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Abstract

Let A be a unital torsion-free algebra over a unital commutative ring R. To characterise Lie n-higher
derivations on A, we give an identity which enables us to transfer problems related to Lie n-higher
derivations into the same problems concerning Lie n-derivations. We prove that: (1) if every Lie n-
derivation onA is standard, then so is every Lie n-higher derivation onA; (2) if every linear mapping Lie
n-derivable at several points is a Lie n-derivation, then so is every sequence {dm} of linear mappings Lie
n-higher derivable at these points; (3) if every linear mapping Lie n-derivable at several points is a sum
of a derivation and a linear mapping vanishing on all (n − 1)th commutators of these points, then every
sequence {dm} of linear mappings Lie n-higher derivable at these points is a sum of a higher derivation
and a sequence of linear mappings vanishing on all (n − 1)th commutators of these points. We also give
several applications of these results.
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Keywords and phrases: Lie higher derivation, Lie n-higher derivable mapping, Lie n-higher derivation,
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1. Introduction

Let A be a unital algebra over a unital commutative ring R. A linear mapping δ
on A is called a derivation if δ(xy) = δ(x)y + xδ(y), a Jordan derivation if δ(x ◦ y) =

δ(x) ◦ y + x ◦ δ(y), a Lie derivation if δ([x, y]) = [δ(x), y] + [x, δ(y)] and a Lie triple
derivation if δ([[x, y], z]) = [[δ(x), y], z] + [[x, δ(y)], z] + [[x, y], δ(z)], in each case for
each x, y, z inA, where x ◦ y = xy + yx and [x, y] = xy − yx. A derivation δ is called an
inner derivation if there exists some a in A such that δ(x) = ax − xa for each x in A.
Define a sequence of polynomials as follows:

p1(x1) = x1 and pn(x1, x2, . . . , xn) = [pn−1(x1, x2, . . . , xn−1), xn]

for each x1, x2, . . . , xn ∈ A and each positive integer n ≥ 2. Thus, p2(x1, x2) = [x1, x2],
p3(x1, x2, x3) = [[x1, x2], x3] and pn(x1, x2, . . . , xn) = [. . . [[x1, x2], x3], . . . , xn]. For
n ≥ 2, pn(x1, x2, . . . , xn) is also called an (n − 1)th commutator of x1, x2, . . . , xn ∈ A.
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A linear mapping δ onA is called a Lie n-derivation (n ≥ 2) if

δ(pn(x1, x2, . . . , xn)) =

n∑
i=1

pn(x1, . . . , xi−1, δ(xi), xi+1, . . . , xn) (1.1)

for each x1, x2, . . . , xn ∈ A. Thus, δ is a Lie derivation when n = 2 and a Lie triple
derivation when n = 3. The notion of a Lie n-derivation was first proposed by
Abdullaev [1]. He described the form of Lie n-derivations of a certain von Neumann
algebra (or of its skew-adjoint part). Lie n-derivations on various unital algebras are
considered in [2, 4, 15, 18].

Let RA be a nonempty subset of An. A linear mapping δ on A is Lie n-derivable
on RA if it satisfies (1.1) for each (x1, x2, . . . , xn) ∈ RA. A Lie n-derivation δ on A is
standard if δ = h + τ, where h is a derivation on A and τ is a linear mapping from A
into its centreZ(A) vanishing on all (n − 1)th commutators ofA.

From now on,A is a torsion-free algebra, which means that for each positive integer
n, nx = 0 implies that x = 0 for each x inA. Let δ be a linear mapping onA. Define a
sequence {dm} of linear mappings onA by

d0 = I and m!dm = δm (1.2)

for each positive integer m, where I is the identity mapping onA. If δ is a derivation,
then, by [13, Section 1], {dm} satisfies

dm(ab) =

m∑
j=0

d j(a)dm− j(b) (1.3)

for each a, b in A. A sequence {dm} of linear mappings satisfying d0 = I and (1.3) is
called a higher derivation or Hasse–Schmidt derivation, after Hasse and Schmidt [6].
Similarly, we can define Jordan higher derivations by replacing normal multiplication
in (1.3) with Jordan multiplication. A (Jordan) higher derivation {dm} satisfying
(1.2) is called an ordinary (Jordan) higher derivation. Mirzavaziri [13] characterised
higher derivations on algebras over a field of characteristic zero. Li et al. [9] found
the connection between (Jordan) derivable mappings and (Jordan) higher derivable
mappings. Similar to the result in [13, Section 1], we have the following proposition.

