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NON-DEGENERATE REAL HYPERSURFACES IN COMPLEX

MANIFOLDS ADMITTING LARGE GROUPS OF

PSEUDO-CONFORMAL TRANSFORMATIONS. I

KEIZO YAMAGUCHI

Introduction

Let S (resp. S') be a (real) hyper surf ace (i.e. a real analytic sub-
manifold of codimension 1) of an ^-dimensional complex manifold M
(resp. Mf). A homeomorphism / of S onto S' is called a pseudo-con-
formal homeomorphism if it can be extended to a holomorphic homeo-
morphism of a neighborhood of S in M onto a neighborhood of S' in M.
In case such an / exists, we say that S and S' are pseudo-conformally
equivalent. A hypersurface S is called non-degenerate (index r) if its
Levi-form is non-degenerate (and its index is equal to r) at each point
of S.

In his paper [6], N. Tanaka has shown that if a hypersurface S is
connected and non-degenerate at a point, then the group A(S) of all
pseudo-conformal transformations of S becomes a Lie transformation
group of S with dim. A(S) <: n2 + 2n.

The purpose of this paper is to determine, under pseudo-conformal
equivalence, non-degenerate hypersurfaces S for which the groups A(S)
have either the largest dimension n2 + 2n or the second largest dimension.

Our main results are stated as follows;

THEOREM 7.2. Let M be a complex manifold of dimension n. Let
S be a connected non-degenerate (index r) homogeneous hypersurface

(0 <̂  r ^ \^—.— j . Then we have the following classification table:

Qr = {(Zo> • • • , * « ) € P\C) I - </=

- Σ Zi*i + Σ z&i + λ^ϊ^zo = o)
i=l i=r+l J
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n = S & r=l

n~5 & r = 2

otherwise

the case of the largest
dimension

dim. Aiβ)

lB(=n2 + 2n)

35(=?ι2 + 2n)

n*-\-2n

S

Qi

Q2

Qr

the case of the second largest
dimension

dim. A(S)

l l (=n a + 2)

26(=n* + 1)

n2 + l

Qi d)

Q2*(2) or Q2*

Q* =

Qfd) =
e Q2

0 } ,

\z2 - zz\ 0} ,

where Pn(C) is the complex protective space of dimension n with its

homogeneous coordinate (zQ, ---,zn).

This is a partial generalization of the results of E. Cartan [2] in
the case n = 2.

THEOREM 7.4. Let M be a complex manifold of dimension n. Let
S be a connected hyper surf ace of M which is non-degenerate of index
r at a point of S. If dim. A(S) = n2 + 2n, then S is pseudo-conf ormally
equivalent to Qr.

Now we will describe the method of proving our theorems. Let S
be a non-degenerate (index r) hypersurface of a complex manifold, and
let A(S) be the group of all pseudo-conf ormal transformations of S and
a(S) be its Lie algebra. Then according to N. Tanaka [6], [7] we can
associate with S a principal fibre bundle P(S, G'(r)) together with an in-
finitesimal structure ω on it, which is a Cartan connection of type
(G(r), G'(r))y the so-called normal pseudo-conf ormal connection. Here G(r)
is the group of all protective transformations leaving Qr invariant and
G\r) is the isotropy subgroup of it at a point o of Qr (cf. I). Let g(r)
be the Lie algebra of G{r). If we fix a point p0 of S, then the connec-
tion form ω induces an injective linear map of a(S) (identified with the
Lie algebra of right invariant vector fields of P leaving the Cartan
connection invariant) into the graded Lie algebra g(r) = 2]!=-2&fc(̂ ) ^°
we can induce a filtration of a(S) at p0 via the map ω. With respect
to this filtration a(S) = ή becomes a filtered Lie algebra. Moreover it
is seen that the associated graded Lie algebra ζ of 1} becomes a graded
subalgebra of φr) (cf. II). So under the dimension hypothesis of A(S)
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and the homogeneity assumption, we can determine explicitly the pos-
sibilities of ξ. In fact we determine the graded subalgebras of g(r) of
the minimum codimension satisfying a certain (homogeneity) condition
(cf. IV). Moreover under the dimension hypothesis of A(S) (more pre-
cisely if ϊj coincides with one of the graded subalgebras of g(r) obtained
in IV) we will see that S is flat, that is, the curvature form of the
connection vanishes identically and that a(S) is isomorphic with ξ (cf V).
Conversely let g be one of the graded subalgebras of g(r) obtained in IV.
Then we can construct a model space Q corresponding to g as follows;
let G be the analytic subgroup of G(r) corresponding to g. Q is defined
as the orbit of G passing through oeQr. Then Q is a connected non-
degenerate (index r) homogeneous flat hypersurface of Pn(C) for which
G is the identity component of A(Q) (cf. VI). On the other hand, the
bundle A(S)(S, APo(S)) can be regarded as a subbundle of P(S, G'(r))9 if
we assume that S is homogeneous. Moreover the structure equation of
the connection determines the Maurer-Cartan equation of A(S). From
these facts we see that, in order to find a pseudo-conformal homeomor-
phism between two homogeneous hypersurfaces S and S', we have only
to find a group isomorphism between A(S) and A(S') which satisfies
certain additional conditions (cf. III). So under the dimension hypothesis
we compare A\S) with the corresponding G satisfying g ^ a(S). In this
way we see that S is pseudo-conformally equivalent to the corresponding
Q (cf. VII).

The author is grateful to Prof. S. Kaneyuki who kindly read through
the manuscript, and he is also grateful to Prof. N. Tanaka and Prof.
H. Omoto for their constant encouragement and valuable advices during
the preparation of this paper.

Preliminary remarks.

Throughout this paper we always assume the differentiability of
class Cω. We use the notations and terminology in S. Kobayashi-K.
Nomizu [5] without special references (e.g. the differential of a mapping,
fundamental vector fields, homomorphisms of fibre bundles).

Let / be a hermitian matrix of degree n. We denote by £/(/) the
unitary group defined by / £/(/) = {σ e GL(n, C) \ ισlσ = /}, where ισ is
the transposed matrix of σ and a is the complex conjugate matrix of σ.
We denote by u(7) the Lie algebra of U(I). Moreover we denote by
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SU(I) the special unitary group defined by / SU(I) == {σ e U(I)\ det a = 1}.

We denote by §u(7) the Lie algebra of Sϋ(I).

I. Pseudo-confoπnal geometry.

In this section we will review the fundamental concepts of the

pseudo-conformal geometry and state the results of Tanaka, following

N. Tanaka [6], [7], which are necessary for later considerations.

1. The //-structure. Let M and Mr be complex manifolds of dimen-

sion n (n^>2). Let S (resp. £') be a (real) hyper surf ace, that is a

(2n — l)-dimensional real analytic regular submanifold, of M (resp. M').

DEFINITION 1.1. A homeomorphism / of S onto S' is called a

pseudo-conformal homeomorphism if it can be extended to a holomorphic

homeomorphism of a neighborhood of S in M onto a neighborhood of

S' in M'.

Let p be an arbitrary point of S. We denote by TP(S) the tangent

space to S at p and by / the complex structure of M. We set

Dp = TP(S) Π /(ΓP(S» .

Then Dp is a maximal complex vector subspace of TP(M) contained in

TP(S) and dim.cDp = n - 1.

Take the natural base {e^lύiύn of the ^-dimensional complex number

space Cn. We denote by m the (2n — l)-dimensional real vector subspace

of Cn spanned by the 2n — 1 vectors el9 , en, V — lel9 , V — lβn_! and

by m^ the (w — l)-dimensional complex vector subspace of Cn spanned

by the n — 1 vectors e19 , en_λ. We define a closed subgroup H of the

general linear group GL(n,C) by setting

H = {σe GL(n, C)\σ(m) = m} .

Each element of H is represented as a matrix of the following form

/B C\
\0 α/

where α e R\{0}, B e GL(n — 1, C) and C e Cn~l. Hence we get

H = {σ 6 GL(m) | σίm^) = m^ and <r | m^ is complex linear}

We denote by L(S) the bundle of linear frames of S. A linear frame
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x at a point p of S is a linear isomorphism of m onto TP(S), where we

identify m with R2n~ι through the natural isomorphism. We define a

subbundle F of L(S) by

F = {x e L(S) I x(m*) = Da(x) and x | m* is complex linear} ,

where ® is the bundle projection of L(S) onto S. Then F becomes a

principal fibre bundle over S with the structure group H. F(S,H) is

called the pseudo-conformal ίf-bundle associated with the hypersurface

S (cf. [6]).

Remark 1.2. The "Fundamental theorem" (i.e. Theorem 1 [6]) says

that a Cω-homeomorphism / of a hypersurface S onto another hyper-

surface S' is a pseudo-conformal homeomorphism if and only if / induces

an isomorphism between the corresponding pseudo-conformal H-bundles,

preserving the canonical 1-forms.

2. The Levi-form. Let Θ* be the canonical 1-form on F (cf. [5]),

that is,

θ*(X) = χ-\m*(X)) = : e m c Cn for x e F, X e TX(F) ,

Woo/
where θf (ί = 1,2, -,ri) is the i-th component of 0*. Note that θf

(ί = 1, . . . , n — 1) is a C-valued 1-f orm on F and θ* is a 2?-valued 1-f orm

on F. We pay attention to 0*, which characterizes the maximal complex

tangent space Dp of ΓP(S). First we notice

LEMMA 1.3. Let x be an arbitrary point of F, and let X and Y

be tangent vectors at x. Then we have

(i) Θ*(X) = 0 if and only if w^X)eDa{x)

(ii) άθ*(X, Y) = 0 if βf#(X) e D.M and «#(Y) = 0 .

Lemma 1.3 is easily proved from the definition of F and the following

{R*Θ* = a-'θt for a = ( f C ) e H

*) = 0 for A e the Lie algebra of H

where Rσ is a right action on F induced by a e H and A* is the funda-

mental vector field corresponding to A (cf. [5]).
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From Lemma 1.3 we can define a skew-symmetric bilinear mapping
Kx of Dp x Dp into R by

KX(X, Y) = - 2 dθUX*, Y*) p = *(*), Z, y e Dp ,

where Z* (resp. y*) is any vector at x such that ®*(X*) = Z (resp.
ftf#(Y*) = Y). One should note that we can also write

where Z* (resp. Y*) is any vector field around a? such that Θ%(X*) = 0
(resp. ^*(Y*) = 0) and **(**) = Z (resp. o**(y*) = Y). Hence from the
integrability condition of the complex structure of the ambient space M
we have

LEMMA 1.4. Let x be an arbitrary point of F. Then

K,{X, Y) = K,ίJX, JY) for Z, Y e Dm(Λ ,

where J is the complex structure of M.

