INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

BY
CLÉMENT FRAPPIER

$$
\begin{aligned}
& \text { ABSTRACT. Bernstein's inequality says that if } f \text { is an entire } \\
& \text { function of exponential type } \tau \text { which is bounded on the real axis } \\
& \text { then } \\
& \qquad \max _{-\infty<x<\infty}\left|f^{\prime}(x)\right| \leq \tau_{-\infty<x<\infty}|f(x)| \text {. } \\
& \text { Genchev has proved that if, in addition, } h_{f}(\pi / 2) \leq 0 \text {, where } h_{f} \text { is the } \\
& \text { indicator function of } f \text {, then } \\
& \qquad \max _{-\infty<x<\infty}\left|f^{\prime}(x)\right| \leq \tau_{-\infty<x<\infty} \max |\operatorname{Re} f(x)| \text {. } \\
& \text { Using a method of approximation due to Lewitan, in a form given } \\
& \text { by Hörmander, we obtain, to begin, a generalization and a refine- } \\
& \text { ment of Genchev's result. Also, we extend to entire functions of } \\
& \text { exponentian type two results first proved for polynomials by Rahman. } \\
& \text { Finally, we generalize a theorem of Boas concerning trigonometric } \\
& \text { polynomials vanishing at the origin. }
\end{aligned}
$$

1. Introduction and statement of results. Let B_{τ} be the class of entire functions of exponential type τ which are bounded on the real axis. A result of S. N. Bernstein says that if $f \in B_{\tau}$ then [3]:

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq \tau \max _{-\infty<t<\infty}|f(t)|, \quad-\infty<x<\infty . \tag{1}
\end{equation*}
$$

Equality in (1) holds only if

$$
f(z)=a e^{-i \tau z}+b e^{i \tau z}, \quad a, b \in \mathbb{C}
$$

Genchev [9] has proved that if $f \in B_{\tau}$ and $h_{f}(\pi / 2) \leq 0$, where

$$
h_{f}(\theta):=\varlimsup_{r \rightarrow \infty} \frac{\log \left|f\left(r e^{i \theta}\right)\right|}{r}
$$

is the indicator function of f, then

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq \tau \max _{-\infty<t<\infty}|\operatorname{Re} f(t)|, \quad-\infty<x<\infty . \tag{2}
\end{equation*}
$$

[^0]The inequality (2) extends a result of Szegö: if $P(z)=\sum_{j=0}^{n} a_{j} z^{i}$ is a polynomial of degree $\leq n$ then the function $f(z)=P\left(e^{i z}\right)$ satisfies the hypothesis of Genchev's result and (2) becomes (see [15]):

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leq n \max _{|\xi|=1}|\operatorname{Re} P(\xi)|, \quad|z| \leq 1 . \tag{3}
\end{equation*}
$$

In this article we first obtain a generalization of (2).
Theorem 1. Let $f \in B_{\tau}$ such that $h_{f}(\pi / 2) \leq 0$ and $|\operatorname{Re} f(x)| \leq 1$ for $-\infty<x<\infty$. Then

$$
|f(x+i y)-f(x)| \leq\left(e^{-\tau y}-1\right), \quad y \leq 0, \quad-\infty<x<\infty .
$$

We shall also prove the following theorem which is stronger than Genchev's result.

Theorem 2. Let $f \in B_{\tau}$ such that $h_{f}(\pi / 2) \leq 0$ and $|\operatorname{Re} f(x)| \leq 1$ for $-\infty<x<\infty$. Then

$$
\left|\operatorname{Re}\left(\tau f(x)+i f^{\prime}(x)\right)\right|+\left|f^{\prime}(x)\right| \leq \tau, \quad-\infty<x<\infty .
$$

It is to be noted that the case $f(z)=P\left(e^{i z}\right)$, where P is a polynomial of degree $\leq n$, of Theorem 2 gives us a refinement of (3).

To prove Theorems 1 and 2 we use a method of approximation due to Lewitan [13] in a form given by Hörmander [11]. This method turns out to be very useful and we use it to obtain the next results.

