Geometrical Problem.

By G. E. Chawford, MA.
Figure 24.
Let $O Q, O R$ be two straight lines meeting at O, and P any point. Required to draw through \mathbf{P} a straight line cutting off a given area $O A B$ from the two straight lines.

Draw PD parallel to $O R$ cutting $O Q$ in D.
Construct a. $\triangle O P C$ equal to the given area, and such that $O P$ is one of its sides, and that another of its sides, $O C$, lies along $O Q$.

Take OE a mean proportional to OC, OD.
Draw OF perpendicular to $O C$ and equal to half of it.
Join EF, and cut off $F G=O F$.
Take $O A=E G$. Then $P A B$ is the required straight line.

Proof :

```
Sqs. on \(\mathrm{OE}, \mathrm{OF}=\mathrm{sq}\). on EF
    \(=\) sqs. on \(\mathrm{EG} ; \mathrm{GF},+2\) rect. \(\mathrm{EG} . \mathrm{GF}\)
\(\therefore \quad\) sq. on \(\mathrm{OE}=\) sq. on \(\mathrm{EG}+2\) rect. EG. GF
    \(=\) sq. on \(\mathrm{OA}+\) rect. \(\mathrm{OA} . \mathrm{OC}\) (since \(\mathrm{OC}=2 \mathrm{GF}\) )
\(\therefore\) rect. \(O C . O D=s q\). on \(O A+\) rect. \(O A . O C\)
            rect. \(\mathrm{OC} \cdot(\mathrm{OA}+\mathrm{AD})=\) sq. on \(\mathrm{OA}+\) rect. \(\mathrm{OA} \cdot \mathrm{OC}\)
\(\therefore \quad\) rect. \(\mathrm{OC} . \mathrm{OA}+\mathrm{OC} . \mathrm{DA}=\) sq. on (OA + rect. \(\mathrm{OA} . \mathrm{OC}\)
\(\therefore \quad\) sq. on OA \(=\) rect. OC.DA
\(\therefore \quad \mathrm{OC}: \mathrm{DA}:: \mathrm{OA}^{2}: \mathrm{DA}^{2}\)
\(\therefore \quad \triangle \mathrm{OPC}: \triangle \mathrm{DPA}: \triangle \mathrm{OAB}: \triangle \mathrm{DAP}\)
    \(\triangle \mathrm{OAB}=\triangle \mathrm{OPC}=\) given area.
```