Proposition 1.1. Let δ be a Lie n-derivation on A and {dm} be a sequence of linear
mappings onA satisfying (1.2). Then, for each x1, x2, . . . , xn inA, {dm} satisfies

dm(pn(x1, x2, . . . , xn)) =
∑

i1+i2+···+in=m

pn(di1 (x1), di2 (x2), . . . , din (xn)). (1.4)

Proof. We prove the proposition by induction on m. It is obvious that (1.4) is satisfied
for m = 0, since d0 = I. Suppose that (1.4) is satisfied for m = k − 1 (k ≥ 1). When
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m = k, we have k!dk = δk = δδk−1 = (k − 1)!δdk−1 and

k!dk(pn(x1, x2, . . . , xn)) = (k − 1)!δdk−1(pn(x1, x2, . . . , xn))

= (k − 1)!δ
( ∑

i1+i2+·+in=k−1

pn(di1 (x1), di2 (x2), . . . , din (xn))
)

= (k − 1)!
∑

i1+i2+···+in=k−1

δ(pn(di1 (x1), di2 (x2), . . . , din (xn)))

= (k − 1)!
∑

i1+i2+···+in=k−1

n∑
j=1

pn(di1 (x1), . . . , δdi j (xi j ), . . . , din (xn)))

= k!
∑

i1+i2+···+in=k−1

n∑
j=1

pn(di1 (x1), . . . , di j+1(xi j ), . . . , din (xn)))

= k!
∑

i1+i2+···+in=k

pn(di1 (x1), di2 (x2), . . . , din (xn)).

SinceA is torsion-free, (1.4) is satisfied for m = k. �

A sequence {dm} of linear mappings on A satisfying d0 = I and (1.4) is called a
Lie n-higher derivation (n ≥ 2). In particular, {dm} is a Lie higher derivation when
n = 2 and a Lie triple higher derivation when n = 3. A Lie n-higher derivation is
ordinary if it satisfies (1.2). Let RA be a nonempty subset of An. A sequence
{dm} of linear mappings is Lie n-higher derivable on RA if it satisfies (1.4) for
each (x1, x2, . . . , xn) ∈ RA. A Lie n-higher derivation D = {dm} on A is standard
if dm = gm + fm, where {gm} is a higher derivation on A and { fm} is a sequence of
linear mappings from A into its centre Z(A) vanishing on all (n − 1)th commutators
ofA.

This paper is organised as follows. In Section 2, we give an identity to characterise
Lie n-higher derivations on torsion-free algebras. This enables us to transfer
problems related to Lie n-higher derivations into the same problems concerning Lie
n-derivations. In Section 3, we show that if every Lie n-derivation of a torsion-free
algebra A is standard, then so is every Lie n-higher derivation of A. In Section 4, we
show that if every linear mapping Lie n-derivable on a nonempty subset RA ofAn is a
Lie n-derivation, then every sequence {dm} of linear mappings Lie n-higher derivable
on RA is a Lie n-higher derivation. Let RA and R̃A be two nonempty subsets ofAn. We
also prove that if every linear mapping Lie n-derivable on RA is a sum of a derivation
onA and a linear mapping fromA intoZ(A) vanishing on all (n − 1)th commutators
of R̃A, then every sequence {dm} of linear mappings Lie n-higher derivable on RA is a
sum of a higher derivation onA and a sequence of linear mappings fromA intoZ(A)
vanishing on all (n − 1)th commutators of R̃A.

Throughout this paper,A is a unital torsion-free algebra over a unital commutative
ring R and I is the identity mapping onA, unless stated otherwise.
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2. Lie n-higher derivations

In this section, we show that each Lie n-higher derivation can be expressed as a
combination of Lie n-derivations.

Proposition 2.1. Let {dm} be a sequence of linear mappings on A. Then {dm} is a Lie
n-higher derivation if and only if d0 = I and, for each positive integer m,

mdm =

m∑
k=1

δkdm−k, (2.1)

where {δm} is a sequence of Lie n-derivations onA.