Now Lemma 1.3 and Lemma 1.4 imply

LEMMA 1.5 ([6]). There exist a 1-form β and unique C-valued func-
tions Ltj (i, j = 1,2, , n — 1) on F such that

j

= 1
: + Σ Lυθf A θ* + β A θ* = 0 (L€i + LSi = 0) ,

where θf is the complex conjugate 1-form of ΘJ.

For xeF, we set L(x) = (L^(x)). Then *Γ^ΪL(x) is a hermitian
matrix of degree n — 1. We call V — lL(ίc) the Levi-form at a? e F. The
Levi-form at x defines a hermitian inner product of Dβ(a0. In fact if
we set;

LX(X, Y) = KX(JX, Y) + Λ ^ l X ί Z , Y) for X,Ye.

then we have easily

where
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0 . .0 .

em.

Now we will define the notion of a non-degenerate hypersurface and

its index. Let p be a point of S. For x e π~\p), Lx is a hermitian inner

product of Dp. Let fc(#) (resp. l(x)) be the dimension of a maximal sub-

space on which Lx is positive definite (resp. negative definite). We define

an integer valued function λ{p) on S by λ(p) — minimum of k(x) and l(x).

The integer λ{p) is well-defined, that is, λ(p) is independent of the choise

of x 6 π~\p) ([6]), and satisfies 0 ^ Λ(p) <

DEFINITION 1.6. Let p be a point of S.

(1) S is called non-degenerate at p if the Levi-form is non-degener-

ate at p.

(2) S is called of index r at p if

S is called a non-degenerate hypersurface if its Levi-form is non-

degenerate at each point of S. Obviously the index of a non-degenerate

hypersurface S is constant on each connected component of S.

3. Quadrics. Let us fix an integer r satisfying 0 <g r ^ ^-^-— .

We will give the model space of non-degenerate (index r) hypersurface

([6]).

Let Pn(C) be the n-dimensional complex projective space, and let

2o> 2i> 9 %n be the system of its homogeneous coordinates. We define

the hermitian matrices Ir and Ir of degree n — 1 and n + 1 by

O x

where £7S is the unit matrix of degree s.

Let Qr be the quadric of Pn(C) defined by ϊr, that is,

= {(«,, , ««) 6 P»(C7) I - ^

- Σ ««
i l

Σ
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It is known [6] that Qr is a connected non-degenerate hypersurface of
Pn(C) and its index is r.

Let Pin, C) be the group of all projective transformations. We con-
sider the subgroup G(r) of P(n,C) which consists of all projective
transformations leaving Qr invariant. G(τ) acts effectively and transi-
tively on Qr as a group of pseudo-conformal transformations. Moreover
if we identify P(n, C) with GL(n + 1, C)/GL(1, C), the identity component
of G(r) is C/(/r)/C7(l) = SC7(/r)/n, where [7(1) (resp. n) is the center of

U(Ir) (resp. SU(ϊr)). G(r) is connected in case r ^ -^-^— and it has
LA

n — 1two connected components in case r = (n: odd integer). We de-

note by G\τ) the isotropy subgroup of G(r) sit o == (1,0, , 0) e Qr.
Now we will explain the graded structure of the Lie algebra g(r)

of G(r). Since the identity component of G(r) is SU(ϊr)/n, $(r) can be
identified with £u(/r), that is,

g(r) = { I e $l(n + 1, C) | 'Xf r + /rX = 0, trace X = 0} .

g(r) is isomorphic with 3u(r + 1, ti — r), and so it is simple. Each ele-
ment X of g(r) can be written explicitly as a matrix of the form

where ξn, wneR, ξ,w e Cn~\ v e u(/r), and u — ΰ + trace v = 0. For an
/I 0 0\

element B, = 0 0 0 of g(r), ad (£70) (i.e. ad (£Ό)(Z) = [Eo, X]) is a
\0 0 - 1 /

semi-simple endomorphism of g(r). Its eigenvalues are —2,-1,0,1,
and 2. We set β»(r) = {X e β(r) | ad (£;o)(Z) = kX}. Then g(r) = Σί~« β»(r),
and g(r) becomes a graded Lie algebra with respect to this decomposi-
tion. More precisely {g»(r)}j.ez satisfies

where we set gft(r) = {0} for \k\ ^ 3. Moreover if we set

(m(r) = Σ
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then we have g(r) = m(r) 0 g'(r). m(r) and g'(r) are subalgebras of g(r).
It is easily seen that g'(r) coincides with the Lie algebra of G'(r).

Remark 1.7. Let χ be the natural homomorphism of GL(n + 1, C)
onto P(n, C) = GL(n + 1, C)/GL(1, C). Setting G(r) = χ-'CGO)), we have

G(r) = {(76 GL(w + 1, C)I«ff i > = ±ϊ r} .

Hence we get

(1) if r =* ̂ JZA ?

(2) if r = ^λ(n: odd integer) G(r) = U(ϊr) U

where

In particular the Lie algebra of G(r) is u(/r). Note that the kernel of
χ* coincides with the center u(l) of u(/r) and u(/r) = u(l) 0 ^u(/r) (direct
sum). Moreover we have χ* o Ad^(r) (σ) = AdG(r) (χ(σ)) oχ̂  from χolσ =
/z(σ)oχ (/σ is the inner automorphism induced by σ). Since we are iden-
tifying gθ) with §u(/r), AdG(r) (χ(σ)) is identified with the restriction of
Ad£(r) (?) to §u(/r).

4. Pseudo-conformal G'OO-bundles. First we consider the linear iso-

tropy group of G'(r). We identify the tangent space at o to Qr =
G(r)/G'(r) with m(r) (^ gO0/g'(r)). Moreover we identify m(r) with m via

We consider the linear isotropy representation I; G'(r) -> GL(m). Let
G(r) = l(G'{r)) be the linear isotropy group of G\r). Then G(r) is a
closed subgroup of H. In fact let τ — χ(σ) be an element of G7(r), where
a is given by
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(ε = ± 1 , α , d e C , CeCn~λ , 'B/.S = εlr , sf -\{ad - ad) = ^/ .C) .

Then we have

ίaB aC

which is easily seen from the following commutative diagram

τ e G'(r)p[
m(r) > m(r)

(p is the projection of g(r) onto m(r) corresponding to g(r) = m(r) 0 g'(r)).

From this we get easily ([6])

Let S be a hypersurface which is non-degenerate of index r at every

point. Then at each point x of F the Levi-f orm V — lL(x) is a hermitian

matrix of signature (r, n — r — 1) or (w — r — 1, r), where we say that

a hermitian matrix L is of signature (p, q) if L has p negative eigenvalues

and q positive eigenvalues. We set

F = {zeF|ΛΛ^ΪLOE) = /r} .

Then since L(xσ) = α"1 tBL(x)B for σ = fβ C>) e J? (cf. Lemma 4 [6]), F
\0 α/

becomes a principal fibre bundle over S with the structure group G(r).

Obviously F(S,G(r)) is a subbundle of F(S,£T) (therefore of L(S)).

F(S, G(r)) is called the pseudo-conf ormal G(r)-bundle associated with £

([6], [7]).

Remark 1.8 (cf. [7]). Let θί9 -,θn be the components of the canoni-

cal 1-form § on F. Then from the definition of V — lL(x) (cf. Lemma

1.5), we have

άθn + Λf=Λ 2 > A Λ ^ = 0 mod θn ,

where
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\ 1 otherwise .

Identifying m with m(r), we write the m(r)-valued 1-form 0 in the form

β = §_2 + ^ 1 ? where θk is the g&(r)-component of θ (k = —2, —1). Then we

can write

d#_2 + i[#-i Λ #_J = 0 mod θ_2 ,

where [ , ] is the bracket operation of m(r).

5. Tanaka's theorem. Digressing from hypersurfaces we will now

mention about the Cartan connection and its curvature (cf, [4]).

Let M be a manifold of dimension n. Let G be a Lie group, and

G' be a closed subgroup of G with dim. G/G; = w. We denote by g, g'

the Lie algebras of G and G' respectively.

DEFINITION 1.9. Let M, G and G' be as above. (P,ω) is called a

Cartan connection of type (G, GO over M if P and ω satisfy the following

(1) P is a principal fibre bundle over M with the structure group

G'.

(2) ω is a g-valued 1-form on P satisfying the following conditions.

(a) R*ω = Ad ( α r > for α e G' ,

(b) ω(A*) = A for A e g7 ,

where A* is the fundamental vector field corresponding to A.

(c) ω(X) = 0 implies Z = 0 .

From (c) ω defines an absolute parallelism on P. Hence for U e g,

we can define a vector field [7* on P by U* = ω~\U), zeP. For A eg7

it is obvious from (b) that A* above coincides with the fundamental

vector field corresponding to A.

The curvature form Ω of a Cartan connection (P, ω) is defined by

Ω = dω + j>[ω A ω] .

DEFINITION 1.10. Let S be a non-degenerate (index r) hypersurface,

and let F(S, G(r)) be the corresponding G(r)-bundle over S. A triplet

(P, ω, ϊ) is called a pseudo-conf ormal connection over S if P, ω and ϊ satisfy

the following

(1) (P, ω) is a Cartan connection of type (G(r), G\r)) over S.

(2) ϊ is a bundle homomorphism of P(S, G^r)) onto F(S, G(r)) cor-

responding to I; G'(r) -> G(r), which preserves the base space and satisfies
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1*0 = θ, where θ is the canonical 1-form on F and θ is the m(r)-com-

ponent of ω.

Let Ω be the curvature form of a pseudo-conformal connection

(P, ω, ΐ). Let B be the Killing form of g(r). We have £(g*(r), gz(r)) = 0

if Jc + I $z 0. Moreover the bilinear mapping gfc(r) x q_k(r) B (X, Y) »->

B(X, Y)eR gives a duality between gΛ(r) and g_fc(r). Then the "Ricci"

curvature β*, which is a g(r)-valued 1-form on P, is defined by

Ω*(X) = Σ Σ K"*» £*«Xrfc)*> * ) ] ^ e Γ,(P) ,

where {v%}ι is a base of gΛ(r) and {%r*}i is the dual base of {uξ}i.

Now we state the results of Tanaka.

THEOREM A [7]. Let M and Mf be complex manifolds of dimension

n. Let S (resp. SO be a non-degenerate (index r) hypersurface of M

(resp. W). Then there exists a pseudo-conformal connection (P,ω,l)

(resp. (Pf,ω',V)) over S (resp. S'), which satisfies

β_2 = β_i = β* = 0 (resp. β'_2 = βr_i = β'* = 0) ,

where Ωk (resp. Ωk) is the §k(r)-component of Ω (resp. Ω').

And suppose that f is a pseudo-conformal homeomorphism of S onto

S'. Then there corresponds a unique bundle isomorphism f of P(S, G;(r))

onto P'(S', G'(r)) which induces the given f on S and satisfies f*ωf = ω.

