(
Kalg

)Gn
.

Let:

resn : Gal(Kn)−→Bn =Gal(K/Kn)

be the restriction map. By Lemma 2.8, we obtain that:

resn(Gn) =Bn.

By our assumption, the profinite group Gal(Kn) is pronilpotent and for each t � n the

map:

resn : Gal(Kn)(pt) −→B(pt) =Gal(K/Kn)(pt)

is a (necessarily universal) Frattini cover. Hence, for each t� n, we obtain:

(Gn)(pt) = B̃(pt) =Gal(Kn)(pt).
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In particular, for any n > 0, we obtain (by taking t= n):

(Gn∩Gal(K))(pn) = B̃(pn)∩Gal(K) = ker
(
B̃(pn) −→B(pn)

)
=Gal(K)(pn). (*)

However, for each n > 0, we have (see Lemma 2.8):(
Kalg

)Gn∩Gal(K)
=K ′.

Hence, there is a closed subgroup H�Gal(K), such that for every n > 0, we have:

H= Gn∩Gal(K), K ′ =
(
Kalg

)H
.

By (∗), we get that for each n > 0:

H(pn) =Gal(K)(pn).

Therefore, H=Gal(K) and K =K ′, which we needed to show.

The next claim is just a restatement of the Galois axioms.

Claim 2. For any n > 0, we have the following commutative diagram with exact rows
(where, for clarity, we skip the trivial groups):∏

t>0 ker
(
B̃(pt) →B(pt)

)
< �� B̃n×

∏
t>n ker

(
B̃(pt) →B(pt)

)
�� Bn

Gal(K)

∼=
��

< �� Gal(Kn) ��

∼=
��

Gal(K/Kn).

∼=

��

From now on, we identify all the isomorphic objects appearing in Claim 2. For n > 0, we
define:

K(n) :=
(
Kalg

)B̃n
.

Since we have:

B̃n ·
∏
t>0

ker
(
B̃(pt) →B(pt)

)
= B̃n×

∏
t>n

ker
(
B̃(pt) →B(pt)

)
,

we get by Claim 2 that:

Gal
(
K(n)

)
·Gal(K) = Gal(Kn),

hence, we obtain:

K(n)∩K =Kn.

Since Kn ⊆K is a finite Galois extension, we obtain that K(n) is linearly disjoint from

K over Kn (see [5, Corollary 2.5.2] and the discussion below its proof). We define now:

K ′
(n) :=K(n)K ∼=K(n)⊗Kn

K.

From the isomorphism above, K ′
(n) is naturally a Bn-field extension of K, and we also

note that K ′
(n) is strict and perfect.
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Claim 3. The fields K ′
(n) form a decreasing tower, and we have the following:

∞⋂
n=1

K ′
(n) =K.

Proof of Claim 3. From the definition of the field K ′
(n) and Claim 2, we obtain that:

Gal
(
K ′

(n)

)
=Gal(K)∩Gal(K(n)) = ker

(
B̃n →Bn

)
.

Hence, we get (‘cl’ below denotes the topological closure inside the profinite group
Gal(K)):

cl

( ∞⋃
n=1

Gal
(
K ′

(n)

))
= cl

( ∞⋃
n=1

ker
(
B̃n →Bn

))

= ker

(˜̂
B → B̂

)
=Gal(K),

which yields the claim by the Galois theory.

By Claim 3, we see that the fields K ′
(n) approximate our field K. The next claim says

that they also ‘logically approximate’ K, in the sense that these fields have better and
better model-theoretic properties.

Claim 4. For each n > 0, we have:

K ′
(n) |=Bn−TCF.

Proof of Claim 4. From the definition of the Bn-field K ′
(n), it follows that:(

K ′
(n)

)Bn

=K(n).

Since Kn ⊆K(n) is an algebraic field extension and Kn is PAC, we get that K(n) is PAC

as well. By the definition of K(n), we get that:

Gal
(
K(n)

)∼= B̃n,

hence, by Proposition 2.17, we obtain that the Bn-field K ′
(n) is existentially closed.