Proof. We prove the necessity by induction on m. If {dm} is a Lie n-higher derivation,
then, according to the definition, we have that d0 = I and

d1(pn(x1, x2, . . . , xn)) =
∑

i1+i2+···+in=1

pn(di1 (x1), di2 (x2), . . . , din (xn))

=

n∑
i=1

pn(x1, . . . , xi−1, d1(xi), xi+1, . . . , xn)

for each x1, x2, . . . , xn inA. Take δ1 = d1. Then δ1 is a Lie n-derivation and d1 = δ1d0.
Now suppose that there are Lie n-derivations {δm} (m ≤ k − 1 and k ≥ 2) satisfying
(2.1). Set δk = kdk −

∑k−1
s=1 δsdk−s. We only need to prove that δk is a Lie n-derivation.

For each x1, x2, . . . , xn inA,

δk(pn(x1, x2, . . . , xn)) = k
∑

i1+i2+···+in=k

pn(di1 (x1), di2 (x2), . . . , din (xn))

−

k−1∑
s=1

δs

∑
i1+i2+···+in=k−s

pn(di1 (x1), di2 (x2), . . . , din (xn))

=
∑

i1+i2+···+in=k

(i1 + i2 + · · · + in)pn(di1 (x1), di2 (x2), . . . , din (xn))

−

k−1∑
s=1

∑
i1+i2+···+in=k−s

n∑
j=1

pn(di1 (x1), . . . , δsdi j (x j), . . . , din (xn))

=

n∑
j=1

( ∑
i1+···+i j+···+in=k

pn(di1 (x1), . . . , i jdi j (x j), . . . , din (xn))

−

k−1∑
s=1

∑
i1+···+i j+···+in=k−s

pn(di1 (x1), . . . , δsdi j (x j), . . . , din (xn))
)

=

k−1∑
s=1

Q j (say).
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Then

Q j = pn(x1, . . . , kdk(x j), . . . , xn) +
∑

i1+···+r j+···+in=k
1≤r j≤k−1

pn(di1 (x1), . . . , r jdr j (x j), . . . , din (xn))

−

k−1∑
s=1

pn(x1, . . . , δsdk−s(x j), . . . , xn)

−
∑

i1+···+r j+···+in=k
1≤r j≤k−1

r j∑
s=1

pn(di1 (x1), . . . , δsdr j−s(x j), . . . , din (xn))

= pn

(
x1, . . . , kdk(x j) −

k−1∑
s=1

δsdk−s(x j), . . . , xn

)
+

∑
i1+···+r j+···+in=k

1≤r j≤k−1

pn

(
di1 (x1), . . . , r jdr j (x j) −

r j∑
s=1

δsdr j−s(x j), . . . , din (xn)
)

= pn(x1, . . . , δk(x j), . . . , xn),

so δk(pn(x1, x2, . . . , xn)) =
∑n

j=1 pn(x1, . . . , δk(x j), . . . , xn) and δk is a Lie n-derivation.
Now we prove the sufficiency. Since d0 = I, (1.4) holds for m = 0. Suppose that

(1.4) is satisfied for each dm (m ≤ k − 1 and k ≥ 1). By (2.1), for each x1, x2, . . . , xn

in A,

kdk(pn(x1, x2, . . . , xn)) =

k∑
s=1

δs

∑
i1+i2+···+in=k−s

pn(di1 (x1), di2 (x2), . . . , din (xn))

=

k∑
s=1

∑
i1+i2+···+in=k−s

n∑
j=1

pn(di1 (x1), . . . , δsdi j (x j), . . . , din (xn))

=
∑

i1+···+r j+···+in=k
r j≥1

r j∑
s=1

n∑
j=1

pn(di1 (x1), . . . , δsdr j−s(x j), . . . , din (xn))

=
∑

i1+···+r j+···+in=k
r j≥1

n∑
j=1

pn(di1 (x1), . . . , r jdr j (x j), . . . , din (xn))

=
∑

r1+···+r j+···+rn=k

n∑
j=1

r j pn(dr1 (x1), . . . , dr j (x j), . . . , drn (xn))

= k
∑

r1+···+r j+···+rn=k

pn(dr1 (x1), . . . , dr j (x j), . . . , drn (xn)).