Conversely every bundle isomorphism f of P(S, G'(r)) onto P'(S', Gf(r))

satisfying f*ω' — ω induces a pseudo-conformal homeomorphism of S

onto S'.

The above P(S, G'(r))y whose existence and uniqueness (up to a iso-

morphism commuting with ΐ) are guaranteed in the theorem, is called

the pseudo-conformal GW-bundle associated with S and (P, ω) is called

the normal pseudo-conformal connection.

Let S be a non-degenerate (index r) hypersurface, and let P(S, G'(r))

be the corresponding G'ΌΌ-bundle over S. We now consider the Lie

algebra ά(S) of all infinitesimal pseudo-conformal transformations of S.

We set a(P) = {X e 3E(P) | Lzω = 0, Ra*X = X for a e G'(r)}, where £(P) is

the Lie algebra of all vector fields on P and Lx is the Lie differentiation

with respect to X. Then the infinitesimal version of Theorem A reads

THEOREM A'. Let S be a non-degenerate (index r) hypersurface, and
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let P(S, G'(r)) be the corresponding G'{r)-bundle over S. Let π be the
bundle projection of P onto S. Then π* is a Lie algebra isomorphism
of α(P) onto α(S).

II. Filtration of a(S).

First we will examine the filtration of g(r). For g(r) = Σϊ=-aβ*(r)>
we set for each integer I

iseif) = Σ ΰ*(r) (I = - 2 , - l , o, l, 2),

\seif) = ^_2{r) (i ^ - 3 ) , seι{χ) = o a ^ 3).

With respect to this filtration g(r) = Se_lχ) becomes a filtered Lie algebra,
that is, {&k(r)}kez satisfy [^^(r), ^ ( r ) ] c S^k+ι(r).

LEMMA 2.1. For α e G7(r), Ad (α) preserves this filtration.

Proof. Recall that the Lie algebra of Gf(f) coincides with g'(r) =
f).

(1) in case G\r) is connected (i.e. r ^ ^-^—J. For Jfeg/(r) =

Jδfo(
r)> a ( i CX) preserves the filtration. Hence Ad (exp Z) = exp ad (X)

preserves the filtration.

(2) in case G'(r) is not connected ίi.e. r = -̂ —I—V G'(r) has two

connected components. But in this case we can find an element τ0 =
χ((70) of G'{r), which does not belong to the identity component, such
that Ad O0) preserves the filtration, e.g.

(In fact Ad (τ0) preserves also the grading of g(r).) Q.E.D.
From now on in this section let S be a non-degenerate (index r)

hypersurface. And let (P,ω,ΐ) be the normal pseudo-conformal connec-
tion over S.

Let us fix an arbitrary point z of P. Since each element of α(P)
is an infinitesimal automorphism of the absolute parallelism defined by
(P, ω), it is known (cf. [5 p232 Lemma]) that the linear map ωz: a(P)
3 X H-> ωz(Xz) e g(r), is injective.
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LEMMA 2.2. For X,Y e TZ(P), we have

(1) ωz(X) e Se_λ(r) if and only if π*(X) e Dπ(z) ,

(2) ωz(x) e £?lr) = g'(r) if and only if π*(X) = 0 ,

(3) ΩZ{X, Y) = 0 if π*(X) = 0 or TΓ^Y) = 0 ,

where Ω is the curvature form of the connection.

Proof. (1) and (2) follow immediately from ϊ(z) (g^O)) = Dπiz) and

the following commutative diagram which is a direct consequence of the

equality l*θ = θ ( = pω)

In fact for X e TZ(P) we have

In order to prove (3), we have only to show Ω(U*, A*) = 0 for U e

g(r) and Aeg'ίr). First we note that [£7*,A*] = [Z7, A]*. In fact from

Ra*U* = (AdCα-1)?/)*, aeG'(r), we have

-L^C7* = (-L^C/)* = [[7, A]* .

Therefore, from the structure equation, we get Ω(U*9 A*) = 0. Q.E.D.

We set az(P) = {Iea(P) |TΓ^/Z) = 0}. Then

LEMMA 2.3. For X9Ye α(P), we have

-a>e([JT, Π ) = [-ω2(Z), -»ωβ(Y)l - 2ΩZ(X, Y) .

In particular if either X or Y belongs to az(P), then we have

-ωz([X, Y]) = [~

Proo/. From L zω = 0, we have Xω(Z) = ω([X,Z]) for Z€3£(P).
Hence the assertion is clear from the structure equation and Lemma
2.2 (3). Q.E.D.

Let A(S) be the group of all pseudo-conformal transformations of S.
We consider the subset a(S) of a(S) consisting of complete vector fields
in α(S). Then a(S) is a subalgebra of a(S) which is naturally isomorphic

with the Lie algebra of A(S). Moreover α(S) can be regarded as a sub-
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algebra ϊj of a(P) via π*: a(P) -> ά(S). In fact ή coincides with the sub-

algebra a(P) of α(P) which consists of complete vector fields in a(P).

Now let us fix a point p0 of S and choose a point z0 of the fibre

^~!(Po) over 2V We set for each integer k

Then E)fc = £) (fc ^ —2) and ϊ)k = {0} (fc :> 3). Note that the above definition

is independent of the choice of zQ in T Γ " 1 ^ , which is easily seen from

Lemma 2.1 and the equalities R*ω = Ad (a~ι)ω and Ra*X = ^ , aeG'(r),

Xea(P). Hence the above defines a filtration of α(S) at p0. From

Lemma 2.2 and Lemma 2.3 we have

PROPOSITION 2.4. With respect to the above filtration, a(S) becomes

a filtered Lie algebra. In particular (α(S))_! and (a(S))0 are given by

Next we will consider the associated graded Lie algebra % of the

filtered Lie algebra ζ. Setting ζfc = ^ / ^ + i for each integer k (note ξfc

= {0} for \k\ ̂  3), we define ζ by

ζ = Σ 5fc (vector space direct sum) .

The bracket operation of ζ is defined in a natural manner. Obviously

we have dim. ΐ) = dim. fj.

First observe that there exists an injective linear map vk

ZQ of %k into

$k(r) which satisfies the following commutative diagram

where μk is the natural projection of \)k onto ξΛ = ζ*/ζ*+1 and pΛ is the

projection of g(r) onto gfc(r) corresponding to φr) = ΣL-2 9*0") We define

an injective linear map vZo of ζ into g(r) by setting

LEMMA 2.5. Notations being as above, the linear map vZo is an

injective homomorphism of ζ into g(r).
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Hence setting %Zo = vZo(§), we see that %0 is a graded subalgebra of

g(r) which is isomorphic with ζ and satisfies dim. %0 = dim. a(S).

Proof of Lemma 2.5. It suffices to show vZQ([Xk, ΫJ) — [vz(Xk), vZo(Ϋt)]

for Xk e %k and Ϋt e %. Choose Xk e ί)fc (resp. Yt e §j) such that Xk =

μk(Xk) (resp. Ϋt = M W Then

vZ0([Xfc,fj) = -pk+ιωZ0([Xk, YJ) .

Set -ω,0(Z fc) = Σ ϊ . t X,, X f € 8ι(r) (resp. ~ω,0(Γ,) = Σ ϊ . , Γ4, F f 6 g,(r)).

Then from the definition of vZo and the graded structure of g(r), we have

vZ0{Xk) = Xk , v,0(f,) = 7,

and

pΛ+ί([-α>20(Xfc), -ω,0(Yz)]) = [Xk, 7 J

(1) in case & ̂  0 or Z :> 0. From Lemma 2.3 we have —ωZo([Xky YJ)

= [-ωZ0(Xk), -ωZo(Yι)l Hence we get

vZ0([Xk9Yi\) = [X*, 7 J = hZQ(Xk),vZ0(Ϋι)] .

(2) otherwise. Non-trivial case is when k = Z = — 1. Form the above

we have

In this case we have from Lemma 2.3

-ωZ0([Z_x, Y J ) = t - ω ^ Z , , ) , - ^ ( Y . , ) ] - 2flIβ(ZM, Y_0 .

But, due to Theorem A, the g_2(r)-component Ω_2 of Ω vanishes identi-

cally. Hence we get vZo{[X^ Y_J) = bZQ(X-.i)^Zo(Ϋ^)l Q.E.D.

Remark 2.6. Clearly the representation v0o of ίj into g(r) is dependent

on the choice of z0 in TΓ" 1 ^)- Choose another point zx = 0̂̂ > if Ad (α)

preserves the grading of g(r), we get from jB*ω = Ad (a~ι)ω

Moreover if we define a vector subspace \Q of g(r) by ϊ)Zo = ωZo(ζ), we get

similarly
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Remark 2.7. The discussion in this section can be well applied to
a connected hypersurface S which is non-degenerate of index r at a point
Let £* be the set of all points of S at which S is non-degenerate
of index r. Obviously S* is an open subset of S. Hence S* is a non-
degenerate (index r) hypersurf ace. Let P*(S*, G\r)) be the corresponding
G'(r)-bundle over S*. We consider the restriction map res of a(S) into
α(S*). Since we are considering, exclusively, real analytic hypersurf aces,
each infinitesimal pseudo-conformal transformation of S is a real analytic
vector field on S. Hence the connectedness of S implies that res; a(S)
—> δ(S*) is an injective homomorphism. On the other hand (TΓ*)* is an
isomorphism of α(P*) onto α(S*). Hence we can define a subalgebra I)
of a(P*) by ϊj = (TΓ*);1 o res (α(S)). Then Ij is isomorphic with α(S).
Therefore if we fix a point p0 of S*, we can define a filltration of §
(and consequently of αOS)) at p0 similarly as in this section.

III. Relations between A(S) (S, APo(S)) and P(S, G'(r))

Throughout this section we assume that S is a connected non-
degenerate (index r) homogeneous (i.e. A(S) acts transitively on S) hyper-
surface. Let (P,ω,ΐ) be the normal pseudo-conf ormal connection over
S. We denote by σ the connection-preserving bundle isomorphism of
P(S,G'(r)) induced by σeA(S). Then from I. Theorem A, A(S) acts
effectively on P as an automorphism group of the Cartan connection
(P,ω).

Let us fix a point poeS and take a point zQ e π~\p^). And we define
£ZQ; A(S)->P by eZo(σ) = σ(z0), σeA(S). Then it is known ([4]) that cZQ is
an imbedding of A(S) as a closed submanifold of P.