Theorem 3. Let α, β, γ be complex numbers such that the roots of the polynomial

$$
u(z):=\left(\alpha \tau^{2}+i \beta \tau-\gamma\right)+2 i \tau(2 i \alpha \tau-\beta) z+4 \alpha \tau^{2} z^{2}
$$

lie in $\operatorname{Re}(z) \leq \frac{1}{2}$. If $f \in B_{\tau}$ and $|f(x)| \leq 1$ for $-\infty<x<\infty$ then

$$
\begin{aligned}
&\left|\alpha f^{\prime \prime}(x+i y)+\beta f^{\prime}(x+i y)+\gamma f(x+i y)\right| \leq \mid-\alpha \tau^{2}+i \beta \tau+\gamma \mid e^{-\tau y}, \\
& y \leq 0, \quad-\infty<x<\infty .
\end{aligned}
$$

This theorem extends a result of Rahman on trigonometric polynomials [14, Theorem 5]. Also, suppose that $f \in B_{\tau}$ is real on the real axis and that $|f(x)| \leq 1$ for $-\infty<x<\infty$. Choosing $\alpha=0, \beta=f^{\prime}(x), \gamma=\tau^{2} f(x)$ and taking $y=0$ we see that Theorem 3 contains an inequality of Duffin and Schaeffer [8]:

$$
\begin{equation*}
\left(f^{\prime}(x)\right)^{2}+(\tau f(x))^{2} \leq \tau^{2}, \quad-\infty<x<\infty . \tag{4}
\end{equation*}
$$

Theorem 4. Let α, β, γ be complex numbers such that the roots of the polynomial

$$
v(z):=\gamma+i \beta \tau z-\alpha \tau^{2} z^{2}
$$

lie in $\operatorname{Re}(z) \leq \frac{1}{2}$. If $f \in B_{\tau}, h_{f}(\pi / 2) \leq 0$ and $|f(x)| \leq 1$ for $-\infty<x<\infty$ then

$$
\begin{aligned}
&\left|\alpha f^{\prime \prime}(x+i y)+\beta f^{\prime}(x+i y)+\gamma f(x+i y)\right| \leq\left|\alpha^{2}+i \beta \tau+\gamma\right| e^{-\tau y}, \\
& y \leq 0,-\infty<x<\infty .
\end{aligned}
$$

Like Theorem 3 this theorem extends a result of Rahman [14, Theorem 4]. It is readily seen that the condition on the roots of the polynomial $v(z)$ in Theorem 4 is less restrictive than the corresponding condition on $u(z)$ in Theorem 3; this latter is already satisfied if α, β, γ are reals and $\beta^{2} \geq 4 \alpha \gamma$.

Theorem 5. Let $f \in B_{\tau}$ such that $|f(x)| \leq 1$ for $-\infty<x<\infty$ and $f(0)=0$. Then

$$
|f(x)| \leq|\sin \tau x| \quad \text { for } \quad|x| \leq \frac{\pi}{2 \tau} .
$$

If, in addition, $h_{f}(\pi / 2) \leq 0$ then

$$
|f(x)| \leq\left|\sin \frac{\tau x}{2}\right| \quad \text { for } \quad|x| \leq \frac{\pi}{\tau} .
$$

Theorem 5 generalizes a result of Boas [6] according to which the inequality

$$
\begin{equation*}
|S(x)| \leq|\sin n x|, \quad|x| \leq \frac{\pi}{2 n} \tag{5}
\end{equation*}
$$

holds for all trigonometric polynomials $S(x)=\sum_{m=-n}^{n} b_{m} e^{i m x}$ satisfying $S(0)=0$ and $\max _{0 \leq x<2 \pi}|S(x)| \leq 1$. It is also an amelioration of a result of Giroux and Rahman [10]: let $f \in B_{\tau}$ such that $h_{f}(\pi / 2) \leq 0, f(0)=0$ and $|f(x)| \leq 1$ for $-\infty<$ $x<\infty$; we have then $|f(x)| \leq \tau / 2|x|$ for $|x| \leq 2 / \tau$.
2. The method of approximation. Let $f \in B_{\tau}$ such that $|f(x)| \leq 1$ for $-\infty<x<$ ∞. Put $\varphi(x)=(\sin \pi x / \pi x)^{2}$ and