We are ready to show that K is an existentially closed B -field. Let us take a quantifier-

free LB-formula ϕ(x) over K and a B -field extension K ⊆K ′, such that:

K ′ |= ∃xϕ(x).

We aim to show that K |= ∃xϕ(x).
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Let N > 0 be, such that ϕ(x) ∈ LBN
. Since K is B -closed (Claim 1), the field extension

K ⊆K ′ is regular. Let us take an arbitrary n�N . Since the field extension K ⊆K ′
(n) is

algebraic,K ′ is linearly disjoint fromK ′
(n) over K (by the definition of regular extensions).

Therefore, we have:

K ′K ′
(n)

∼=K ′⊗K K ′
(n),

and the field K ′K ′
(n) has a natural Bn-field structure extending those on K ′ and K ′

(n)

over K. Since the formula ϕ(x) is quantifier free, we have K ′K ′
(n) |= ∃xϕ(x). Since K ′

(n)

is an existentially closed Bn-field (Claim 4), we have K ′
(n) |= ∃xϕ(x).

For each n � N , the BN -field K ′
(n) is bi-interpretable with the pure field (K ′

(n))
BN

(see [10, Remark 2.3]). To proceed, we need the following claim. The notion of ‘uniform

bi-interpretability’ from this claim will be explained in the beginning of its proof. In this

claim, we also set K ′
(∞) :=K and K(∞) :=KN .

Claim 5. The bi-interpretability between the BN -field K ′
(n) and the pure field (K ′

(n))
BN

is uniform with respect to n ∈ {N,N +1, . . . ,∞}. In particular, there is a quantifier-free

formula ψ(y) in the language of fields with parameters from KN , such that for all n ∈
{N,N +1, . . . ,∞}, we have:

K ′
(n) |= ∃xϕ(x) ⇔

(
K ′

(n)

)BN

|= ∃yψ(y).

Proof of Claim 5. If G is a finite group of order e, F is a G-field and M := FG, then

(see [10, Remark 2.3]) there are M -bilinear maps:

m,a :Me×Me −→Me,

such that (Me,m,a) is naturally bi-interpretable with the field F. Similarly, in the case

of the G-action, there are M -linear maps:

g1, . . . ,ge :M
e −→Me,

such that (Me,m,a,g1, . . . ,ge) is bi-interpretable with the G-field F.
To prove our claim, it is enough to show that there are fixed KN -bilinear maps,

which give K ′
(n) the BN -field structure for each n ∈ {N,N +1, . . . ,∞} (we use the above

observation for a fixed G=BN and where F =K ′
(n) and M = (K ′

(n))
BN vary with n). To

this end, it is enough to show that for all n ∈ {N,N +1, . . . ,∞}, we have:

K ′
(n)

∼=
(
K ′

(n)

)BN

⊗KN
K. (†)
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We have the following commutative diagram1 of field extensions, where the arrows are
the inclusions and the Galois groups are indicated over some of the arrows:

K ′
(N)

K ′
(n)

��

K

∏
t>n ker

����������� (
K ′

(n)

)BN

BN

����������

KN .

∏
t>n ker

		���������
BN



����������

Thanks to the diagram above, we see that:

• the field K ′
(n) is the compositum of the fields

(
K ′

(n)

)BN

and K ;

• the fields
(
K ′

(n)

)BN

and K are linearly disjoint over KN .

Hence, we get the isomorphism from (†) above.

Let us take the quantifier-free formula ψ(y) in the language of fields from Claim 5. This

formula corresponds to (or even: ‘this formula is ’, see Remark 5.2(1)) a constructible set

V defined over KN . By Claim 5, it is enough to show that V (KN ) �= ∅. By Claim 5 again,
we get that for each n�N , we have:

V

((
K ′

(n)

)BN
)
�= ∅.