Let APo(S) be the isotropy subgroup of A(S) at pQeS. Obviously
we have

cZo(APo(S)) C π-ι(

On the other hand the fibre π'KPo) of P(S, G'(r)) is diffeomorphic with
Gf(r) via *a diffeomorphism ^ 0 of G'(r) onto TΓ^CPO), where ^0(α) = zoa,
aeG'ir). Therefore the composite map pZQ = γ^ocZQ is an imbedding of
APo(S) into G\r) and pZQ(APo(S)) is closed in G'(r). Moreover we have

LEMMA 3.1. The map pZQ; APo(S) —* Gf(r) is an injective homo-
morphism. And pZo(APo(S)) is a closed subgroup of G\r). Moreover

= fi),Q (Oβ» where e is the unit of APo(S).
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Proof. Suppose ρZo(σi) = at (i = 1,2), that is, σ̂ Zo) = z^ai9 then

Hence we get pZo(σrσ2) = ara2 = pZo(σi)-pZo(σ2). pZQ(APo(S)) is closed in G'(r)

since APo(S) is a closed subgroup of A(S), cZo(A(S)) is a closed submanifold

of P and π~\p0) is closed in P. In order to prove (pZo)e = αvtaO s l)e, it

suffices to show ωZo = {γZo)^9 where ef is the unit element of G'(r), which

is clear from the definition of the fundamental vector field A* corre-

sponding to A and ω(A*) = A. Q.E.D.

Since A(S) acts transitively on S, A(S) is a principal APo(S)-bundle

over S = A(S)/APo(S). Then we have

PROPOSITION 3.2. Γfte imbedding cZo A(S) -» P is αw injective bundle

homomorphism of A(S)(S, APo(S)) into P(S, G'(r)) corresponding to ρZo

APQ(S) —> 6r'(r), which preserves the base space S.

Hence A(S)(S, APo(S)) can be regarded as a subbundle of P(S, G'(r))

via *f0.

Proof of Proposition 3.2. Let τ be an element of APo(S). Let σe

A(S). Then we get easily the following commutative diagram

ACS) ^ > P

Rr\ \Rpzo(τ), τeAPQ(S).

A(S) — > P

Therefore *f0 is a bundle homomorphism corresponding to pZo. Moreover

ιZQ induces the identity transformation of S, which follows from 7r ^0(σ)

= π-σ(z0) = σ.7r(z0) = σ(pQ) for σ e A(S). Q.E.D.

Now we will consider the relation between the Maurer-Cartan form

on A(S) and the normal pseudo-conformal connection form ω on P. First

observe

LEMMA 3.3. Let ω be the connection form on P and let Ω be its

curvature form. Then c%ω and c*QΩ are Q(r)-valued left invariant forms

on A(S).

Proof. Let.σeA(S). We denote by Lσ the left translation of A(S)

by σ. Then we get easily the following commutative diagram.
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A(S) -^-> P

Lσ\ \σ for σe A(S) .

A(S) - ^ > P

Therefore c*oω is left invariant since σ*ω = ω, a e A(S). From the struc-

ture equation dω + %[ω A ω] — Ω, it is obvious that c*0Ω is also left

invariant. Q.E.D.

In this section we denote by a(S) the Lie algebra of A(S). Then

we have easily

where $ - α(P) (cf. II).

In case fl = 0 we have

PROPOSITION 3.4. Suppose that the curvature form Ω of the normal

psendo-conformal connection vanishes identically. Then the linear map

cfoω;a(S)—>q(r) is a Lie algebra isomorphism of a(S) into g(r). Hence

\Q{= c*Qω(a(S))) is a subalgebra of g(r) which is ίsomorphic with α(S).

Moreover if we identify a(S) with \Q,c*Qω is the Maurer-Cartan form of

A(S).

Proof. From fl = 0 w e get dc*ω + ||>*ω Λ c*ω] = 0. Let A, Be a(S).

Then we have

since ι*Qω is left invariant. Hence we get c*Qω([A,B]) = [c*oω(A), c*oω(B)].

Q.E.D.

Now we will consider an equivalence of two non-degenerate (index r)

homogeneous hyper surf aces. Let M and W be complex manifolds of

dimension n. Let S (resp. SO be a connected non-degenerate (index r)

homogeneous hypersurface of M (resp. Mf). And let (P,ω,ΐ) (resp. (P',

ω'9V)) be the normal pseudo-conformal connection over S (resp. S;). We

denote by A°(S) the identity component of A(S), and set A°PQ(S) = A0(S)

Π APo(S). Note that the identity component A°(S) acts transitively on S.

PROPOSITION 3.5. Notations being as above, let poeS and p'oeS'.

Suppose that for points, z0 e π~\p^), z'o e π'^ipΌ) suitably chosen, there

exists a group isomorphism φ of A\S) onto A°(S') satisfying i), ii);

https://doi.org/10.1017/S0027763000024752 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024752


74 KEIZO YAMAGUCHI

ii) p***a/ = **ω .

Tfoew ί&e bundle isomorphism φ of A°(S) (S,A°P0(S)) onto A°(S0

(S', AJδ0SO) induces a pseudo-conformal homeomorphism of S onto S'.

Proof. From i) it is obvious that φ induces a bundle isomorphism

of A\S)(S9A°Pΰ(S)) onto A0OS')(S', A°,(S')) Since A°(S)(S> A°0(S)) (resp.

A^SOGS^A^GS'))) is a subbundle of P (S,G'(r)) (resp. P'OS', G'(r))), ^ in-

duces a bundle isomorphism £ of P(S, GO*)) onto P'GS', G'(r)) which

satisfies the following commutative diagram

P

A°(S0

From ii) we get cfoφ*ω' = 4^- Moreover, since ^ is a bundle isomorphism,

we have φ*ω' = ω. Therefore, from I. Theorem A, 5̂ induces a pseudo-

conformal homeomorphism of S onto S7. Q.E.D.

IV. Graded subalgebras of g(ι*)

First we will go into details about the structure of the graded Lie

algebra g(r) = Σi-_ a8*(r).

Identifying g(r) with 3u(/r) we represent each element X of g(r) as

a matrix of the following form

where ξn,wneR9 ueC (and ΰ is the complex conjugate of u), ξ,weC7""1,

v e u(/r) and w — ΰ + trace v = 0. For J G C ^ 1 , we define an element

f eg-iθ") and an element f ecji(r) by

Moreover for α e /?, we define an element a e g_2W and an element a e g2(r)

by
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For ξ9we Cn~\ we set <?, w} = zζlrw. < , > is an indefinite hermitian

inner product of Cn~ι of type (r,n — r — 1). Then for α e g2(r), w e g^r),

-ΰ 0 0\
f 6 g_i(r) and Z o = I 0 v 0 e go(r), we have

0 0 u)

0
eββ(r)

0 ^ Ϊ

(4.3) [Zo> w] = vw —

(4.4) [^i, w2] = V- Γ l«^ 2 , Wχ> — ζw19 w2}) e g2(r) .

From the above we easily obtain

LEMMA 4.1.

= go(r) .

Now we will consider a graded subalgebra ϊ = 2 i e - 2 I * of g(r) which

satisfies

ϊ-2 = β-2W and ϊ_j = g_2(r) .

First we have

LEMMA 4.2. // ϊ2 ^ {0}, ίfeen ϊ = g(r).

Proof. Since dim..g2(r) = 1, we have ϊ2 = g2(r). Hence from ϊ_2 =

g_2(r), ϊ_i(r) = g_i(r), and Lemma 4.1 we get ϊ = g(r). Q.E.D.

Therefore from now on we further assume ϊ2 = {0}. Let £r be a

linear isomorphism of Cn~ι onto g^r) defined by 3r(f) = I, ξ e C71"1. Then

we have

LEMMA 4.3. ϊx is an abelian subalgebra of g(r) δrKίi) is a complex

isotropic vector subspace of the (indefinite) hermitian space (Cn~x, < » .

In particular dim. ϊx = 2s ^ 2r.
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Proof. Let w e tλ and ξ e ϊ_i = g_i(r). Then we have from (4.2) and

(4.3)

ad (w)2(ξ) = [*, [w, I]] - - </=ϊ<w, w)ξ - 2 v ^

Moreover from (4.4) we have

ad (w)3(ξ) = -3«f, w> + <w, f»<w, w> e ϊ2 .

Since < , > is a non-degenerate hermitian form, we can find £t e C71"1

such that <£i, w> = — | . Hence from ϊ2 = {0}, we have

ad (w)3(fx) = 3<w, w> =̂ 0 (i.e. (w, w} = 0) for any ^ e ϊt .

Moreover we have ad (w)2(f x) = V — lw e ϊx. Therefore δ'1^) is a complex

vector subspace of Cn~ι. On the other hand let w19 w2 e δr\ϊi)» Then from

s—

(Wx + W2=zWλ

we get [w19 w2] = 0 (i.e. (wl9 w2} = (w29 wλ}) and (Wi + w29 wx + w2} = 0.

Hence we get (w19w2y = 0. Q.E.D.

Let {βijisisn-i be the natural base of C 1" 1. Setting ^ = et + en_i

(i = 1,2, ,s), we consider a complex vector subspace of Cn~ι spanned

by the s vectors w19 , ws. This subspace is an s-dimensional complex

isotropic subspace of the (indefinite) hermitian space (Cn~ι, <(,)). We

denote by cβ(r) its image under δr. Then cs(r) is an abelian subalgebra

of g(r) of dimension 2s contained in gx(r).

Now recall the following which is a direct consequence of Witt's

theorem (cf. [1, p. 121]).

LEMMA B. Let Vx and V2 be s-dimensίonal complex isotropic vector

subspaces of the indefinite hermitian space (Cn~\ < , » . Then there exists

an element σ of U(Ir) which sends Vx onto V2.

Then we have

LEMMA 4.4. Let s be the complex dimension of δ W). Then there

exists τx e G'(r) such that Ad fo) preserves the grading of g(r) and satisfies

Ad(r ι)ϊ1 = ct(r).
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Proof. ^ΓXϊi) and δ-\cs(r)) are s-dimensional complex isotropic sub-

spaces of (C71'1, < , » . Hence from Lemma B we can find σx e U(Ir) such

/I 0 0\
that σι(δ;1(tj) = δ;Kcs(r)). Set σί = 0 σx 0 , then σ[ belongs to C7(/r)

\0 0 1/

c G(r). Hence rx = χW) is an element of Gr(f). In fact τx belongs to

the analytic subgroup of G'(r) corresponding to the subalgebra go(r) of

g'(r). In particular Adfo) preserves the grading of g(r). On the other

hand

Ad (τjw = aλw for w e &O) ,

so we can conclude AdOx)^ = cs(r). Q.E.D.

Next we will consider ϊ0. We define a subalgebra hs(r) of go(r) by

B,(r) = { I e flo(r) | ad (Z)(cs(r)) c cs(r)} .

Then we have

LEMMA 4.5. Notations being the same as in Lemma 4.4, we have

(i) Ad (τjϊo c 6,(r) and [g.^r), cs(r)] c hs(r)

(ii) dim. b,(r) = dim. go(r) - s(2(n - 1) - 3s).