$$
\begin{equation*}
f_{h}(x)=\sum_{k=-\infty}^{\infty} \varphi(h x+k) f\left(x+\frac{k}{h}\right), \quad h>0 . \tag{6}
\end{equation*}
$$

Lemma 1. The functions f_{h} defined by (6) are trigonometric polynomials with period $1 / h$ and degree less or equal to $N:=1+[\tau / 2 \pi h]$. When x is real we have $\left|f_{h}(x)\right| \leq 1$, and $f_{h}(z) \rightarrow f(z)$ uniformly in every bounded set when $h \rightarrow 0$.

In view of Lemma 1 we may write

$$
\begin{equation*}
f_{h}(x)=\sum_{m=-N}^{N} C_{m}(h) e^{2 \pi i m h x} \tag{7}
\end{equation*}
$$

where

$$
C_{m}(h)=h \int_{0}^{1 / h} f_{h}(x) e^{-2 \pi i m h x} d x
$$

Lemma 2. If $h_{f}(\pi / 2) \leq 0$ then

$$
C_{m}(h)=0 \quad \text { for } \quad-N \leq m \leq-1 .
$$

Proof. Proceeding as in [11, p. 22] we have

$$
\begin{equation*}
C_{m}(h)=h \int_{-\infty}^{\infty} \varphi(h(x+i y)) f(x+i y) e^{-2 \pi i m h(x+i y)} d x \tag{8}
\end{equation*}
$$

for all real values of y, and the estimate

$$
\begin{equation*}
|\varphi(h(x+i y))| \leq \frac{e^{2 \pi h|y|}}{(\pi h)^{2}\left(x^{2}+y^{2}\right)} . \tag{9}
\end{equation*}
$$

Suppose that $y>0$. The hypothesis $|f(x)| \leq 1,-\infty<x<\infty$, and $h_{f}(\pi / 2) \leq 0$ imply [4, p. 82, Theorem 6.2.4] that

$$
\begin{equation*}
|f(x+i y)| \leq 1, \quad y \geq 0, \quad-\infty<x<\infty . \tag{10}
\end{equation*}
$$

Using (8), (9) and (10) we obtain

$$
\left|C_{m}(h)\right| \leq \frac{e^{2 \pi h y(m+1)}}{\pi^{2} h} \int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+y^{2}\right)}=\frac{e^{2 \pi h y(m+1)}}{\pi h y}
$$

Letting $y \rightarrow \infty$ we get $C_{m}(h)=0, m=-1,-2, \ldots$

3. Proofs of the theorems

Proof of Theorem 1. Consider the trigonometric polynomials (7), $h>0$. In view of Lemma 2 we have $C_{m}(h)=0,-N \leq m \leq-1$. Thus, we may write

$$
f_{h}\left(\frac{x}{2 \pi h}\right)=P_{h}\left(e^{i x}\right)
$$

where P_{h} is an algebraic polynomial of degree $\leq N$. Applying a result of Szegö [15, p. 68] we have
(11) $\left|P_{h}\left(\operatorname{Re}^{i x}\right)-P_{h}\left(e^{i x}\right)\right| \leq\left(R^{N}-1\right) \max _{|\xi|=1}\left|\operatorname{Re} P_{h}(\xi)\right|, \quad-\infty<x<\infty, \quad R \geq 1$.