By Claim 3, we obtain that:

∞⋂
n=N

(
K ′

(n)

)BN

=KN .

Therefore, Remark 5.2(1) implies that V (KN ) �= ∅, which finishes the proof thanks to
Claim 5. (One could also arrange the original formula ϕ(x) in such a way that the resulting

formula ψ(x) defines a variety. Then, using Proposition 5.1 (rather than Remark 5.2(1))

would be enough.

Remark 5.4. As noted in the Introduction (below Definition 1.3), to see that the Galois

axioms from Theorem 5.3 are first order, it is enough to show that all the absolute Galois
groups Gal(Ki) appearing there are small. It is clear that if the profinite group G is the

product of its p-Sylow subgroups G(p), then G is small if and only if each G(p) is small.

1We thank Junguk Lee for drawing a version of this diagram for us.
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By Theorem 5.3, the profinite groups Gal(Ki)(p) are small, because they are topologically

finitely generated.

Therefore, for a torsion Abelian group B, such that for all p ∈ P, the p-power torsion
subgroup B(p) is finite, we get that the theory B -TCF exists, and it is axiomatised by

Galois axioms from the statement of Theorem 5.3.

We can conclude now the proof of our main result.

Proof of Theorem 1.1. Since the left-to-right implication was proved in Section 4, it

is enough to show the right-to-left implication and the moreover part of Theorem 1.1.
For the right-to-left implication, let us assume that for each prime p, the p-primary

part of A is either finite or it is the Prüfer p-group. We decompose A as:

A=Af ⊕A∞,

where for each p ∈ P, we have that (Af )(p) is finite and (A∞)(p) = Cp∞ or (A∞)(p) is

trivial. Let us set:

P∞ := {p ∈ P | (A∞)(p) = Cp∞}= (pi)i>0,

P0 := {q ∈ P | (Af )(q) �= 0}= (qi)i>0,

and for any m ∈N and n > 0, we define:

A(m) :=Af ⊕
⊕
p∈P∞

Cpm, (Af )n :=

n⊕
k=1

(Af )(qk) ,
(
A(m)

)
n
:= (Af )n⊕

n⊕
k=1

Cpm
k
.

Then A is the increasing union of the subgroups A(m) and each A(m) satisfies the

assumptions on the group B in the statement of Theorem 5.3. By Theorem 5.3 and

Remark 5.4, for each m ∈ N, the theory A(m)-TCF exists and it is axiomatised by
the Galois axioms. By Fact 2.19 and Proposition 2.20, it is enough to show that if

K |= A(m+1)−TCF, then K|L
A(m)

|= A(m)−TCF. The proof of this last assertion does

not differ much from the proof appearing in Example 2.21. Let us take n ∈N, and let us
set Pn := p1 . . . pn. Then, we have:

(A(m))n = Pn(A
(m+1))n.

Let us also denote:

Kn :=K(A(m+1))
n, K ′

n :=K(A(m))
n .

By Theorem 5.3(3), we get:

Gal(Kn)∼= ˜(A(m+1)
)
n
×

∞∏
t=n+1

ker

(
˜(

A(m+1)
)
(pt)

−→ (A(m))(pt)

)
∼= (̃Af )n×

∞∏
t=n+1

ker
(

˜(Af )(qt) −→ (Af )(qt)

)
×ZPn

×
∞∏

t=n+1

pm+1
t Zpt

∼= (̃Af )n×
∞∏

t=n+1

ker
(

˜(Af )(qt) −→ (Af )(qt)

)
×

∞∏
t=1

Zpt
,
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where ZPn
denotes Zp1

× . . . ×Zpn
(by [5, Corollary 22.7.8], for each p ∈ P, we have

C̃p = Zp, hence, C̃Pn
= ZPn

). We have the following commutative diagram with exact
rows (generalising the one from Example 2.21):

1 �� Gal(K)
< �� Gal(Kn)

res ��
(
A(m+1)

)
n

�� 1

1 �� Gal(K)

=

��

< �� Gal(K ′
n)

<

��

res �� Pn

(
A(m+1)

)
n

<

��

�� 1.