Proo/. (i) is clear from Ad ( r ^ = c,(r), [^IJ c ϊ1? (4.2) and (4.3).
In order to prove (ii) we first note that go(r) can be decomposed into the
direct sum of ({E0}yR and u(/r), where ({EQ}yR is the line spanned by

and u(/r) is identified with the subalgebra of go(r) which consists of

matrices of the form

/ — i trace v 0 0 \

o v ° w i t h t7°Ir + IγV = °
\ 0 0 —J trace v/

/-% 0 0\
For Z = I 0 v 01 ego(r), we have from (4.3)

\ 0 0 u]

ad (X)(w) = vw; — w^ w e c,(r) .
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Since δ~\cs(r)) is a complex vector subspace of Cn~\ we have

uw e c8(r). Hence X belongs to ΐ>s(r) if and only if /Kd;r1(cs(r)) c δϊKc8(r)).

Obviously Eo belongs to hs(r). Therefore in order to calculate the dim-

ension of bs(r), we have only to calculate the dimension of a subalgebra

of u(/r) which consists of all elements leaving the subspace δ~\cs(r)) in-

variant. A direct computation shows the above equality (ii). Q.E.D.

We set g*(r, s) = g_2(r) 0 g.^r) 0 bs(r) 0 cs(r). In the case s = 0, we

write g*(r) instead of g*(r, 0), that is, g*(r) = g_2(r) 0 Q_x(r) 0 go(r). Then

from the above lemmas we have

PROPOSITION 4.6. Let ϊ be a proper graded subalgebra of g(r) satis-

fying ϊ_2 = g_2(
r) o/nd ϊ_i = g_iθ). Then there exists τ e G'(r) ŝ cfe that

Ad (τ) preserves the grading of g(r) αncί Ad (τ)ϊ c g*(r, s), where 2s =

dim.

From this we obtain dim. ϊ ^ dim. g*(r, s) = n2 + 1 — s(2(n — 2) — 3s).

Since s is an integer satisfying 0 ^ s ^ r, from the above considerations

we obtain

PROPOSITION 4.7. Lei ϊ be a proper graded subalgebra of g(r)

ϊ_2 = g_2W and ϊ_i = g_i(>). Γfee^ ^ e feαve

(1) The case n = 3 <md r = 1

We have dim. ϊ ^ n2 + 2 = 11. The equality holds if and only if

there exists τ e G'(l) such that Ad (r) preserves the grading of g(l) and

(2) ΓΛe case n — 5 ατιd r = 2

ΐ^β feαt e dim. ϊ ^ tι2 + 1 = 26. Γfee equality holds if and only if

there exists τ e G'(2) st̂ cfe tfeαί Ad (τ) preserves the grading of g(2) and

Ad(τ)ϊ = g*(2,2) or g*(2) .

(3) Otherwise

We have dim. ϊ <^n2 + 1. The equality holds if and only if there

exists τ e G\r) such that Ad (τ) preserves the grading of g(r) and

Ad (r)ϊ = β*(r) .

Remark 4.8. Let D(r) be an (n — 2)-dimensional complex vector sub-

space of Cn~ι spanned by the n — 2 vectors wlf e2, , and ew_2, where wx

= βi + e n M . We set b\r) = {ξ e fll(r) | f e D(r)}, b"1^) = {f e g.^r) | ξ e D(r)},
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e(r) = {XG flo(r) | ad (X)(b*(r)) c b*(r) i = 1,2}, c*(r) = {§ e β-i(r) | f e ^

and 6*(r) = {X e go(r) | ad (X)(c*(r)) c c*(r)} (=Be(r)). Moreover we set

(r) = g_2(r) + b ' W + e(r) + bW + βa(r) ,

*(r, s) = c*(r) + 6*(r) + ^(r) + βa(r) .

Then without the homogeneity assumption we have

PROPOSITION 4.9. Let ϊ be a proper graded subalgebra of g(r).

Then we have

(1) The case n = 3 and r = 1 dim. ϊ ^ n2 + 2 = 11. The equality

holds if and only if there exists τ e G'(l) such that Ad (r) preserves the

grading of g(l) and

Ad (τ)I = fl*(l, 1) or β **(l, 1) .

(2) Γfee case w = 5 and r = 2 dim. ϊ ^ n2 + 1 = 26. Γfee equality

holds if and only if there exists τ e G'(2) such that Ad (τ) preserves the

grading of g(2) and

Ad (r)ϊ = β*(2, 2), g**(2,2), g*(2), ^(2) , or g°(2) .

(3) Γfcβ case n^>2 and r = 0 dim. ϊ <g w2 + 1, ίfee equality holds

if and only if there exists τ e G'(0) such that Ad (r) preserves the grad-

ing of g(0) and

Ad (r)ϊ = 8*(0) or B'(0) .

(4) Otherwise dim. ϊ ^ n2 + 1. Γfee equality holds if and only if

there exists τ e G'(r) such that Ad (r) preserves the grading of g(r) and

Ad (r)ϊ = fl*(r), g7(r) or g°(r) .

V. Determination of (α(S), αPo(S)).

Throughout this section we assume that £ is a connected non-

degenerate (index r) homogeneous hypersurface. Let (P,ω,ϊ) be the

normal pseudo-conformal connection over S. Moreover we naturally

identify the Lie algebra a(JS) of A(S) with the Lie algebra of all infini-

tesimal pseudo-conformal transformations of S which generate (global)

1-parameter groups of pseudo-conformal transformations.

Now let us fix a point p0 of S. As in the section II, we introduce
the filtration of a(S) at p0 through the connection form ω. Notations
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being as in the section II, we first consider the associated graded Lie

algebra | of §.

LEMMA 5.1. Let ^ e ^ " 1 ^ ) . Suppose that A(S) has the largest

dimension n2 + 2n, then î β 5 -• g(r) is a Lie algebra isomorphism of %

onto g(r).

This lemma is clear from Lemma 2.5 and dim. g(r) = dim. ζ (=n2

+ 2n).

Let z be an arbitrary point of π~1(p0) Since A(S) acts transitively

on S,% = vzφ satisfies (ζz)_2 = g_20") and (|2)_! = g.^r). Therefore from

Proposition 4.7 and Remark 2.6 we get

LEMMA 5.2. Suppose that A(S) has the second largest dimension,

then there exists zx e π~\p0) such that

(1) %n = 9*(1,1) i/ w = 3 and r = 1 ,
(2) ζ f t = β*(2,2) or β*(2) ί / n = 5 α ^ r = 2 ,

(3) ζβl = g*(r) otherwise .

As for ήβ = ωβ(ζ), we have

LEMMA 5.3. Let zoeπ~ι(po). Suppose that A(S) has the largest

dimension n2 + 2n, then — ω^; ζ —> g(r) is α linear isomorphism of ζ otiία

8(r).

This lemma is also clear from dim. g(r) = dim. ζ.

LEMMA 5.4. Suppose that A(S) has the second largest dimension,

then there exists zQ e TΓ"1^,) such that

(1) \Q = g*(l, 1) if n = S and r = 1,

(2) \Q = fl*(2,2) or a*(2) if n = 5 and r = 2,

(3) ^ 0 = g*(r) otherwise,

as vector sub spaces of g(r).

In order to prove Lemma 5.4, it suffices to show the following

lemma. (Note that g*(r, s)(0 ^ s <*r) contains Eo).

(1 0 0\
LEMMA 5.5. // %tι contains £?„ = 0 0 0 for some point zt of

\0 0 - 1 /
π'KPo)* then there exists a point z0 of n~\p0) such that ΐ)zo coincides with

%Zι as a vector subspace of g(r).
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Proof. Since the filtration of \ is given by (ί)z)k = \ Π ̂ k{r) (£?k(r)

Σ?=fe &(r))> we have the following commutative diagram

where pΛ is the projection of g(r) onto qk(r) corresponding to the de-

composition g(r) = ΣL-2δfc(r) From the assumption (ξZl)0 contains Eo.

Hence there exists E e (ί)zi)o such that po(^) = Eo. Since £7 belongs to

J2fo(r) = 2Uo &fc(τ)> there exist wα e g^r) and c0 e Q2(r) such that E = EQ +

wQ + 0S. Now we set Ao = w0 + %80. Then Ao belongs to ££x{r) and

satisfies Ad (exp A0)(E) = £Ό Moreover α0 = exp Ao is an element of

<χ'(r). Set z0 = z&o1, then from Remark 2.6 we have E)2o = Ad (do)^. In

particular §Zo contains Eo.

First we will see that %Zo coincides with f)βl. From the above diagram

we have %x)k = p * ( ^ ΓΊ ̂ ( r ) ) (i = 0,1). For l e ^ ί i J2?4(r), Ad (ao)(X)

— exp ad (A0)(X) lies in ή2o Π ££k(r). This is obvious from \Q — Ad (αo)ζ21

and Lemma 2.1. Moreover, since AoeJ2?i(r), we have ad (A0)(^ffc(r)) c

JSP*+1(r). Hence we get pΛ(Ad (ao)(X)) = pk(X). Therefore (%z)k = (ξj».

Next we will see that ζZo coincides with %Zo as a vector subspace of

g(r). First one should note that Lemma 2.3 implies [(ζZo)0>U c 5«

that §BQ contains Eo. Let Z be an arbitrary element of Ij,0, and

(fc = - 2 , — 1, . . ,2) be the gΛ(r)-component of X. From [(ljβ0)0,ζj c

and (^0)09£70> we obtain

- Z _ 2 + Z 2 = i(ad (£7O)3(Z) - ad (E0)(X)) e

Z_2 + Z 2 = -^(ad (#0)
4(Z) - ad

- ad

- ad (£7O)4(X)) e

Hence we get Z_2, Z_x, Z 1 ? Z 2 e ϊjao. Therefore Xk (k = - 2 , -1,0,1,2) lies

in ^ 0, that is, ζzo decomposes as follows

In other words, \0 is a graded subspace of g(r). Then from the con-

struction of the assoicated graded Lie algebra, we have (f)Zo)ft = \Q ΓΊ qk(r).
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Therefore we obtain \Q = §Zo. Q.E.D.

Next we will see that the curvature form Ω of the normal pseudo-

conformal connection of S vanishes identically if A(S) has either the

largest dimension n2 + 2n or the second largest dimension. First we

will show the following proposition.

/I 0 ON
PROPOSITION 5.6. // ζ f0 contains Eo = 0 0 0 \ for some point

\θ 0 - 1 /

20 of π'KVo), then Ωz = 0 for any z e n'KPo).