If we change x to $2 \pi h x$ and R to $R^{2 \pi h}$ then (11) becomes

$$
\begin{equation*}
\left|f_{h}(x-i \log R)-f_{h}(x)\right| \leq\left(R^{2 \pi h N}-1\right), \quad-\infty<x<\infty, \quad R \geq 1 \tag{12}
\end{equation*}
$$

since max \qquad $\left|\operatorname{Re} f_{h}(x)\right| \leq 1$ whenever max \qquad $|\operatorname{Re} f(x)| \leq 1$. Observe that

$$
\begin{equation*}
\lim _{h \rightarrow 0} 2 \pi h N=\tau . \tag{13}
\end{equation*}
$$

By Lemma $1, f_{h}(z) \rightarrow f(z)$ uniformly in every bounded set, when $h \rightarrow 0$, and the result then follows from (13) if we let $h \rightarrow 0$ in (12).

Proof of Theorem 2. It is known [7, Theorem 4] that if P is a polynomial of degree $\leq n$ such that $|\operatorname{Re} P(z)| \leq 1$ for $|z| \leq 1$ then

$$
\begin{equation*}
\left|\operatorname{Re}\left((\xi-z) P^{\prime}(z)+n P(z)\right)\right| \leq n, \quad|\xi| \leq 1, \quad|z| \leq 1 \tag{14}
\end{equation*}
$$

Write $P^{\prime}(z)=a_{1}+i a_{2}, n P(z)-z P^{\prime}(z)=b_{1}+i b_{2}\left(a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}\right)$ and take $\xi=$ $e^{i \omega}, \omega \in \mathbb{R}$ in (14); we obtain

$$
\begin{equation*}
-n \leq a_{1} \cos \omega-a_{2} \sin \omega+b_{1} \leq n, \quad \omega \in \mathbb{R} . \tag{15}
\end{equation*}
$$

The choice

$$
\sin \omega=\frac{-a_{2}}{\sqrt{ }\left(a_{1}^{2}+a_{2}^{2}\right)}, \quad \cos \omega=\frac{a_{1}}{\sqrt{ }\left(a_{1}^{2}+a_{2}^{2}\right)},
$$

in (15), gives us the inequality $\sqrt{ }\left(a_{1}^{2}+a_{2}^{2}\right)+b_{1} \leq n$ while the choice

$$
\sin \omega=\frac{a_{2}}{\sqrt{ }\left(a_{1}^{2}+a_{2}^{2}\right)}, \quad \cos \omega=\frac{-a_{1}}{\sqrt{ }\left(a_{1}^{2}+a_{2}^{2}\right)}
$$

gives $-n \leq-\sqrt{ }\left(a_{1}^{2}+a_{2}^{2}\right)+b_{1}$; combining these inequalities we obtain

$$
\begin{equation*}
\left|\operatorname{Re}\left(n P(z)-z P^{\prime}(z)\right)\right|+\left|P^{\prime}(z)\right| \leq n, \quad|z| \leq 1 . \tag{16}
\end{equation*}
$$

Consider now the trigonometric polynomials (7), $h>0$. In view of Lemma 2 we may write $f_{h}(x / 2 \pi h)=P_{h}\left(e^{i x}\right)$ where P_{h} is a polynomial of degree $\leq N$. Furthermore $\left|\operatorname{Re} P_{h}(z)\right| \leq 1,|z| \leq 1$, and so, applying (16), we get

$$
\begin{equation*}
\left|\operatorname{Re}\left(N P_{h}(z)-z P_{h}^{\prime}(z)\right)\right|+\left|P_{h}^{\prime}(z)\right| \leq N, \quad|z| \leq 1, \tag{17}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\mid \operatorname{Re}\left(2 \pi h N f_{h}(x)+i f_{h}^{\prime}(x)\left|+\left|f_{h}^{\prime}(x)\right| \leq 2 \pi h N, \quad-\infty<x<\infty .\right.\right. \tag{18}
\end{equation*}
$$