Therefore, we obtain:

Gal(K ′
n) = res−1

(
Pn(A

(m+1))n

)
∼= (̃Af )n×

∞∏
t=n+1

ker
(

˜(Af )(qt) −→ (Af )(qt)

)
×PnZPn

×
∞∏

t=n+1

pm+1
t Zpt

∼= (̃Af )n×
∞∏

t=n+1

ker
(

˜(Af )(qt) −→ (Af )(qt)

)
×

∞∏
t=1

Zpt

∼= ˜(A(m)
)
n
×
∏
t>n

ker

(
˜(A(m)
)
(pt)

−→ (A(m))(pt)

)
.

By Theorem 5.3(3), we get that K|L
A(m)

|=A(m)−TCF.

For the moreover part, we need to show that the theory A−TCF is strictly simple (that

is: simple, not stable and not supersimple) for A infinite. For simplicity, by Proposition
2.20, it is enough to show that each theory A(m)-TCF is simple. We use [7, Corollary

4.31], which (very conveniently for us) says that for any group G, if the theory G−TCF

exists, then it is simple if and only if the underlying fields of its models are bounded. Let

us take K |=A(m)−TCF. By Theorem 5.3, we have:

Gal(K)∼=
∏
p∈P

ker

(
˜(A(m)
)
(p)

−→
(
A(m)

)
(p)

)
.

Each universal Frattini cover above is a small profinite group being finitely generated.

Hence, each kernel above is small as well being an open subgroup of a small profinite

group. Therefore, Gal(K) is small, since all its pro-p components are small. As a result,
the field K is bounded and the theory A−TCF is simple. Since K is PAC and not

separably closed (if A �= 0), by [15, Fact 2.6.7], the theory of the pure field K is not stable,

so the theory A−TCF is also not stable. To see that A−TCF is not supersimple (if A
is infinite), it is enough to look at any strictly increasing sequence of finite subgroups

of A and consider the corresponding strictly decreasing tower of definable subfields of

invariants of K.

Remark 5.5.

(1) Example 2.21 can be generalised in the following way. Let us take A, satisfying

the equivalent conditions from Remark 1.2, and let K |=A−TCF. From the above
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2978 Ö. Beyarslan and P. Kowalski

proof of the right-to-left implication in Theorem 1.1, we have that:

A−TCF =

∞⋃
m=1

A(m)−TCF.

In particular, K |=A(1)−TCF and the description of Gal(K) comes from Theorem

5.3(3), that is:

Gal(K)∼= ker

(˜̂
B −→ B̂

)
,

where we have:

B :=Af ⊕
⊕
p∈P∞

Cp

for Af and P∞ defined as in the beginning of the proof of Theorem 1.1 in this
section.

(2) By expressing A as:

A= lim−→m,n

(
A(m)

)
n
,

where again the finite subgroups
(
A(m)

)
n
come from the beginning of the proof of

Theorem 1.1 in this section, we see that the theory A-TCF is axiomatised by Galois
axioms in the sense of Definition 1.3.

Example 5.6. We can now give several examples of existentially closed A-fields. The

ones from Items (2) and (3) below are in the spirit of (but, of course, much easier than)

Hrushovski’s “non-standard Frobenius” from [11]. Let us define:

CP :=
⊕
p∈P

Cp, P= (pi)i>0, Pn := p1 . . . pn.

(1) A CP-field is a field K with a collection of automorphisms (σp)p∈P, such that for
all p,q ∈P, we have σpσq = σqσp; and for each p ∈P, we have σp

p = id. A CP-field is

strict if and only if for all p ∈P, we have σp �= id. By Theorem 5.3, it is easy to see

that if K is a strict and perfect CP-field, then K is e.c. if and only if all the fields
of constants:

Kn := Fix(σp1
)∩. . .∩Fix(σpn

)

are pseudofinite.