Proof. The proof is quite analogous to that of IV. Theorem 3.2

of [4]. Recall that $ = a(P) = {Ze 3£(P)\Lxω = 0, Ra*X = X, ae G'(r),

and X is complete} (see II). Since \Q = ωZ0(a(P)), there exists Xoea(P)

such that (Xo)zo = ω^\EQ) = (#„)*. First we know

LEMMA C (cf. [5; p. 233]). For the curvature form Ω = dω +

\[ω A ω], we have

(1) A*(fi(f *, 9*)) = - [A, fl(f *, 9*)] + fl([A, f ]*, 9*) + fl(f *, [A, ?]*)

(2) L x β = 0 and X(Ω(ξ*, 9*)) = 0 /or X 6 α(F), f, ? e g(r).

Applying the above lemma to (X0)ZQ = (£Ό)fo>
 w e obtain

(5.1) [£70, β,0(ί*, ,*)] = Ω

Since £(£/*, A*) == 0 for I7eg(r) and A e gr(r) (cf. II. Lemma 2.2), we

have only to show £(?*,;?*) = 0 for f,^em(r) = ί-jWθβ-iW For the

sake of simplicity we show the above equality in the case f, ^eg^ίr).

Let βfc (A; = — 2, — 1, ,2) be the gfc(r)-component of Ω. From I.

Theorem A, we have Ω_x = 0 and 42_2 = 0. Hence from (5.1) we get

(fl^ίe*, 9*) + 2(β2)zo(f*, ,*) = -2(ΩQ + Ωλ + Ω2)ZQ(ξ*, ,*) , f,, e fl^ίr) .

From this it follows (fl*)eo(£*,fl*) = 0 (fc = 0,1,2). Therefore we obtain

ΩZo = 0. For any 2 e TΓ'̂ PO)? there exists a e Gr(r) such that z0 = 2a.

Then from #*ω = Ad (ίi"1)^, we have Ωz = Ad (α)i2*β0o = 0. Q.E.D.

From Lemma 5.3, Lemma 5.4 and Proposition 5.6 we get

PROPOSITION 5.7. Let S be a non-degenerate homogeneous hyper-

surface. If A(S) has either the largest dimension n2 + 2n or the second

largest dimension, then S is flat, that is, the curvature form of the
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normal pseudo-conformal connection vanishes identically.

Hence from Proposition 3.4, c*ω is a Lie algebra isomorphism of

a(S) into g(r) for any zeP.

Summarizing the results of this section we obtain.

THEOREM 5.8. Let M be a complex manifold of dimension n. Let

S be a connected non-degenerate (index r) homogeneous hypersurface of

M. Let p0 be an arbitrary point of S.

(1) // dim. A(S) = n2 + 2n, then c*oω is a Lie algebra isomorphism

of a(S) onto g(r) for any zQeπ~\p^.

(2) // dim. A(S) < n2 + 2n, we have the following three cases.

( i ) The case n = 3 and r = 1 We have dim. A(S) <>n2 + 2 = 11.

The equality holds if and only if there exists z0 e π'KPo) such that c%ω is

a Lie algebra isomorphism of a(S) onto g*(l, 1).

(ii) The case n = 5 and r = 2; We have dim. A(S) ^ n2 + 1 = 26.

The equality holds if and only if there exists z0 e π~\p^)9 such that c*oω

is a Lie algebra isomorphism of a(S) onto g*(2,2) or g*(2).

(iii) Otherwise We have dim. A(S) ^ n2 + 1. The equality holds

if and only if there exists z0 e π~\p^) such that c*Qω is a Lie algebra iso-

morphism of a(S) onto g*(r).

VI. Model spaces.

We consider the analytic subgroups (i.e. connected Lie subgroups)

of G(r) corresponding to g(r) and g*(r, s) (0 ^ s ^ r). The identity com-

ponent G\r) of G(r) corresponds to g(r). We denote by G*(r,s) the

analytic subgroup of G(r) corresponding to g*(r, s). In particular we

set G*(χ) = G*(r,0).

First we will characterize G*(r, s) geometrically. Let χ be the natural

homomorphism of U(Ir) onto G°(r) ( = I7(/r)/17(1)). We set G*(r,s) =

χ~KG*(r, s)). Take the natural base {e<}0£<2ί» of Cn+1 and set wt = β< +

β .̂̂  (i = 1,2, , s). We denote by Cs(r) the (s + l)-dimensional complex

vector subspace of Cn+1 spanned by the (s + 1) vectors w19w2, -,ws and

en. Then Cs(r) is an (s + l)-dimensional complex isotropic subspace of

the indefinite hermitian space (Cn+1,Ir).

LEMMA 6.1.

G*(r, s) = {σ e C7(/r) |σ(C,(r)) = Cs(r)} .
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Proof. Since we are identifying φr) with 3u(/r), χ* is identified with
the projection of u(/r) onto £u(/r) corresponding to the decomposition
u(Jr) = u(l) Θ 3u(Ir), where u(l) is the center of u(/r). For X e u(/r)

Cn~\ v e u(/r), we note

Q*(r,s)sχ*(X) if and only iίlw e δ7\cs(r)) ,

On the other hand for (0, η, zn) e Cs(r) we have

wnzn\

Hence we have

CM « and only i
-\- ZnW 6 i

for zneCy ηe d;\

From the above g*(r, s) s χ*(X) if and only if Z(C,(r)) c Cs(r). We set
jf = {σe U(Ir)\σ(Cs(r)) = Cs(r)}. From G*(r,s) = G*(r,s)/£7(1), we see
that G*(r,s) is connected. In fact, G*(r,s) is the analytic subgroup of
Z7(/r) corresponding to χ;α(g*(r, s)). Therefore 0*(r, s) coincides with the
identity component of K.

In order to prove G*(r, s) — K, we have only to show that K is
connected. For this we take a base {/<}0̂ î » of Cn+1 such that {/<}0̂ «̂
forms a base of C,(r) and with respect to this base the hermitian form
ϊr is represented as a matrix of the following form

0 Es+1 0\

&.+i 0 0 1, /* =

(The existence of such a base is guaranteed by the Witt's theorem).
Then each σeK is represented as a matrix of the form
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*R1*K) -A ιKlfB\
0

K B ]

A e GL(s + 1, C), B e U(If), ιC + C = 0 .

From this we see that K is homeomorphic with GL(s + 1, C) X £/(/?) X

u(s + 1) X ilί(w — 2s — 1, s + 1 C), where M(n — 2s — 1, s + 1 C) is the

set of all complex (n — 2s — 1) x (s + 1) matrices. In particular K is

connected. Q.E.D.

Now we consider the orbit of G°(r) or G*(r, s) passing through o of

Qr as the model space corresponding to g(r) or Q*(r,s).

Since G°(r) acts transitively on Qr9 the model space corresponding

to g(r) is Qr itself. We denote by Qf(s) the model space corresponding

to G*(r, s). In particular we set Q* = Q?(0).

LEMMA 6.2.

Q* = {(2 0 ,Sj , . . . , s n ) e Q r | ^ 0 ^ 0 } ,

and

Q*(s) = {(^o,^, •• , ^ ) e Q r | | ^ 0 | + | ^ - ^ . J + + \zs - zn_s\ ^ 0}

(s ^ 1) .

Proof. We consider the orbital decomposition of Qr by G*(r, s). We

denote by ( , ) the indefinite hermitian inner product of Cn+1 defined by

ϊr. And set (Cs(r))L = {ζ e Cn+1 \ (ζ, 37) = 0 for η e C,(r)}. Then from Lemma

6.1 we see that each σ e G*(r, s) leaves (Csir))1 invariant as well. On

the other hand we have Qr = {ζ = (ζ0, , ζn) | (ζ, 0 = 0} in homogeneous

coordinate. Then using the arguments in the proof of the Witt's theorem

([1, p. 121]), we easily see that Qr is decomposed by G*(r,s) into the

following three orbits;

Rl(s) - {*(O e Qr I ζ e (

where K is the projection of Cn+1\{0] onto Pn(C). From 0 = /:(β0), en e

Cs(r) and (βo>^n) = V — 1 p̂ 0, we see oe/2°(s). Hence we have Q*(s) =

Q.E.D.
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Remark 6.3. From the above we have the orbital decomposition of

Qr by G*(r, s)

Qr = Q*(s) U RKs) U R2

r(s) .

Note that

(1) RKs) = {δ} if and only if s = 0, where δ = Λr(ew),

(2) R2

r(s) = 0 if and only if s = r.

Hence we have

Or = Of U {0} U #2

r(0)

Qo = Q* U {δ} ,

Or = 0?(r) U ΛKr) .

From Lemma 6.2 we see that Q*(s) is a connected open subset of

Qr, hence it is a connected non-degenerate (index r) homogeneous flat

hypersurface of Pn(C).

Next we will determine the groups A(Qr), A(Q*(s)) of all pseudo-

conformal transformations of Qr9 Q*(s).

PROPOSITION 6.4 ([6]). A(Qr) = G(r) .

Proof. Let us fix a frame #0 e ίXQr> <5(r)) at o. For τ e G(r) we

set Z0(r) = r#(a?o) Then Zo is a bundle homomorphism of G(r) (Qr, G'(f))

onto F(Q r , G(r)) corresponding to i, G'(r) -• G{r), which preserves the

base space Qr. It is known ([6 Theorem 6]) that G(f) (Qr, G'(r)) together

with ϊ0 is the pseudo-conformal G^rί-bundle over Qr and that the Maurer-

Cartan form on G(r) coincides with the normal pseudo-conformal connec-

tion form. Hence we have A(Qr) = G(r) as a Lie transformation group.

Q.E.D.

PROPOSITION 6.5

(1) In the case r * n ~ -1, A(Q*(s)) = G*(r, s),

(2) In the case r = n ~ 1 (n odd), A(Q*(s)) = G*(r, s) U rs(G*(r, s)),

where τs = χ(σs)
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Proof. Let πr be the projection of G(r) onto Qr (i.e. πr(τ) = τ(o)

for r e G(r)). Since Q*(s) is an open subset of Qr, the restriction

πΛQfis)) (Q*(s), GW) of G(r) (Qr, G^r)) is the pseudo-conformal G'(r)-

bundle over Q*(s) and the restriction ωs of the Maurer-Cartan form of

G(r) coincides with the normal pseudo-conformal connection form. Hence

we get A(Q*(s)) = {τ e G(r) |r(Q*(s)) = Q*(s)}. On the other hand we have

Q*(β) = {ζ = (Co, , C») e Qr IC Φ (Cs(r)y} and G*(r, s) = {χ(σ) e G\r) \ σ(Cs(r))

= Cs(r)}. From these we see easily A(Q*(s)) Π G°(r) = G*(r,s). In case

G(r) is not connected (i.e. in case r = - ^ - ^ — j , we can find an element

τseA(Q*(s)) which does not belong to G°(r). Q.E.D.