The result then follows from Lemma 1 and (13) if we let $h \rightarrow 0$ in (18).
Proof of Theorem 3. Consider the trigonometric polynomials (7), $h>0$. Put

$$
S_{h}(x)=f_{h}\left(\frac{x}{2 \pi h}\right) .
$$

We have (Lemma 1) $\left|S_{h}(x)\right| \leq 1,-\infty<x<\infty$. Now, a result of Rahman [14, Theorem 5] says that if $S(\theta)$ is a trigonometric polynomial of degree $\leq n$ such that $|S(\theta)| \leq 1$ for $0 \leq \theta<2 \pi$ and the roots of the polynomial

$$
u_{1}(z):=\frac{2 a(2 n-1)}{n} z^{2}-2\{a(2 n-1)+i b\} z+a n^{2}+i b n-c
$$

lie in the half plane $|z| \leq|z-n|$ then

$$
\begin{equation*}
\left|a S^{\prime \prime}(\theta)+b S^{\prime}(\theta)+c S(\theta)\right| \leq\left|-a n^{2}+i b n+c\right|, \quad \theta \in \mathbb{R} . \tag{19}
\end{equation*}
$$

It is clear that the same line of reasoning used in [14] to prove (19) lead us to the more general conclusion

$$
\begin{align*}
\mid a S^{\prime \prime}(\theta-i \log R)+b S^{\prime}(\theta-i & \log R)+c S(\theta-i \log R) \mid \tag{20}\\
& \leq\left|-a n^{2}+i b n+c\right| R^{n}, \quad \theta \in \mathbb{R}, \quad R \geq 1
\end{align*}
$$

Take $a=(2 \pi h)^{2} \alpha, b=2 \pi h \beta, c=\gamma, \theta=2 \pi h x, y=-2 \pi h \log R$ and apply (20) to the trigonometric polynomial S_{h} (of degree $\leq N$). We obtain that if the roots of the polynomial

$$
\begin{aligned}
u_{1}(N z)=2(2 \pi h)^{2} N(2 N-1) \alpha z^{2}-2\left\{(2 \pi h)^{2} N(2 N\right. & -1) \alpha+i 2 \pi h N \beta\} z \\
& +(2 \pi h N)^{2} \alpha+i \beta 2 \pi h N-\gamma
\end{aligned}
$$

lie in the half plane $|z| \leq|z-1|$ then

$$
\left|\alpha f_{h}^{\prime \prime}(x+i y)+\beta f_{h}^{\prime}(x+i y)+\gamma f_{h}(x+i y)\right| \leq\left|-(2 \pi h N)^{2} \alpha+i(2 \pi h N) \beta+\gamma\right| e^{-2 \pi h N y}
$$

for $-\infty<x<\infty$ and $y \leq 0$.
Suppose first that the roots of the polynomial

$$
u(z)=\left(\alpha \tau^{2}+i \beta \tau-\gamma\right)+2 i \tau(2 i \alpha \tau-\beta) z+4 \alpha \tau^{2} z^{2}
$$

lie in $\operatorname{Re}(z)<\frac{1}{2}$. The result then follows from Lemma 1, (13), the fact that

$$
\lim _{h \rightarrow 0} u_{1}(N z)=u(z)
$$

and Hurwitz's theorem (according to which the roots of $u(z)$ are the limits of the roots of the $u_{1}(N z)$, when $\left.h \rightarrow 0\right)$. If one or two of the roots of $u(z)$ has real part equal to $\frac{1}{2}$ then, putting $\alpha_{1}=\alpha, \beta_{1}=\beta+4 i \alpha \tau \varepsilon$ and $\gamma_{1}=$ $\gamma+2 i \beta \tau \varepsilon-4 \alpha \tau^{2} \varepsilon^{2}$, where $\varepsilon>0$, we are led to a new polynomial,

$$
U_{\varepsilon}(z)=\left(\alpha_{1} \tau^{2}+i \beta_{1} \tau-\gamma_{1}\right)+2 i \tau\left(2 i \alpha_{1} \tau-\beta_{1}\right) z+4 \alpha_{1} \tau^{2} z^{2},
$$

whose roots have real part $<\frac{1}{2}$, and the result follows by continuity on letting $\varepsilon \rightarrow 0$.