SinceA is torsion-free, (1.4) is satisfied for dk. �

https://doi.org/10.1017/S0004972717000338 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000338


228 Y. Ding and J. Li [6]

Remark 2.2. Let D be the set of all Lie n-higher derivations {dm} on A where d0 = I,
and let ∆ be the set of all sequences {δm} of Lie n-derivations on A with δ0 = 0.
Then there is a one-to-one correspondence between D and ∆, which we can describe
explicitly as follows. For {δm} in ∆, set d0 = I. The recurrence relation

mdm =

m∑
k=0

δkdm−k (2.2)

defines a unique sequence {dm} of linear mappings on A and, by the sufficiency of
Proposition 2.1, {dm} ∈ D. Conversely, for each {dm} in D, set δ0 = 0 and consider
δm = mdm −

∑m−1
k=0 δkdm−k. This is just another version of (2.2) and defines a unique

sequence {δm} of linear mappings onA. By the necessity of Proposition 2.1, {δm} ∈ ∆.

Corollary 2.3. With the notation of Remark 2.2, suppose that {dm} ∈ D corresponds
to {δm} ∈ ∆. Then {dm} is ordinary if and only if δm = 0 for each m ≥ 2. In this case,
m!dm = dm

1 for each positive integer m.

Proof. The sufficiency is obvious. We prove the necessity by induction on m. Since
{dm} is ordinary, there exists a Lie n-derivation δ on A satisfying m!dm = δm for each
positive integer m. Then d1 = δ and 2d2 = δ2. By Remark 2.2, δm = mdm −

∑m−1
k=0 δkdm−k

for each positive integer m. Then δ1 = d1 = δ and δ2 = 0. Suppose that δm = 0 for each
integer 2 ≤ m ≤ k − 1 and k ≥ 3. Then δk = kdk −

∑k−1
s=0 δsdk−s = kdk − δdk−1. Thus,

(k − 1)!δk = k!dk − δ(k − 1)!dk−1 = δk − δδk−1 = 0. SinceA is torsion-free, δk = 0. �

The proof of the next corollary is similar to the proof of [13, Theorem 2.3].

Corollary 2.4 [13]. Let A be an algebra over a field of characteristic zero, I the
identity on A and {dm} a Lie n-higher derivation on A with d0 = I. Then there is a
sequence {δm} of Lie n-derivations onA such that

dm =

m∑
i=1

( ∑
r1+r2+···+ri=m

( i∏
j=1

1
r j + · · · + ri

)
δr1δr2 · · · δri

)
, m = 1, 2, . . . .

3. Characterisations of standard forms of Lie n-higher derivations

Theorem 3.1. If every Lie n-derivation of A is standard, then every Lie n-higher
derivation ofA is standard.

Proof. Let {dm} be a Lie n-higher derivation on A with d0 = I. By Proposition 2.1,
there is a sequence {δm} of Lie n-derivations on A satisfying (2.1). By assumption,
δm = hm + τm for each nonnegative integer m, where hm is a derivation and τm is a
linear mapping from A into the centre Z(A) of A with τm(pn(x1, x2, . . . , xn)) = 0 for
each x1, x2, . . . , xn inA.

We prove the theorem by induction on m. Set g0 = I and f0 = 0. Then d0 = g0 + f0.
By (2.1), it is obvious that d1 = δ1 = h1 + τ1. Set g1 = h1 and f1 = τ1. Then d1 =

g1 + f1, {gm}m=0,1 is a higher derivation and { fm}m=0,1 is a sequence of linear mappings
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from A into Z(A) with fm(pn(x1, x2, . . . , xn)) = 0 (m = 0, 1) for each x1, x2, . . . , xn

inA.
Suppose that, for each nonnegative integer m ≤ k, there are a higher derivation

{gm}m≤k and a sequence { fm}m≤k of linear mappings from A into Z(A) with
fm(pn(x1, x2, . . . , xn)) = 0 (m ≤ k) for x1, x2, . . . , xn inA and dm = gm + fm. By (2.1),

(k + 1)dk+1 =

k+1∑
s=1

δsdk+1−s =

k+1∑
s=1

(hs + τs)(gk+1−s + fk+1−s)

=

k+1∑
s=1

hsgk+1−s +

k+1∑
s=1

(hs fk+1−s + τsdk+1−s).