From the above we have P(Q*(s), G\r)) = ^'(Qf (β)) (Qf (β), G'(r)) and

A°(Q*G0) = G*(r,s). Let e e ^ W be the unit element of G(r). Then

the natural inclusion ce of G*(r,s) into G(r) induces the imbedding ce of

A°(Q*(s)) into P(Q*(s), G7(r)) in the sense of Proposition 3.2. In fact,

letting z0 and pβ0 be the same as in Proposition 3.2 we may take e as

zQ, then pZQ coincides with the natural inclusion of the isotropy subgroup

of G*(r,s) at o into G7(r). Moreover c*ωs is just the Maurer-Cartan

form on G*(r, s). In particular we have I)β = g*(r, s), where the notation

\ is the same as in Proposition 3.4.

Now we will investigate in detail the model spaces Qr, Q*(s) and

their groups G°(r), G*(r, s) of pseudo-conformal transformations.

First we have

PROPOSITION 6.6. Let us fix an integer r with 0 <: r <: \^LJH

(n ^ 2). Then Pn(C) 3 Qr, Q*(s) (0 <̂  s fg r) are αϊί simply connected.

Proof. (1) Simply connectedness of Qr; We consider

Σ
i=r+l

Then Qr

r and Qr are projectively equivalent (hence they are pseudo-

conformally equivalent). One should note that QΌ is the (2n — l)-dimen-

sional unit sphere in Cn = {(z09 , zn) e Pn(C) \ z0 ^ 0}. We will show the

simply connectedness of Q'r (r >̂ 1). From Proposition 6.4 we know

A\Q'r) = U(r + 1, n — r)/U(ΐ). Moreover it is easily seen that the

maximal compact subgroup K = U(r + 1) X U(n — r) of U(r + 1, n — r)

acts transitively on QJ., where
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K = {σe U(r + 1, n - σx e U(r + 1), <τ2e U(n - r)} .

Let o' be a point of Q'r with homogeneous coordinate (1,0, , 0,1).

Then the isotropy subgroup L of K at o' is given by

0

*i € f/(r), σ2 e I7(w - r -

Hence L is isomorphic with Z7(l) x U(r) x U(n — r — 1). From the above

Q'r is homeomorphic with ίC/L. Then the following homotopy exact

sequence of the principal fibre bundle K(Q'r,L) shows the simply con-

nectedness of Qri

> πx(L, e) -! l> πx{K, e) -ίi> πx{ffr, of) - i > τro(L, e) .

In fact, the arcwise connectedness of L implies τro(L, e) = {0}. Hence we

have only to check that i* is onto. Since we suppose r Ξ> 1, we have

+ 1), e) X ^(U(n - r), β) ( s Z Θ Z) ,

j , e) = ^(C7(l), e) x ^(U(r), e) X Wl(t7(n - r - 1), e) ( s Z Θ Z 0 Z) .

Moreover the generator of ττi(ϊ7(r), e) c πx(L, e) is also the generator of

πx{Ό{r + 1), e) c TΓ^K, β) and similarly the generator of ^(U(ti — r — 1, e))

c TΓiίL, e) is also the generator of π^Uin — r), e) c KX{K, e). Hence i* is

onto.

(2) Simply connectedness of Q*; We identify C71 with the set of

points of Pn(C) for which z0 ^ 0. Then from Q* = Qr Π Cw, we have

Qϊ - f(«ί, Im < = 4-f-Σ l*ίI2 + Σ
2 \ ί l i

where I m < is the imaginary part of zfn. Hence it is clear that Q* is

diffeomorphic with if2""1. In particular Q* is simply connected.

(3) Simply connectedness of Qf(s) (1 <̂  s ^ r) From Lemma 6.2

we have the orbital decomposition of Qr by G*(r, s) Qr = Q*(&) U -R (̂s)

U R2

r(s). From dim.c Cs(τ) = s + l w e have dim. R^s) = 2s ^ 2r. More-

over from dim.c (Csir))1- — n — s, we have dim. R2

r(s) = 2(?ι — s) — 3 pro-

vided that s < r (if s = r, β2

r(r) = 0). Hence if s ^ 1, both EKs) and

R2

r(s) are regular submanifolds of Qr of codimension greater than or
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equal to 3. Obviously Rr(s) is closed in Qr and R2

r(s) is closed in Qr\Rl(s).

Therefore the simply connectedness of Q*(s) follows from (1) and the

next proposition.

PROPOSITION D (cf. [3; VII Proposition 9.6]). Let M be a connected

manifold, and let S be a closed submanifold of M with dim. S ^ dim. M

— 3. Then M\S is connected and πλ(M) is isomorphic with πi(M\S).

Q.E.D.

Next we consider G\r) and G*(r, s). We set G'0(r) = G°(r) Π G\r).

Since Qr = G\r)/G'0(r) is simply connected, Gf

Q(r) is connected.

PROPOSITION 6.7. G\r) satisfies the following;

(1) There exists an element τ0 of G°(r) such that o is the only fixed

point of r0 in Qr.

(2) The center Z(G°(r)) of G°(r) is reduced to the unit.

(3) The normalizer NG0(r)(GΌ(r)) of G'0(r) in G°(r) coincides with Go(r).

Proof. (1) Let K be the projection of Cn+1\{0} onto Pn(C). Let

σ e U(ϊr) and p = κ(ζ) e Qr (i.e. (ζ, ζ) = 0). Then for χ(σ) e G\r) we have

χ(σ)(p) = p if and only if σ(ζ) = λζ for some λ e C\{0} .

Hence χ(σ) fixes a point p = κ(ζ) of Qr if and only if ζ is an isotropic

eigenvector of σ. Therefore finding an element of G°(r) having o = /c(e0)

as the only fixed point in Qr is equivalent to finding an element of U(Ir)

having <eo)c as the only isotropic eigenline. Here we mean by an

eigenline of a a 1-dimensional subspace invariant by σ. Using the Witt's

theorem one can easily construct such an element σe U(Ir).

(2) Let τeZ(G°(r)) and let r0 be as in (1). From ro r = τ τ0 we

have τ0(τ(o)) = τ(τ0(o)) = τ(o). Hence τ(o) is a fixed point of r0. But τ0

fixes o alone. Therefore τ(o) = o. Since G°(r) acts transitively on Qr,

we see easily τ fixes every point of Qr. Then since G°(r) acts effectively

on Q r,τ is the unit of G°(r).

(3) Let τ e G\r). Since G'0(r) is the isotropy subgroup of G\r) at

o e Qr, τ(Go(r))τ~ι is the isotropy subgroup of G%r) at τ(o). Hence each

element of τ(Go(r))τ~ι fixes τ(o). Now let τλ e NGHr)(G'0(r)), and let r0 be

as in (1). Since τ^G^r))^1 = G'0(r), each element of G'0(r) fixes r^o). In

particular Go(r) 9 r0 fixes τ^ό). Hence we have τx{o) = o, that is, τx e GΌ(r).

Therefore we get NG0(r)(GΌ(r))cz Go(r). The opposite inclusion is obvious.
Q.E.D.
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Let G*(r,s) be the isotropy subgroup of G*(r,s) at oeQ*(s). Since

Q*(s) = G*(r,s)/G*(r,s) is simply connected, G*(r, s) is connected.

PROPOSITION 6.8. G*(r,s) (0 ^ s <; r) satisfies the following

(1) Tftere e#ΐs£s an element τs

0 of G*(r,s) such that o is the only

fixed point of τs

0 in Q*(s).

(2) The center Z(G*(r,s)) of G*(r, s) is reduced to the unit.

(3) The normalizer NG*i7.iS)(G*(r,s)) of G*(r, s) in G*(r,s) coincides

with G*(r, s).

Proof. (1) Since Qf(s) = {ζ = (ζ 0 , . . , ζn) e Qr | ζ $ (Cs(r)y} and (5*(r, β)

= {σe U(ϊr)\σ(Cs(r)) = C,(r)}, we have only to find an element σs

0 of C7(/r)

which satisfies

( i ) σs

Q(Cs(r)) = Cs(r)

(ii) <βo>c is the only isotropic eigenline of σs

0 that is not included

in (C,(r))-» .

(cf. the proof of (1) Proposition 6.7). Using the Witt's theorem one can

easily construct such an element σs

0 e U(ϊr).

Since G*(r,s) acts effectively and transitively on Q*(s), in view of

(1), (2) and (3) can be proved similarly as in Proposition 6.7. Q.E.D.

VII. Determination of (A(S),APo(S)).

In this section let g be g(r) or g*(r,s) (s = 0,1, ,r) . Let G be

the analytic subgroup of G{r) with Lie algebra g, and let Q be the model

space corresponding to g which is defined in VI. Moreover let G/ be

the isotropy subgroup of G at o e Q, and let g' be its Lie algebra. Hence

in the case g = g(r) (resp. g*(r, s)), we have G = G°(r) (resp. G*(r, s)),

Q = Qr (resp. Q*(s)) and G' == G£(r) (resp. G*(r,s)). From Propositions

6.6, 6.7 and 6.8 we have

(1) Q — G\Gf is connected and simply connected.

(2) The center Z(G) of G is reduced to the unit.

(3) The normalizer NG(G') of Gf in G coincides with Gf.

(4) g' contains Eo e g(r) which defines the grading of g(r). .

As we see in VI, Q is a connected non-degenerate (index r) homo-

geneous flat hypersurface of Pn(C) for which G is the identity component

of A(Q).

Now we have
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PROPOSITION 7.1. Let g,g', Q, G and Gr be as above. Let S be a

connected non-degenerate (index r) homogeneous kypersurface, and let

(P, ω, I) be the normal pseudo-conformal connection over S. For poe S

we suppose that there exists a point zλ e π~\p^) such that %Z1 — g. Then

S is pseudo-conformally equivalent to Q.

Proof. Since g' contains Eo, we see from Lemma 5.5, Proposition

5.6 and Proposition 3.4 that there exists a point z0 e π'KPo) such that

e*ω is a Lie algebra isomorphism of a(S) onto g. In particular we have

4ω(αPo(S)) = β'. On the other hand, from Lemma 3.1 we have (pZQ)e —
ωzo(

czoX> that is, pz^ — c*oω as a Lie algebra homomorphism. Let (APo(S))°

be the identity component of APo(S). Then pZo is a group isomorphism

of (APo(S))° onto G'.

Next we compare A\S) with G. Since G is connected and Z(G) =

{e}, the adjoint representation AdG of G is an isomorphism of G onto

the adjoint group Int(g). Hence the adjoint representation adg of g is

also faithful. On the other hand the adjoint representation Ad40(s) of

A°(S) is a homomorphism of A\S) onto Int (α(S)). Set h = t*ω. Then

since h is a Lie algebra isomorphism of a(S) onto g, h naturally induces

a group isomorphism h of Int (α(S)) onto Int (g). More precisely we set

(h(τ))(X) = h τ-h-KX) for τ e Int (α(S)), l e g . Then we have h* sι,daiS)

= adg fe.