Proof of Theorem 4. Since $h_{f}(\pi / 2) \leq 0$ we have (Lemma 2)

$$
f_{h}\left(\frac{x}{2 \pi h}\right)=P_{h}\left(e^{i x}\right)
$$

where P_{h} is a polynomial of degree $\leq N$ such that (Lemma 1) $\max _{|z|=1}\left|P_{h}(z)\right| \leq$ 1. It is known [14, Theorem 4] that if P is a polynomial of degree $\leq n$ then $|P(z)| \leq 1,|z|=1$ implies

$$
\begin{equation*}
|B(P(z))| \leq\left|B\left(z^{n}\right)\right|, \quad|z| \geq 1, \tag{21}
\end{equation*}
$$

where B is the operator which carries
into

$$
P(z)=\sum_{j=0}^{n} a_{j} z^{j}
$$

$$
B(P(z))=\lambda_{0} P(z)+\lambda_{1} \frac{n}{2} z P^{\prime}(z)+\lambda_{2} \frac{n^{2}}{8} z^{2} P^{\prime \prime}(z)
$$

and where $\lambda_{0}, \lambda_{1}, \lambda_{2}$ are complex numbers such that the roots of

$$
v_{1}(z):=\lambda_{0}+\lambda_{1} n z+\lambda_{2} \frac{n(n-1)}{2} z^{2}
$$

lie in the half plane $|z| \leq|z-(n / 2)|$.
Put

$$
\lambda_{2}=\frac{-8(2 \pi h)^{2} \alpha}{N^{2}}, \quad \lambda_{1}=\frac{2(2 \pi h) \beta i-2(2 \pi h)^{2} \alpha}{N}, \quad \lambda_{0}=\gamma,
$$

change x to $2 \pi h x, R$ to $R^{2 \pi h}$ and apply (21) to the polynomial P_{h} (of degree $\leq N$); we obtain that if the roots of

$$
v_{1}\left(\frac{N z}{2}\right)=\gamma+\left(2 \pi h N \beta i-(2 \pi h)^{2} N \alpha\right) z-(2 \pi h)^{2} N(N-1) \alpha z^{2}
$$

lie in the half plane $|z| \leq|z-1|$ then

$$
\begin{aligned}
& \left|\alpha f_{h}^{\prime \prime}(x-i \log R)+\beta f_{h}^{\prime}(x-i \log R)+\gamma f_{h}(x-i \log R)\right| \\
& \quad \leq\left|-(2 \pi h N)(2 \pi h(N-1)) \alpha+2 \pi h N \beta i+\gamma-(2 \pi h)^{2} N \alpha\right| R^{2 \pi h N},
\end{aligned}
$$

for $-\infty<x<\infty$ and $R \geq 1$.
Suppose first that the two roots of the polynomial $v(z)=\gamma+i \beta \tau z-\alpha \tau^{2} z^{2}$ lie in $\operatorname{Re}(z)<\frac{1}{2}$. The result then follows from Lemma 1, (13), the fact that

$$
\lim _{h \rightarrow 0} v_{1}\left(\frac{N z}{2}\right)=v(z)
$$

and Hurwitz's theorem. If one or two of the roots of $v(z)$ has real part equal to $\frac{1}{2}$ then, putting $\alpha_{1}=\alpha, \beta_{1}=\beta+2 i \alpha \tau \varepsilon$ and $\gamma_{1}=\gamma+i \beta \tau \varepsilon-\alpha \tau^{2} \varepsilon^{2}$, where $\varepsilon>0$, we are led to a new polynomial, $V_{\varepsilon}(z)=\gamma_{1}+i \beta_{1} \tau z-\alpha_{1} \tau^{2} z^{2}$, whose roots have real part $<\frac{1}{2}$, and the result follows by continuity on letting $\varepsilon \rightarrow 0$.