(2) Let q ∈ P, and for each n > 0, we define the following CP-field:

Kq,n :=
(
FqPn ;Fr

Pn/p1 , . . . ,FrPn/pn , id, id, . . .
)
.
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Note that each CP-field Kq,n is bi-interpretable with the difference field (FqPn ,Fr).

Let U be a nonprincipal ultrafilter on the set of positive integers, and we define the

following CP-field:

Kq :=
∏
n>0

Kq,n

/
U .

By �Loś Theorem and Item (1),Kq is an existentially closed CP-field of characteristic
q.

(3) Let us define:

K0 :=
∏
n>0

Kpn,n

/
U,

where each CP-field Kpn,n comes from Item (2) above. Similarly, as in Item (2), K0

is an existentially closed CP-field of characteristic 0.

(4) Let us take q ∈ P and define:

H :=
∏
p∈P

pZp < Ẑ∼=Gal(Fq), K :=
(
Falg

q

)H
.

Then, we have:

Gal(K/Fq)∼= Ẑ/H∼=
∏
p∈P

Cp
∼= ĈP.

Hence, K becomes naturally a CP-field. It is clear from Item (1) that K is an e.c.

CP-field.

Remark 5.7.

(1) We note that if we consider in Example 5.6(2) the bi-interpretable difference field

(FqPn ,Fr) and take the ultraproduct in the language of difference fields, then the
result is completely different: we would obtain a pseudofinite field of characteristic

q with the Frobenius automorphism.

(2) However, if we do the same in Example 5.6(3), then we get a pseudofinite field of

characteristic 0 with an automorphism of an infinite order, which should be generic
in some sense. More precisely, we consider the following difference fields:

Kn := (Fqn,Fr), qn := pPn
n = pp1...pn

n

and their nonprincipal ultraproduct. Very similar difference fields were considered in
[24], that is: the difference fields from [24] are also ultraproducts of finite Frobenius

difference fields, but the order of growth of the cardinality of the finite fields in [24]

seems to be much faster than in our case.
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6. Miscellaneous results

In this section, we collect some results about model theory of group actions on fields,
which did not fit to the course of the proof of the main result of this paper (Theorem

1.1). More precisely, we:

• provide another argument for the nonexistence of the theory A-TCF for certain
torsion Abelian groups A,

• describe what we are able to prove for groups containing Z×Z,
• discuss briefly the case of nontorsion Abelian groups.

6.1. Another negative argument

In this subsection, we present briefly, a different negative argument in the special case of
A=C

(ω)
p . This was our original argument, and we think that it may have an independent

interest. Intuitively, the crucial property implying the nonexistence of the theory A−TCF

here is some kind of an auto-duplication of A inside A, i.e. A has a proper subgroup, which
is isomorphic to A.

We present C
(ω)
p as lim−→Cn

p , and for a C
(ω)
p -field K, we set as usual Kn := KCn

p . Let

C =
⋂

nKn be the field of absolute constants of K. By a compactness argument and the
Galois theory, we obtain the following.

Lemma 6.1. Suppose that K is a strict C
(ω)
p -field, which is ℵ0-saturated. Then, there

are a1,a2, . . . ∈K, such that for each n, we have:

• K =Kn(a1, . . . ,an);
• [C(an) : C] = p;
• the extension C ⊆ C(a1, . . . ,an) is Galois, and

Gal(C(a1, . . . ,an)/C)∼= Cn
p .

Using Lemma 6.1, we can show the following improvement of Lemma 2.7 in this case

(note that the profinite completion C×ω
p = Ĉ

(ω)
p is not small).

Proposition 6.2. Suppose that K is an ℵ0-saturated and strict C
(ω)
p -field. Consider the

following commutative diagram from Lemma 2.7:

C×ω
p

α �� Gal(Calg ∩K/C)

C
(ω)
p

ι

��

ϕ �� Aut(K/C).

res

��

Then the map α is an isomorphism of profinite groups.