Now we set φ = (Ada)'1 - h AdA0{S). Then φ is a homomorphism of

A°(S) onto G such that φ* = /̂ . Moreover we consider a mapping ψ of

A°(S) /φ~1(Gr) onto Q which satisfies the following commutative diagram

A°(S) ^—> G

GO -->Q = GjG'.

Then ψ is a Cω-homeomorphism of A\S)lφ~ι(Gf) onto Q. Since ^^ = fe,

we have <p*(aPo(S)) = gr. Hence the Lie algebra of φ"\Gr) coincides with

aPo(S). On the other hand φ~ι(G') is connected since Q (therefore

A°(S)/φ-1(Gr)) is simply connected. Hence we have φ'\Gr) = (APΰ(S))°.

From NG(G') = G7 and the connectedness of G', we see that G' is the

only Lie subgroup of G with Lie algebra gr. On the other hand φ(A°PQ(S))

is a Lie subgroup of G with Lie algebra <p*(aPo(S)) = g'. Hence we have

φ(A°P0(S)) = G'. In particular A°P0(S) c p'KGO = (A^/S))0. Therefore we

https://doi.org/10.1017/S0027763000024752 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024752


92 KEIZO YAMAGUCHI

conclude A°PQ(S) = (APo(S))°, that is, A°PQ(S) is connected. Moreover com-

paring the restriction of φ to APQ(S) with pZQ, we have φ* — pZθ0 = h.

Hence we get φ\Aop {8) = pZo. In particular φ\Λo {S) is an isomorphism of

A°Po(S) onto G'.

Now from φ~\Gf) = A°0(S) and S = A°(S)/A£0(S), the above diagram

can be rewritten as follows

A\S) -?-• G

Since ψ is a Cω-homeomorphism of S onto Q and the restriction of φ

to A°0(S) is an isomorphism of A°PQ(S) onto G;, p becomes a bundle iso-

morphism of A°(S) GS,A°0OS)) onto G(Q9G'). Hence φ is a group iso-

morphism of A°(S) onto G.

Now we compare two (connected non-degenerate (index r) homo-

geneous) hypersurface S and Q. Let (πϊXQ), ωQ, l0) be the normal pseudo-

conformal connection over Q (for the notations see Proposition 6.5). If

we choose points z0 e π~ι(p0) and e e π~\o), then φ satisfies the assumption

of Proposition 3.5 since <p(A°P0(S)) = G\ <p* = 4 ω ( as Lie algebra isomor-

phisms) and C*O)Q is the Maurer-Cartan form of G. Therefore ψ is a

pseudo-conformal homeomorphism of S onto Q. Q.E.D.

From Theorem 5.8 and the above proposition, we have the main

theorem of this paper.

THEOREM 7.2. Let M be a complex manifold of dimension n. Let

S be a connected non-degenerate (index r) homogeneous hypersurface

of M.

(1) // dim. A(S) = n2 + 2n, then S is pseudo-conformally equivalent

to

Qr = \(zo, ->Zn)ePn(C) — *J~^ΐzQzn —
ί = i

- }
(2) // dim. A(S) < n2 + 2n, we have the following three cases.

( i ) the case n = 3 αwd r = 1 We feαt e dim. A(S) ^ n2 + 2 = 11.

equality holds if and only if S is pseudo-conformally equivalent to
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Q*(l) = {(s0, , s j e Qι I \zo\ + \z, - z2\ * 0} .

(ii) ίfce case n = 5 cmd r = 2 We /wye dim. A(S) ^ w2 + 1 = 26.

The equality holds if and only if S is pseudo-conformally equivalent to

Q * ( 2 ) = { ( s 0 , •• , s β ) € Q 2 | | s 0 | + l « i - « * l + l « 2 - « s l ^ 0 }

o r

Qϊ = {(zQ, - ,zδ)eQ2\zQ*0} .

(iii) otherwise We fcα/ve dim. A(S) ^ n2 + 1. T/&e equality holds

if and only if S is pseudo-conformally equivalent to

Qt = {(«o, •••,«») eQ r | s 0 =^0} .

In Theorem 7.2, if we specify the ambient space M, then the ques-

tion arises whether a hypersurface S with dim. A(S) = n2 + 2n (or n2 + 1)

exists in M, in other words, whether Qr (or Q*) can be pseudo-conformally

imbedded in M or not. In general this is a very hard problem. Con-

cerning with this we observe

COROLLARY 7.3. Let Cn be the complex number space of dimension

n. Let S be a connected non-degenerate (index r) homogeneous hyper-

surface of Cn. Then we have

(1) In the case r = 0 (i.e. in the case S is strongly pseudo-convex)

A(S) has the largest dimension n2 + 2n, if and only if S is pseudo-con-

formally equivalent to the unit sphere S2n~\ And A(S) has the second

largest dimension n2 + 1, if and only if S is pseudo-conformally equivalent

to the hyperconic

Qo* = {(*,, •• ,zn)eC

(2) In the case 1 ^ r < \ n ~ X 1

A(S) has the largest dimension n2 + 1, if and only if S is pseudo-con-

formally equivalent to

[ Λ, 1 "I

, we have the following three cases.
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( i ) n = 3 We have dim. A(S) ^ n2 + 2 = 11.
(ii) w = 5 We have dim. A(S) ^ w2 + 1 = 26.
(iii) otherwise A(S) feαs ίfoe largest dimension n2 + 1, i/

i/ S is pseudo-conformally equivalent to Q*.

Before the proof, recall the following

PROPOSITION E (cf. [5; VII Proposition 4.6], [6; Corollary to Theo-
rem 5]). Let S be a compact hypersurface of Cn. Then there exists a
point Po of S such that S is strongly pseudo-convex at p0.

Proof of Corollary 7.3. If dim. A(S) = n2 + 2n, S is pseudo-con-
formally equivalent to Qr from Theorem 7.2. Hence S is compact. Then
r must be zero as the above proposition shows. In other words, if r ^
1, Qr cannot be realized as a hypersurface of Cn. On the other hand
from the proof of Proposition 6.6, we know that Qo is protectively
equivalent to S271'1. Other assertions of the corollary is obvious from
Theorem 7.2. Q.E.D.

We don't know whether Qf (1) (resp. Qf(2)) can be pseudo-conformally
imbedded into C3 (resp. Cδ).

Finally we will see that in the case dim. A(S) = n2 + 2n, the homo-
geneity assumption is. dispensable. In fact we have

THEOREM 7.4. Let M be a complex manifold of dimension n. Let
S be a connected hypersurface of M which is non-degenerate of index
r at a point p0 e S. If dim. A(S) = n2 + 2n, then S is pseudo-conformally
equivalent to Qr.

Proof. We denote by a(S) the Lie algebra of all infinitesimal pseudo-
conformal transformations of S which generate global 1-parameter groups
of transformations. Then a(S) is naturally isomorphic with the Lie
algebra of A(S). Let S* be the set of points of S at which S is non-
degenerate of index r. Obviously S* is an open subset of S containing
pQ. Hence £* is a non-degenerate (index r) hypersurface. Let (P*, ω*, Z*)
be the normal pseudo-conformal connection over S*. We consider the
Lie algebra α(S*) of all infinitesimal pseudo-conformal transformations
of S*. Since S* is an open subset of S and each element of a(S) is a
real analytic vector field on S, the restriction map res of α(S) into α(S*)
is an injective homomorphism. Set α(P*) = {Xe3£(P*)[Lxo>* = 0, Ra*X
= X a e G'{r)}. Since (TΓ*)* is an isomorphism of α(P*) onto α(S*), we
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have dim. α(S*) ^ n2 + 2n. On the other hand from the assumption we

have dim. α(S) = n2 + 2n. Hence res is an isomorphism of a(S) onto

α(S*). In particular res maps the isotropy subalgebra aPo(S) of α(S) at

p0 onto the isotropy subalgebra δPo(S*) of δ(S*) at p0. Then from

dim. δPo(S*) = n2 + 1, we have dim. αPo(S) = w2 + 1.

Now we consider the orbit S** of A°(S) passing through p0. Then

as is easily seen from dim. a(S) = n2 + 2n and dim. aPo(S) = n2 + 1, S**

= A°(S)/A°0(S) is an open submanifold of S. Hence S** is a connected

non-degenerate (index r) homogeneous hypersurface. Moreover we have

dim. A(S**) = n2 + 2n. In fact we have only to show that A°(S) acts

effectively on S**, which is clear since S** is an open subset of S and

pseudo-conformal transformations of S are Cω-homeomorphisms of S.

Therefore from Theorem 7.2 £** is pseudo-conformally equivalent to Qr.

In particular £** is compact. On the other hand S** is an open subset

of a connected hypersurface S. Hence we must have S = S**. There-

fore S is pseudo-conformally equivalent to Q r. Q.E.D.

COROLLARY 7.5. Let S be a compact connected hypersurface of Cn.

If dim. ACS) = n2 + 2n9 then S is pseudo-conformally equivalent to the

unit sphere S2n~K

This is clear from the above theorem and Proposition E.

Remark 7.6. In the case of second largest dimension (r ^ 1), the

homogeneity assumption is indispensable. In fact Qr\{6} = Qΐ U R2

r(0)

(r :> 1) is a connected (inhomogeneous) hypersurface of Pn(C) for which

G*(f) is the identity component of A(Qr\{o}). We will treat the inhomo-

geneous second largest dimension case in a forthcoming paper.

REFERENCES

[ 1 ] E. Artin, Geometric Algebra, Interscience Tracts # 3 . Interscience, New York,
1957.

[ 2 ] E. Cartan, Sur la geometrie pseudo-conforme des hypersurfaces de Γespace de
deux variables complexes, I, Ann. Mat. Pura Appl., 11 (1932), 17-90. II, Ann.
Scuola. Norm. Sup. Pisa 1 (1932), 333-354.

[ 3 ] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New
York, 1962.

[ 4 ] S. Kobayashi, Transformation Groups in Differential Geometry. Springer, Berlin-
Heidelberg-New York, 1972.

[ 5 ] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry. John Wiley &
Sons, New-York, Vol. 1, 1963, Vol. 2, 1969.

https://doi.org/10.1017/S0027763000024752 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024752


96 KEIZO YAMAGUCHI

[ 6 ] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of
n complex variables, J. Math. Soc. Japan 14 (1962), 397-429.

[ 7 ] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan
connections, Japanese J. Math. vol. 2, No. 1 (1976).

Department of Mathematics, Kyoto Univ.

https://doi.org/10.1017/S0027763000024752 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024752