Set (k + 1)gk+1 =
∑k+1

s=1 hsgk+1−s and (k + 1) fk+1 =
∑k+1

s=1(hs fk+1−s + τsdk+1−s). Then
{gm}m≤k+1 is a higher derivation by [13, Theorem 2.5], fk+1 is a linear mapping fromA
intoZ(A) and (k + 1)dk+1 = (k + 1)gk+1 + (k + 1) fk+1. For each x1, x2, . . . , xn inA,

(k + 1) fk+1(pn(x1, x2, . . . , xn)) =

k+1∑
s=1

τs

( ∑
i1+i2+···+in=k+1−s

pn(di1 (x1), di2 (x2), . . . , din (xn))
)

=

k+1∑
s=1

∑
i1+i2+···+in=k+1−s

τs(pn(di1 (x1), di2 (x2), . . . , din (xn)))

= 0.

Since A is torsion-free, dk+1 = gk+1 + fk+1 and fk+1(pn(x1, x2, . . . , xn)) = 0 for each
x1, x2, . . . , xn inA. �

Remark 3.2. The above theorem generalises [5, Propositions 3.1 and 3.2], which state
that if A is an algebra over a field of characteristic zero and every Lie derivation
(respectively Lie triple derivation) of A is standard, then every Lie higher derivation
(respectively Lie triple higher derivation) ofA is standard.

In [2, 4, 18], the authors discussed sufficient conditions for Lie n-derivations to
be standard on A, where A is a triangular ring, a von Neumann algebra without
abelian central summands of type I1 or a unital algebra with a wide idempotent. From
Theorem 3.1, we can obtain sufficient conditions for Lie n-higher derivations to be
standard onA.

4. Characterisations of Lie n-higher derivations by local actions

Theorem 4.1. Let RA be a nonempty subset of An. If every mapping Lie n-derivable
on RA is a Lie n-derivation, then every sequence {dm} of linear mappings Lie n-higher
derivable on RA with d0 = I is a Lie n-higher derivation.

Proof. Suppose that {dm} is Lie n-higher derivable on RA and d0 = I. Let {δm}

be a sequence of linear mappings on A with δ0 = 0 and δm = mdm −
∑m−1

k=0 δkdm−k.
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By Proposition 2.1, it is sufficient to show that each δm is a Lie n-derivation. We prove
this by induction on m.

Clearly δ1 = d1 is Lie n-derivable on RA and it is a Lie n-derivation by assumption.
Suppose that δm is a Lie n-derivation for each m ≤ k. Then, proceeding in the same
way as in the proof of Proposition 2.1, for each (x1, x2, . . . , xn) ∈ RA,

δk+1(pn(x1, x2, . . . , xn)) = (k + 1)
∑

i1+i2+···+in=k+1

pn(di1 (x1), di2 (x2), . . . , din (xn))

−

k∑
s=0

δs

∑
i1+i2+···+in=k+1−s

pn(di1 (x1), di2 (x2), . . . , din (xn))

=

n∑
j=1

pn(x1, . . . , δk+1(x j), . . . , xn).

Thus, δk+1 is a Lie n-derivation. �

Remark 4.2. The above theorem prompts us to find conditions under which every
linear mapping Lie n-derivable on some nonempty subset RA is a Lie n-derivation.
While results of this type do not seem to be known, there are a number of papers
which prove that for n = 2 or 3, every linear mapping δ Lie n-derivable on some
nonempty subset RA has the form δ = h + τ, where h is a derivation on A and τ is
a linear mapping from A into Z(A) vanishing on all (n − 1)th commutators of RA
(see [3, 7, 8, 10, 12, 14, 16, 17]). In view of these results, we obtain the following
theorem.

Theorem 4.3. Let RA and R̃A be two nonempty subsets ofAn. If every linear mapping
δ Lie n-derivable on RA has the form δ = h + τ, where h is a derivation on A and
τ is a linear mapping from A into Z(A) vanishing on all (n − 1)th commutators of
R̃A, then every sequence {dm} of linear mappings Lie n-higher derivable on RA with
d0 = I has the form dm = gm + fm, where {gm} is a higher derivation on A and { fm} is
a sequence of linear mappings from A into Z(A) such that each fm vanishes on all
(n − 1)th commutators of R̃A.