Proof of Theorem 5. Since $f_{h}(0)=f(0)=0$ the trigonometric polynomial

$$
S_{h}(x)=f_{h}\left(\frac{x}{2 \pi h}\right)
$$

satisfies $S_{h}(0)=0$ and, by Lemma $1,\left|S_{h}(x)\right| \leq 1,0 \leq x<2 \pi$. Applying (5) to S_{h} we obtain

$$
\begin{equation*}
\left|S_{h}(x)\right| \leq|\sin N x|, \quad|x| \leq \frac{\pi}{2 N} \tag{22}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left|f_{h}(x)\right| \leq|\sin 2 \pi h N x|, \quad|x| \leq \frac{\pi}{4 \pi h N} \tag{23}
\end{equation*}
$$

Now let $\varepsilon>0$ and suppose $\tau>0$. If $h>0$ is sufficiently small the interval

$$
\left[-\frac{\pi}{2 \tau}+\varepsilon, \frac{\pi}{2 \tau}-\varepsilon\right]
$$

is contained in

$$
\left[\frac{-\pi}{4 \pi h N}, \frac{\pi}{4 \pi h N}\right],
$$

whence

$$
\begin{equation*}
\left|f_{h}(x)\right| \leq|\sin 2 \pi h N x| \quad \text { for } \quad|x| \leq \frac{\pi}{2 \tau}-\varepsilon \tag{24}
\end{equation*}
$$

and h sufficiently small. Letting $h \rightarrow 0$ we get

$$
|f(x)| \leq|\sin \tau x|, \quad|x| \leq \frac{\pi}{2 \tau}-\varepsilon
$$

and since

$$
\bigcup_{\varepsilon>0}\left[\frac{-\pi}{2 \tau}+\varepsilon, \frac{\pi}{2 \tau}-\varepsilon\right]=\left(\frac{-\pi}{2 \tau}, \frac{\pi}{2 \tau}\right)
$$

we obtain the first part of Theorem 5 in the case $\tau>0$. An entire function of exponential type 0 which is bounded on the real axis is a constant so that the conclusion is trivial in the case $\tau=0$.

The second part of Theorem 5 is obtained similarly. We need only to observe that the hypothesis $h_{f}(\pi / 2) \leq 0$ implies, in view of Lemma 2, that $f_{h}(x / 2 \pi h)=P_{h}\left(e^{i x}\right)$, where P_{h} is a polynomial of degree $\leq N$, and apply the preceding reasoning to the trigonometric polynomial (of degree $\leq N$)

$$
t_{h}(x)=e^{i N x} P_{h}\left(e^{-2 i x}\right)
$$

4. Concluding remarks. The method described above may be used to prove several well-known results. For example, Bernstein's inequality (1) may be obtained from the corresponding (and previously discovered [2, p. 39]) result on trigonometric polynomials.

As another example, suppose that $f \in B_{\tau}$ is such that $h_{f}(\pi / 2) \leq 0$ and $|f(x)| \leq$ 1 for $-\infty<x<\infty$. If $f(z) \neq 0$ in $\operatorname{Im}(z) \geq 0$ then there exists a sequence of positive numbers $\left(h_{j}\right)_{j=0}^{\infty}$ such that $\lim _{j \rightarrow \infty} h_{j}=0$ and $f_{h_{j}}(z) \neq 0$ in $\operatorname{Im}(z) \geq 0$, $j=0,1,2, \cdots$ The polynomial

$$
P_{h_{j}}(z)=\sum_{m=0}^{N_{i}} C_{m}(h) z^{m},
$$

where

$$
N_{j}:=1+\left[\frac{\tau}{2 \pi h_{j}}\right],
$$

is then different from 0 in $|z| \leq 1$. By the Erdös-Lax Theorem [12] we have $\left|P_{h_{j}}^{\prime}\left(e^{i \theta}\right)\right| \leq N_{j} / 2,0 \leq \theta<2 \pi$, that is

$$
\left|f_{h_{1}}^{\prime}(x)\right| \leq \frac{2 \pi h_{i} N_{j}}{2}, \quad-\infty<x<\infty .
$$