Proof. We take a1,a2, . . . ∈K given by Lemma 6.1. Then, for each n > 0, the extension

C ⊂ C(a1, . . . ,an) is Galois, with Galois group being naturally isomorphic to Cn
p . Hence,
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we obtain the following commutative diagram originating from Lemma 2.7:

C×ω
p

s

����
��
��
��
��
��
��
��
��
�

α �� Gal(Calg ∩K/C)

res

��		
			

			
			

			
			

			
			

			
		

C
(ω)
p

ι

��

ϕ �� Aut(K/C)

res

��

res




























Cn
p

tn ��

⊂

���������������
Gal(C(a1, . . . ,an)/C),

where s is the section of the inclusion map Cn
p → C×ω

p and tn is an isomorphism. Let ϕn

denote the following composition map:

Gal(Calg∩K/C)
res �� Gal(C(a1, . . . ,an)/C)

t−1
n �� Cn

p .

Then the map:

lim←−n
(ϕn) : Gal(Calg ∩K/C)−→ C×ω

p

is the inverse map to the map α from Lemma 2.7.

We need the following general result, which is rather obvious.

Lemma 6.3. Let Φ : G → H be an isomorphism of groups and assume that G−TCF
exists. Then H−TCF exists and we have:

H−TCF = LΦ(G−TCF),

where LΦ is the natural bijection (induced by Φ : G→H) between the set of all the LG-

sentences and the set of all the LH-sentences.

The next result uses the ‘auto-duplication’ idea alluded to in the beginning of this

subsection.

Proposition 6.4. Suppose that C
(ω)
p −TCF exists. Then, for any existentially closed

C
(ω+1)
p -field, its obvious reduct is an existentially closed C

(ω)
p -field.

Proof. For each i > 0, let Li := Lrings ∪ {σ1, . . . ,σi} be the language of Ci
p-fields. Let

Lω :=
⋃

iLi be the language of C
(ω)
p -fields and Lω+1 := Lω ∪ {σ0} be the language of

C
(ω+1)
p -fields.

For each n > 0, we have the following group isomorphisms:

s : C(ω)
p −→ C(ω)

p ×Cp, s(σi) = σi−1;

cn : C(ω)
p −→ C(ω)

p , σ0 �→ σ1,σ1 �→ σ2, . . . ,σn �→ σn+1,σn+1 �→ σ0,σ>n+1 �→ σ>n+1.

There are the corresponding bijections of languages:

Ls : LC
(ω)
p

−→ L
C

(ω)
p ×Cp

, Lcn : L
C

(ω)
p

−→ L
C

(ω)
p

.
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By Lemma 6.3 and our assumption, the theory C
(ω+1)
p −TCF exists. It is enough to

show that:

C(ω)
p −TCF⊂

(
C(ω)

p ×Cp

)
−TCF.

Take ψ ∈ C
(ω)
p −TCF. Then, there is n > 0, such that ψ ∈ Ln. By Lemma 6.3, Ls(ψ) ∈

C
(ω+1)
p −TCF. By Lemma 6.3 again, Lcn(Ls(ψ)) ∈C

(ω+1)
p −TCF. Since Lcn(Ls(ψ)) = ψ,

the result follows.

Theorem 6.5. The theory C
(ω)
p −TCF does not exist.

Proof. Suppose that the theory C
(ω)
p −TCF exists and we will reach a contradiction. By

Proposition 6.4, there is a C
(ω+1)
p -field K, such that:

K |= C(ω+1)
p −TCF, K|Lω

|= C(ω)
p −TCF.

Let us set:

C :=KC(ω)
p , C ′ =KC(ω+1)

p .

Then, we have Gal(C/C ′) = Cp and:

[Gal(C ′) : Gal(C)] = p= [Gal(Calg ∩K/C ′) : Gal(Calg ∩K/C)].