Proof. Suppose that {dm} is Lie n-higher derivable on RA and d0 = I. Let {δm} be a
sequence of linear mappings onA with δ0 = 0 and δm = mdm −

∑m−1
k=0 δkdm−k.

We prove the theorem by induction on m. Set g0 = I and f0 = 0; then d0 = g0 + f0.
It is obvious that δ1 = d1 is Lie n-derivable on RA. By assumption, δ1 has the form
δ1 = h1 + τ1, where h1 is a derivation of A and τ1 is a linear mapping from A into
Z(A) vanishing on all (n − 1)th commutators of R̃A. Set g1 = h1 and f1 = τ1. Then
d1 = g1 + f1, {gm}m=0,1 is a higher derivation and { fm}m=0,1 is a sequence of linear
mappings from A into Z(A) such that each fm (m = 0, 1) vanishes on all (n − 1)th
commutators of R̃A.

Now suppose that for each nonnegative integer m ≤ k, δm is Lie n-derivable on RA,
δm = hm + τm and dm = gm + fm, where {hm}m≤k is a sequence of derivations, {gm}m≤k

is a higher derivation and {τm}m≤k, { fm}m≤k are two sequences of linear mappings from
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A into Z(A) vanishing on all (n − 1)th commutators of R̃A. As in the proof of
Theorem 4.1, we show that, for each (x1, x2, . . . , xn) ∈ RA,

δk+1(pn(x1, x2, . . . , xn)) =

n∑
j=1

pn(x1, . . . , δk+1(x j), . . . , xn).

Thus, δk+1 is Lie n-derivable on RA. But δk+1 has the form δk+1 = hk+1 + τk+1, where
hk+1 is a derivation ofA and τk+1 is a linear mapping fromA intoZ(A) vanishing on
all (n − 1)th commutators of R̃A. Now

(k + 1)dk+1 =

k+1∑
s=1

δsdk+1−s =

k+1∑
s=1

(hs + τs)(gk+1−s + fk+1−s)

=

k+1∑
s=1

hsgk+1−s +

k+1∑
s=1

(hs fk+1−s + τsdk+1−s).

Set (k + 1)gk+1 =
∑k+1

s=1 hsgk+1−s and (k + 1) fk+1 =
∑k+1

s=1(hs fk+1−s + τsdk+1−s). Then
{gm}m≤k+1 is a higher derivation by [13, Theorem 2.5], fk+1 is a linear mapping fromA
intoZ(A) and (k + 1)dk+1 = (k + 1)gk+1 + (k + 1) fk+1. As in the proof of Theorem 3.1,
we see that, for each (x1, x2, . . . , xn) ∈ R̃A, (k + 1) fk+1(pn(x1, x2, . . . , xn)) = 0. Since
A is torsion-free, we have dk+1 = gk+1 + fk+1 and fk+1(pn(x1, x2, . . . , xn)) = 0 for each
(x1, x2, . . . , xn) ∈ R̃A. �

Remark 4.4. Take A to be a generalised matrix algebra, a triangular algebra, a unital
prime algebra with nontrivial idempotents, an algebra of all bounded linear operators, a
von Neumann algebra or aJ-subspace lattice algebra (see [11]). Define two nonempty
subsets ofAn by

RA(n, t) = {(x1, x2, . . . , xn) | x1, x2, . . . , xn ∈ A with x1x2 = t},
R̃A(n, t) = {(x1, x2, . . . , xn) | x1, x2, . . . , xn ∈ A with pn(x1, x2, . . . , xn) = t}

for some positive integer n and some element t in A. Let P be an idempotent
of A. Under certain conditions, [3, 7, 8, 10, 12, 14, 16, 17] obtained respective
characterisations of Lie derivable mappings on RA(2, P), Lie derivable mappings
on RA(2, 0), Lie derivable mappings on R̃A(2, 0), Lie triple derivable mappings on
RA(3, P) or Lie triple derivable mappings on RA(3, 0), as sums of derivations and
central mappings vanishing on all commutators of the respective subsets. By Theorem
4.3, we can characterise Lie higher derivable mappings and Lie triple higher derivable
mappings on these same subsets.
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