Letting $j \rightarrow \infty$ and using Lemma 1 we obtain

$$
\left|f^{\prime}(x)\right| \leq \frac{\tau}{2}, \quad-\infty<x<\infty
$$

If $f(z) \neq 0$ only in $\operatorname{Im}(z)>0$ then we may apply the result just proved to the entire function $g(z):=f(z+\varepsilon i), \varepsilon>0$, which is of exponential type τ, satisfies
$h_{\mathrm{g}}(\pi / 2) \leq 0$ and is different from 0 in $\operatorname{Im}(z) \geq 0$. We have thus proved a result of Boas [5]: if $f \in B_{\tau}, h_{f}(\pi / 2) \leq 0,|f(x)| \leq 1$ for $-\infty<x<\infty$ and $f(z) \neq 0$ in $\operatorname{Im}(z)>0$ then

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq \frac{\tau}{2}, \quad-\infty<x<\infty . \tag{25}
\end{equation*}
$$

In a similar way we may prove, with the same hypothesis as for (25), that

$$
\begin{equation*}
|f(x+i y)| \leq \frac{e^{-\tau y}+1}{2}, \quad y \leq 0, \quad-\infty<x<\infty . \tag{26}
\end{equation*}
$$

The inequality (26), also due to Boas [5], is reminiscent to a result of Ankeny and Rivlin [1] according to which the inequality $\left|P\left(\operatorname{Re}^{i \theta}\right)\right| \leq\left(R^{n}+1\right) / 2,0 \leq \theta<$ $2 \pi, R \geq 1$, holds for all polynomials P not vanishing in the unit disk and satisfying $\max _{|z|=1}|P(z)| \leq 1$.

References

1. N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math. 5, (1955), 849-852.
2. S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné, Mémoire de l'Académie Royale de Belgique, vol. 4 (1912), 1-103.
3. S. N. Bernstein, Sur une propriété des fonctions entières, Comptes rendus de l'Académie des sciences, Paris, vol. 176 (1923), 1602-1605.
4. R. P. Boas, Entire functions, Acad. Press, New York (1954).
5. R. P. Boas, Inequalities for asymmetric entire functions, Illinois J. Math. 1, (1957), 94-97.
6. R. P. Boas, Inequalities for polynomials with a prescribed zero, Studies in mathematical analysis and related topics (Essays in Honour of George Pólya), Stanford Univ. Press, Stanford, Calif. (1962), 42-47.
7. N. G. De Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. 50, (1947), 1265-1272.
8. R. J. Duffin and A. C. Schaeffer, Some inequalities concerning functions of exponential type, Bull. Amer. Math. Soc. 43, (1937), 554-556.
9. T. G. Genchev, Inequalities for asymmetric entire functions of exponential type, Soviet Math. Dokl., vol. 19 (1978), No. 4, 981-985.
10. A. Giroux and Q. I. Rahman, Inequalities for polynomials with a prescribed zero, Trans. Amer. Math. Soc. 193, (1974), 67-98.
11. L. Hörmander, Some inequalities for functions of exponential type, Math. Scand. 3, (1955), 21-27.
12. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50, (1944), 509-513.
13. Lewitan, B. M. Über eine Verallgemeinerung der Ungleichungen von S. Bernstein und H. Bohr. Doklady Akad. Nauk SSSR15 (1937), 169-172.
14. Q. I. Rahman, Functions of exponential type, Trans. Amer. Math. Soc. 135, (1969), 295-309.
15. G. Szegö, Über einen Satz des Herrn Serge Bernstein, Schr. Königsb. gelehrt. Ges., Vol. 22 (1928), 59-70.

Département de Mathématiques et de Statistique
Universití de Montréal
C. P. 6128, Succursale "A"

Montréal, Québec
H3C 3J7
Canada

[^0]: Received by the editors September 23, 1983 and, in revised form, November 29, 1983.
 1980 Mathematics Subject Classification: 30D15.
 © Canadian Mathematical Society 1983.