By Proposition 6.2, we also have:

Gal(Calg ∩K/C ′)∼= C×(ω+1)
p .

Hence, Gal(Calg ∩K/C) is a codimension one Fp-subspace of C
×(ω+1)
p , and it may be

identified with C×ω
p .

By Lemma 2.11, we have the following isomorphism:

Ψ : Gal(C ′)−→ ̂Fω+1(p),

and Ψ(Gal(C)) = F̂ω(p), which is a contradiction, since the index [ ̂Fω+1(p) : F̂ω(p)] is

infinite.

6.2. Groups containing Z×Z

Let G be an arbitrary group. The notion of a p.e.c. G-field, which we discussed in Section

2.1, was pointed out to us by Udi Hrushovski in an attempt to show the following.

Conjecture 6.6. If G has a subgroup isomorphic to Z×Z, then the theory G−TCF
does not exist.

We discuss below a strategy for a proof of Conjecture 6.6, explain where the problem

is with this strategy and give a weaker statement, which can be still proved using this
strategy.

First, Hrushovski’s proof of the nonexistence of (Z×Z)-TCF (see [13] and [1, Section

5.1]) gives a stronger result, which we formulate below.
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Theorem 6.7 (Hrushovski). There is no ℵ0-saturated and p.e.c. (Z×Z)-field K, such

that:

• the primitive third root of unity ζ3 belongs to K;
• we have:

(1,0) · ζ3 = ζ23, (0,1) · ζ3 = ζ23 .

The hope was that if (in the situation of Conjecture 6.6) K is an ℵ0-saturated and e.c.

(even just p.e.c.) G-field, then its reduct to Z×Z would contradict Theorem 6.7 using
Proposition 2.2. However, the problem is that the induced action of Z×Z on K need not

satisfy the conditions from Theorem 6.7. Actually, if G=Q×Q, then this induced action

never satisfies the conditions from Theorem 6.7.

It is easy to give algebraic conditions on the group G yielding the conditions from
Theorem 6.7, which we do below.

Proposition 6.8. Suppose that:

• there is H �G, such that H ∼=Z×Z,
• there is N <G of index 2, such that H �N .

Then, the theory G−TCF does not exist.

Proof. Assume that the theory G−TCF exists and we will reach a contradiction. By our
assumptions, there is a group homomorphism ϕ :G→C2 such that ϕ(H) =C2. Since we

have:

Gal(Q(ζ3)/Q)∼= C2,

the above homomorphism ϕ gives Q(ζ3) the G-field structure, such that the reduct of

this structure to H satisfies the conditions from Theorem 6.7. Since the theory G−TCF
exists, we can extend the G-field Q(ζ3) to an existentially closed and ℵ0-saturated G-

field K, and in this case, the strategy described above works, giving a contradiction with

Theorem 6.7.

We give below an explicit (although, looking a bit strange) statement, which easily

follows from Proposition 6.8.

Corollary 6.9. If Z×Z embeds into G, then the theory (G×C2)−TCF does not exist.

Proof. We take G to play the role of N from Proposition 6.8, and we also set:

H := 〈((1,0),a),((0,1),a)〉,

where we identify Z×Z with its image in G and take a as the generator of C2.

6.3. Arbitrary Abelian groups

It is tempting to extend Theorem 1.1 to the case of an arbitrary Abelian group. However,

there are the following problems.

(1) On the negative argument side, it is not clear even how to show that the theory

(Q×Q)−TCF does not exist, as was pointed out in Section 6.2.
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(2) Regarding the positive argument side, it may be also unclear how to deal, e.g. with

the case of Cp∞ ×Q. We can present this group as:

Cp∞ ×Q= lim−→n
Cpn × 1

n!
Z,

but, since the group Cpn ×Z is not finite, we can not use only the Galois axioms,
and we should also consider direct limits with respect to the Bass-Serre theory (see

[1]). This may be doable, but such methods thematically do not fit to this paper,

and this circle of topics will be picked up elsewhere.
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